

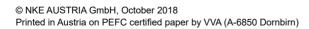
Hauptkatalog General Catalogue

Herausgeber: NKE AUSTRIA GmbH

Publisher: Im Stadtgut C4

4407 Steyr Austria

Katalognummer: 2018/10


Catalogue number:

Sämtliche Informationen wurden sorgfältig erstellt und überprüft. Für eventuelle Fehler oder Unvollständigkeit übernimmt NKE keine Haftung. NKE behält sich das Recht, technische Änderungen oder Änderungen des Lieferprogramms auch ohne vorherige Ankündigung durchzuführen, ausdrücklich vor.

Nachdruck und Reproduktion dieses Katalogs, auch auszugsweise, sind nur nach vorherigem schriftlichen Einverständnis durch NKE zulässig.

Every care has been taken to ensure the accuracy of the information contained in this publication, but NKE accepts no liability due to errors or omissions. NKE reserves the right to change any product designs and/or specifications without prior notice.

The reproduction of this catalogue by any means, even extracts, is subjected to prior permission in writing by NKE.

Technischer Teil	Deutsch
Technical Section	English
	Rillenkugellager Deep Groove Ball Bearings
	Schrägkugellager Angular Contact Ball Bearings
	Pendelkugellager Self Aligning Ball Bearings
	Zylinderrollenlager Cylindrical Roller Bearings
	Kegelrollenlager <i>Tapered Roller Bearings</i>
Produktteil	Pendelrollenlager Spherical Roller Bearings
Product Section	Axial-Rillenkugellager <i>Thrust Ball Bearings</i>
	Axial-Zylinderrollenlager Cylindrical Roller Thrust Bearings
	Axial-Pendelrollenlager Spherical Roller Thrust Bearings
	Laufrollen Cam Rollers
	Gehäuselagereinheiten Bearing Units
	Zubehör Accessories

Das NKE-Werk in Steyr

NKE AUSTRIA GmbH

NKE AUSTRIA GmbH mit dem Hauptsitz in Steyr, Österreich, ist ein Wälzlagerhersteller der Premium-Klasse.

NKE entwickelt, konstruiert und produziert sowohl **Standard-** als auch **Sonderlager** für sämtliche Industrieanwendungen. Die Kernkompetenzen des Unternehmens – Technik, Produktentwicklung, Fertigung/Endbearbeitung der Komponenten, Montage, Qualitätssicherung, Logistik, Verkauf und Marketing – werden in dem nach ISO 9001, ISO 14001 und OHSAS 18001 zertifizierten Werk in Steyr konzentriert.

Neben dem umfassenden Produktsortiment bietet NKE auch komplette **Serviceunterstützung** an, wie z.B.

- Anwendungsberatung
- Entwicklung und Konstruktion
- Technische Berechnungen
- Versuche
- Schulungen

Das umfassende Standardlager-Programm von NKE

NKE Hauptkatalog

Der NKE Hauptkatalog enthält das NKE Standardprogramm, d.h. jenes Typenspektrum, das großteils aus Vorrat lieferbar oder relativ kurzfristig verfügbar ist.

Darüber hinaus entwickeln und fertigen wir auftragsbezogen auch Sonderlager nach Kundenspezifikation.

Der NKE Hauptkatalog ist in zwei Teile gegliedert:

- Der **Technische Teil** umfasst u.a. wesentliche Informationen zur Lagerauswahl und Dimensionierung, Gestaltung der Lagerstellen, Handling, Ein- und Ausbau, Schmierung sowie Angaben über Toleranzen von Lagern.
- Der Produktteil besteht aus den eigentlichen Produkttabellen, aber auch bauart- bzw. typenspezifischen Angaben zu jeder Produktgruppe.

Was ist neu in der fünften Auflage?

Wir haben das Produktsortiment gestrafft und die technischen Daten, wie z.B. die Lebensdauerberechnung, Ermüdungsgrenzbelastung, wie auch die Referenzdrehzahl, ergänzt.

Inhalt	Seite
Einleitung Inhaltsverzeichnis	1 2
Grundlagen, Bestandteile von Wälzlagern	11
Einleitung Funktionsweise, Grundprinzipien Bestandteile von Wälzlagern Laufringe und scheiben Wälzkörper Rollenformen Käfig Dichtungen, Anbauteile und Zubehör	11 11 12 12 13 14 14
Übersicht der wichtigsten Lagerbauformen	16
Einteilung der Wälzlager Übersicht der Lagerbauarten und deren spezifische Merkmale Radial-Rillenkugellager Schrägkugellager Vierpunktlager Pendelkugellager Zylinderrollenlager Pendelrollenlager Kegelrollenlager Kegelrollenlager Axial-Rillenkugellager Axial-Pendelrollenlager Laufrollen Zubehör	16 17 17 18 19 19 20 20 21 22 23 24 24 25
Wälzlager – Bezeichnungssystem	26
Allgemeines DIN und ISO-Maßpläne Bezeichnungssystem von Normlagern Vorsetzzeichen Basiskennzeichen Lagerreihen Lagerart	26 26 27 27 28 28 29

Inhalt	Seite
Bohrungsdurchmesser	30
Nachsetzzeichen	31
Käfigwerkstoffe	33
Käfigbauarten	33
Lager ohne Käfig	34
Toleranzklassen	34
Lagerluft	34
Sonderbefettungen	36
Bezeichnungen von Zubehör und Teilen	38
Spann- und Abziehhülsen	38
Wellenmuttern	39
Sicherungsbleche	40
Lagersätze	40
Lagerdaten allgemein	41
Allgemeines	41
Werkstoffe	41
Werkstoffe von Lagerringen und Wälzkörpern	41
Wärmebehandlung	41
Käfigwerkstoffe	41
Werkstoffe von Dichtungen und Deckscheiben	42
Deckscheiben	43
Dichtungen	43
Drehzahlverminderung bei schleifenden Dichtungen	44
Berührungsfreie Dichtungen	44
Dichtungswerkstoffe	44
Fettfüllung	45
Sonderfette	45
Hauptabmessungen der Wälzlager	45
Maßpläne Hauptabmessungen	46
Kantenabstände	47
Kantenabstände metrischer Radiallagern (ohne Kegelrollenlager)	48
Kantenabstände metrischer Kegelrollenlager	50
Grenzwerte für die Kantenabstände von Axiallagern	51
Toleranzen	52
Allgemeines	52
Verwendete Toleranzsymbole	52

Inhalt	Seite
Toleranzen der Radiallager ohne Kegelrollenlager	54
Toleranzen metrischer Kegelrollenlager	58
Toleranzen Kegelrollenlager in Zollabmessungen	62
Toleranzen der Axiallager	64
Bauhöhen der Axiallager	66
Toleranzen für kegelige Bohrungen	68
Auswahl und Dimensionierung von Wälzlagern	70
Allgemeines	70
Grundsatzüberlegungen	70
Einflussgrößen	70
Tragfähigkeit und Lagerlebensdauer	73
Berechnung bei statischer Belastung	74
Statisch äquivalente Belastung P ₀	74
Dynamische Tragzahl C _r bzw. C _a	75
Berechnung der Lager bei dynamischer Belastung	75
Belastung und Drehzahl bei variablen Betriebsbedingungen	79
Belastung bei paarweise angeordneten Lagern	81
Nominelle Lebensdauer	82
Erweiterte Lebensdauer	82
Beiwert für die Zuverlässigkeit a₁	83
Beiwert a _{ISO}	83
Berechnungsbeispiele	85
Weitere Einflussgrößen	89
Auswahl spezifischer Lagermerkmale	91
Allgemeines	91
Drehzahleignung	91
Grenzdrehzahl	92
Thermisch zulässige Drehzahl	92
Berechnung der thermisch zulässigen Drehzahl	92
Anpassung der Lagerumgebung	94
Laufruhe	94
Käfigausführung	94
Winkeleinstellbarkeit	95
Steifigkeit	96
Gestaltung der Lagerstelle	97
Allgemeines	97

Inhalt	Seite
Lageranordnung	97
Los-Festlager Anordnung	97
Eignung als Fest- oder Loslager	97
Beispiele für Lageranordnungen	98
Passungswahl	101
Art und Größe der Belastung	101
Größe der Belastung	103
Größe und Bauart des Lagers	103
Werkstoff von Welle und Gehäuse	103
Montage und Demontagemöglichkeiten	103
Passungen bei geteilten Gehäusen	103
Wellenpassungen bei Lagern auf Spann- oder Abziehhülse	104
Erforderliche Laufgenauigkeit der Lagerung	104
Formtoleranzen für Wellen- und Gehäusesitze	105
Formgenauigkeit der Lagersitze	106
Oberflächenqualität der Lagersitze	106
Wellen- und Gehäusepassungen	107
Passungen bei Axiallagern	108
Wellenpassungen für Radiallager mit zylindrischer Bohrung	109
Passungen für die Wellenscheiben von Axiallagern	110
Gehäusepassungen für Radiallager	111
Gehäusepassungen für Axiallager	112
Passungstabellen	113
Wellenpassungen	114
Gehäusepassungen	118
Ausführung der Lagersitze als Laufbahnen bei Direktlagerungen	122
Durchmessertoleranzen bei Direktlagerungen	123
Axiale Befestigung der Lager	123
Beispiele für die axiale Fixierung von Wälzlagern	124
Anschlussmaße, Wellen- und Gehäuseschultern	126
Konstruktive Maßnahmen zur Lagerüberwachung und Demontage	127
Abdichtung der Lagerstellen	128
Allgemeines	128
Dichtungsarten	128
Berührungsfreie Dichtungen	128
Beispiele für berührungsfreie Abdichtungen von Lagerstellen	129
Berührende Abdichtungen	130
Berührende Dichtungen	131
Kombinierte Dichtungen	133

Inhalt	Seite
Lagerluft und Vorspannung	134
Allgemeines	134
Unterschied nominelle Lagerluft - Betriebslagerluft	134
Nominelle Lagerluft	134
Betriebslagerluft	135
Einfluss der Passungen	136
Verminderung der Radialluft durch Presspassungen	136
Glättung der Passflächen	137
Radialluftverringerung durch Temperaturdifferenzen	137
Lagerluft von Lagern mit kegeliger Bohrung	139
Zusammenhang von axialer und radialer Lagerluft	140
Vorspannen von Lagern	141
Erhöhung der Steifigkeit	141
Verbesserung der Führungsgenauigkeit	141
Laufgeräusch und Schwingungsverhalten	141
Nutzung der vollen Tragfähigkeit der Lager	142
Vermeidung von Schlupf und Gleitreibung	143
Höhe der Vorspannkraft	143
Vorspannung zur Verminderung des Laufgeräusches	143
Bestimmung der Vorspannkraft	144
Wälzlagerschmierung	145
Allgemeines	145
Arten der Schmierung	145
Fettschmierung	145
Ölschmierung	145
Feststoff- und Trockenschmierung	145
Wahl des Schmierverfahrens	146
Drehzahleignung der Schmierung	146
Beispiele für n*d _m – Werte	146
Aufgaben des Schmierstoffes	146
Wichtige Kenngrößen von Schmierstoffen	147
Trennung der metallischen Oberflächen	147
Wahl der Viskosität	148
Additivierung von Schmierstoffen	148
Schmierfette	149
Mischbarkeit von Fetten	151

Inhalt	Seite
Fettmenge	151
Fettgebrauchsdauer und Nachschmierintervalle	151
Einflüsse auf die Dauer der Nachschmierintervalle	152
Nachschmiermengen	153
Fettführung	154
Ölschmierung	155
Schmierverfahren	155
Ölbad- oder Ölsumpfschmierung	155
Ölumlaufschmierung	155
Spritzölschmierung	156
Einspritzschmierung	156
Ölnebelschmierung	156
Ölmenge, Ölwechselfristen	156
Handling, Einbau und Ausbau von Wälzlagern	157
Allgemeines	157
Aufbewahrung von Lagern	157
Lagerfähigkeit	157
Voraussetzungen zum Lagereinbau	158
Sauberkeit	158
Vorbereitungen	159
Wahl des Einbauverfahrens	160
Montage von Lagern in kaltem Zustand	161
	162
Vereinfachung des Lagereinbaus durch konstruktive Maßnahmen	162
Einführen der Welle bei nicht selbsthaltenden Lagern	163
Rollendurchhang bei Zylinderrollenlagern	164
	164
Montage von Lagern mit kegeliger Bohrung	165
	166
	169
	170
	170
-	171
	171
· ·	172
·	172
· ·	173

Inhalt	Seite
Einbau gepaarter und angestellter Lager	174
Montage mehrreihiger Wälzlager	175
Befettung des Lagers Montage von Dichtungen	176 177
Inbetriebnahme der Lagerung	177
Lagerüberwachung	179
Lagerausbau	180
Allgemeines	180
Vorbereitungen zum Ausbau	180
Lagerausbau mit dem Druckölverfahren	182
Ausbau von Lagern durch Erwärmen	184
Technischer Teil Englisch	185
Rillenkugellager	371
Produktinformation einreihige Rillenkugellager	372
Einreihige Rillenkugellager	386
Produktinformation Rillenkugellager mit Nut und Sprengring	418
Einreihige Rillenkugellager mit Nut und Sprengring	420
Schrägkugellager	439
Produktinformation einreihige Schrägkugellager	440
Einreihige Schrägkugellager	456
Einreihige Schrägkugellager, in Universalausführung	462
Produktinformation einreihige Schrägkugellager, abgedichtet	466
Produktinformation zweireihige Schrägkugellager	470
Zweireihige Schrägkugellager	478
Produktinformation Vierpunktlager Vierpunktlager	484 490
· ·	490
Pendelkugellager	495
Produktinformation Pendelkugellager	496
Pendelkugellager	508
Pendelkugellager auf Spannhülse	526
Pendelkugellager mit verbreitertem Innenring	532

Inhalt	Seite
Zylinderrollenlager	535
Produktinformation einreihige Zylinderrollenlager Einreihige Zylinderrollenlager Produktinformation vollrollige Zylinderrollenlager Vollrollige Zylinderrollenlager, einreihig Vollrollige Zylinderrollenlager, zweireihig Vollrollige Zylinderrollenlager, zweireihig, abgedichtet	536 550 598 608 628 644
Kegelrollenlager	649
Produktinformation einreihige Kegelrollenlager Einreihige Kegelrollenlager, metrisch Einreihige Kegelrollenlager in Zollabmessungen Produktinformation einreihige Kegelrollenlager, gepaart Einreihige Kegelrollenlager, gepaart Produktinformation Integral Kegelrollenlager IKOS Integral-Kegelrollenlager IKOS	650 656 680 686 692 696 704
Pendelrollenlager	707
Produktinformation Pendelrollenlager Pendelrollenlager Pendelrollenlager auf Spannhülse Pendelrollenlager auf Abziehhülse	708 718 764 778
Axial-Rillenkugellager	797
Produktinformation Axial - Rillenkugellager Axial-Rillenkugellager, einseitig wirkend Axial-Rillenkugellager, zweiseitig wirkend Axial-Rillenkugellager, einseitig wirkend mit kugeliger Gehäusescheibe Axial-Rillenkugellager, zweiseitig wirkend mit kugeliger Gehäusescheibe	798 808 820 826 834
Axial-Zylinderrollenlager	841
Produktinformation Axial-Zylinderrollenlager Axial-Zylinderrollenlager	842 842
Axial-Pendelrollenlager	857
Produktinformation Axial-Pendelrollenlager	858

Inhalt	Seite
Axial-Pendelrollenlager	866
Laufrollen	875
Produktinformation Laufrollen Laufrollen	876 882
Gehäuselagereinheiten	887
Produktinformation Gehäuselagereinheiten Gehäuselager Stehlagereinheiten, Grauguss Zweilochflanscheinheiten, Grauguss Vierlochflanschlager, Grauguss Runde Flanscheinheiten, Grauguss Spannlagereinheiten, Grauguss Stehlagereinheiten, Stahlblech Zweilochflanscheinheiten, Stahlblech	888 908 916 928 938 946 952 958 962
Zubehör	967
Produktinformation Spann- und Abziehhülsen Spannhülsen Produktinformation Abziehhülsen Abziehhülsen Produktinformation Nutmuttern KM-Nutmuttern HM-Nutmuttern HM-Nutmuttern mit MS-Sicherungsbügel Sicherungsbleche MB	968 972 990 992 1000 1004 1008 1010
Produktverzeichnis	1016
NKE Produktverzeichnis in numerischer Reihung NKE Produktverzeichnis in alphabetischer Reihung	1016 1021

Einleitung

Wälzlager sind genormte Maschinenelemente, die Kräfte, Momente und Drehbewegungen übertragen sowie Achsen, Wellen und Spindeln führen.

Dabei entsteht Reibung, durch die ein Teil der Antriebsleistung verloren geht. Diese Verlustleistung wird zumeist als unerwünschte Erwärmung an die Umgebung abgeführt.

Eine mögliche Minimierung der **Reibung** bewirkt somit auf direktem Weg Einsparungen an der Antriebsleistung der Aggregate, wodurch wiederum eine höhere Effizienz, kompaktere Bauweise und einfachere Konstruktion möglich sind.

Funktionsweise, Grundprinzipien

Bei Lagern im technischen Sinn unterscheidet man grundsätzlich zwischen zwei unterschiedlichen Funktionsweisen:

gleitende Reibung (Gleitlager) rollende Reibung (Wälzlager)

Bei der **gleitenden Reibung** (siehe Abb. 1.1) gleiten zwei Reibpartner, die zumeist durch ein Medium, beispielsweise durch einen Schmierfilm, voneinander getrennt sind, aufeinander.

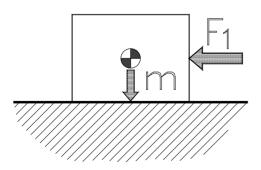


Abb. 1.1

Die dabei übertragbaren Kräfte richten sich im Wesentlichen nach der maximal zulässigen Flächenpressung im Gleitkontakt, d.h. von den Eigenschaften der für die Gleitpaarung ausgewählten Werkstoffe

Verwirklicht wird dieses Funktionsprinzip seit jeher in den Gleitlagern, bei gleitgelagerten Wellen und Achsen, Schlittenführungen u.s.w.

Der wesentliche Vorteil der Gleitlager liegt in deren einfachem und daher preisgünstigem Aufbau, der Möglichkeit einer wartungsfreien Ausführung, sowie in deren geringen radialen Bauhöhe.

Nachteilig sind die nicht allzugroße Führungsgenauigkeit, relativ geringe übertragbare Kräfte sowie eine verhältnismäßig große Reibung beim Anlauf.

Wälzlager hingegen beruhen auf dem Prinzip der rollenden Reibung, siehe Abb. 1.2.

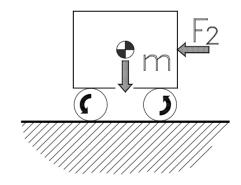


Abb. 1.2

Dabei erfolgt die Kraftübertragung über zwischen den Laufringen angeordneten Elementen, den sogenannten Roll- oder Wälzkörpern, die zumeist durch einen Käfig im Lager gehalten werden.

Auch hier ist eine Trennung der metallischen Lagerflächen durch Schmierstoffe unbedingt erforderlich.

Grundlagen, Bestandteile von Wälzlagern

Durch diese Anordnung sowie die in der Wälzlagertechnik üblichen feinstbearbeiteten Laufflächen wird die bei der Kraftübertragung entstehende Reibung – und somit auch die Reibungsverluste – auf ein Minimum vermindert.

In der Praxis herrscht in Wälzlagern allerdings keine reine Abrollbewegung der Wälzkörper auf den Laufbahnen vor, sondern eine Mischform von rollender Reibung mit gelegentlichen Gleitreibungsanteilen.

Das kommt in Abhängigkeit von den jeweiligen kinematischen Verhältnissen jedes Lagertyps vor, wenn die am Wälzkörper wirkende Anpresskraft für ein Abrollen nicht mehr ausreicht, d.h. bei geringer Lagerbelastung und großen Drehzahlen bzw. Beschleunigungen. Daher ist bei Wälzlagern eine bestimmte Mindestbelastung sicherzustellen.

Die wesentlichsten Vorteile der Wälzlager gegenüber Gleitlagern sind:

- ein geringes Anlaufreibmoment
- eine Vielfalt einfach verfügbarer und international genormter Bauarten und Lagergrößen
- die meisten Lager können auch kombinierte Belastungen aufnehmen
- die Übertragung großer Kräfte auf kleinstem Bauraum ist möglich
- praktisch wartungsfreie Lagerungen möglich
- sehr geringer Schmierstoffbedarf
- mit Wälzlagern ist eine Abdichtung der Lagerstellen einfach realisierbar
- sehr präzise Führung von Achsen und Wellen
- Wälzlager sind in einem weiten Temperaturbereich einsetzbar; es sind Sonderausführungen für Anwendungen im Hoch- und Tieftemperaturbereich verfügbar.

Bestandteile von Wälzlagern

Wälzlager (Abb. 1.3) bestehen in der Regel aus zwei Laufringen (1, 4) oder – bei Axiallagern - Laufscheiben, zwischen denen die – zumeist durch einen Käfig (3) gehaltenen – Wälzkörper (2) laufen.

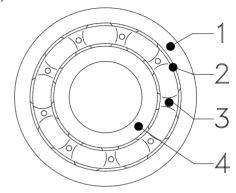


Abb. 1.3

Verschiedene Lagerarten werden mit bereits integrierten Dichtungen oder Deckscheiben hergestellt.

Laufringe und -scheiben

Laufringe und Laufscheiben (Abb. 1.4) dienen zur Kraftübertragung sowie zur Befestigung des Lagers auf der Welle bzw. im Gehäuse.

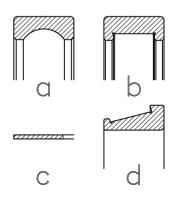


Abb. 1.4

Laufringe und Laufscheiben weisen Laufbahnen auf, auf denen die Wälzkörper laufen.

Der Außen- bzw. Innendurchmesser eines Lagerrings oder einer Scheibe ist zur Befestigung auf der Welle oder im Gehäuse mit einer Passfläche versehen

Je nach Lagerbauart können radial oder axial wirkende Kräfte, zum Teil auch kombinierte Belastungen aufgenommen werden.

In Abb. 1.4 sind einige Beispiele für Laufringe und Laufscheiben angeführt:

- 1.4a) Außenring eines einreihigen (Radial-) Rillenkugellagers
- 1.4b) Außenring eines einreihigen (Radial-) Zylinderrollenlagers
- 1.4c) Axialscheibe für einen Axialnadelkranz
- 1.4d) Innenring eines einreihigen (Radial-) Kegelrollenlagers

Wälzkörper

Wälzkörper sind einfache geometrische Körper wie Kugeln oder Rollen, die der Kraftübertragung im Lager dienen und darüber hinaus der jeweiligen Wälzlagerbauart ihren Namen geben (Rillenkugellager, **Zylinderrollen**lager, **Kegel-rollen**lager,).

Diese Unterscheidung fließt aufgrund der zwischen Kugel- und Rollenlagern unterschiedlichen Berührungsverhältnissen auch in die Wälzlagerberechnung ein:

 a) Eine Kugel berührt eine ebene Fläche theoretisch nur in einem Punkt, daher spricht man von Punktberührung.

In der Praxis führt eine Belastung zu einer elastischen Verformung der Kugel, wodurch sich die Berührungsfläche zwischen Kugel und Unterlage vergrößert (siehe Abb. 1.5).

In einem Kugellager hat diese Berührungsfläche aufgrund der Krümmung der Laufrillen die Form einer Ellipse.

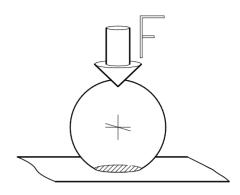


Abb. 1.5

Durch diese üblicherweise sehr kleinen Berührflächen weisen Kugellager eine geringe Reibung auf, wodurch sie für hohe Drehzahlen besser geeignet sind als Rollenlager.

Kleine Berührflächen bedeuten aber auch bei einer gegebenen Belastung F eine hohe spezifische Flächenpressung, daher ist die Tragfähigkeit von Kugellagern gegenüber Rollenlagern geringer.

 Eine Rolle ohne äußere Belastung berührt Ihre Unterlage theoretisch in einer Linie, daher spricht man auch von Linienberührung.

Unter Last nimmt diese Berührfläche eine rechteckige Form an (siehe Abb. 1.6).

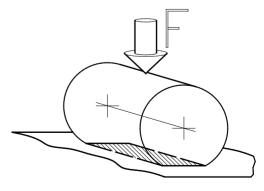
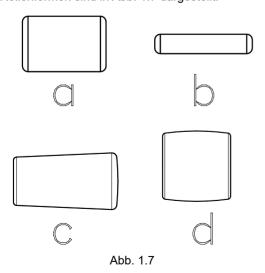


Abb. 1.6

Grundlagen, Bestandteile von Wälzlagern

Bei Linienberührung sind die Berührflächen bei gleicher Belastung größer als bei Punktberührung, daher weisen Rollenlager durchwegs größere Tragfähigkeiten als Kugellager auf, haben aber auch eine höhere Reibung.

Die Länge der Berührfläche macht Rollenlager darüber hinaus empfindlich gegen Schiefstellungen der Rollen, da dies zum Auftreten von Spannungsspitzen in der Berührzone führt.


Um die negativen Auswirkungen solcher Spannungsspitzen abzumindern, werden die Laufflächen an Rollen und Laufringen profiliert ausgeführt.

Dieser Unterschied zwischen Punkt- und Linienberührung wird in der Wälzlagerberechnung durch unterschiedliche Lebensdauerexponenten **p** berücksichtigt.

bei Kugellagern: p = 3 bei Rollenlagern p = 10/3

Rollenformen:

Die wichtigsten in Wälzlagern verwendeten Rollenformen sind in Abb. 1.7 dargestellt:

1.7a) **Zylinderrolle**

Mantelfläche leicht ballig profiliert, um die schädlichen Auswirkungen von Kantenspannungen zu verringern.

1.7b) Nadelrolle

Im Wesentlichen wie eine Zylinderrolle mit großem Längen- / Durchmesserverhältnis.

1.7c) Kegelrolle

1.7d) **Tonnenrolle**

Faßförmige Rolle mit sphärischem Manteldurchmesser. Tonnenrollen finden bei den winkeleinstellbaren Tonnenlagern und Pendelrollenlagern Verwendung. Tonnenrollen werden in symmetrischer und asymmetrischer Form gefertigt.

Käfig

Dem Käfig kommen in einem Wälzlager folgende Hauptaufgaben zu:

- Wälzkörper auf Abstand halten
- Wälzkörper führen
- Wälzkörper gegen Herausfallen sichern
- Wälzkörper in Position halten

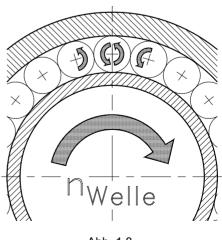
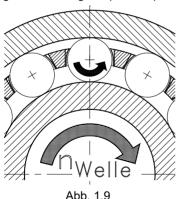


Abb. 1.8


In bestimmten Fällen kann auf eine Führung der Wälzkörper durch einen Käfig verzichtet werden.

Dadurch kann der verfügbare Lagerquerschnitt zur Aufnahme einer maximalen Anzahl von Wälzkörpern genutzt werden (siehe Abb. 1.8). Man spricht dabei von vollrolligen oder vollkugeligen Lagern.

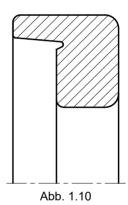
Diese Lager besitzen zwar die größtmögliche Tragfähigkeit, sind aber durch die zwischen den Wälzkörpern entstehende Reibung nur für geringe Drehzahlen geeignet.

Wie aus Abb. 1.8 ersichtlich, berühren sich die einzelnen Wälzkörper mit einer im Berührungspunkt gegenläufigen Drehbewegung, wodurch bei höheren Drehzahlen erheblicher Verschleiß entstehen kann.

Bei einem mit Käfig ausgestatteten Lager hingegen tritt zwischen Wälzkörper und Käfigtasche nur geringe Gleitreibung auf (Abb.1.9).

Käfige für Wälzlager können aus folgenden Werkstoffen hergestellt werden:

- Stahlblech
- Messingblech
- Messing
- Kunststoffe
- Stahl
- Sonderwerkstoffe


Dichtungen, Anbauteile und Zubehör

Verschiedene Lagerbauformen werden bereits mit integrierten Dichtungen oder Deckscheiben hergestellt.

Insbesondere Kugellager werden standardmäßig mit verschiedenen Abdichtungen oder Deckscheiben angeboten. Zylinderrollen der Bauform NNF sind standardmäßig ebenfalls abgedichtet.

Diese Dichtungen sind neben unterschiedlichen Konstruktionsvarianten in unterschiedlichen Materialien verfügbar, z.B. für Hochtemperaturlager.

Einige Lagerbauformen, hauptsächlich Rillenkugellager, sind mit einer in den Außenring eingedrehten Sprengringnut erhältlich, was die axiale Fixierung des Lagers im Gehäuse wesentlich vereinfacht.

Lagerarten wie beispielsweise Zylinderrollenlager oder Axiallager besitzen noch weitere bauarttypische Bauteile, wie etwa Wellen- und Gehäusescheiben oder Winkelringe (Abb. 1.10).

Auf diese wird im betreffenden Produktteil näher eingegangen.

Das Lagerzubehör umfasst Teile, die zur Montage oder Demontage der Wälzlager benötigt wird, wie etwa Spann- und Abziehhülsen, Nutmuttern usw.

Einteilung der Wälzlager

Der Konstrukteur kann das für seine Bedürfnisse am besten geeignete Lager aus einer Vielzahl unterschiedlicher Lagerarten und -bauformen auswählen.

Die grobe Einteilung der Wälzlager erfolgt im Wesentlichen nach folgenden Gesichtspunkten:

- a) nach der Form der Wälzkörper in Kugeloder Rollenlager, beispielsweise in
 - Rillenkugellager
 - Schrägkugellager
 - Zylinderrollenlager
 - Kegelrollenlager
 - Pendelrollenlager
 - Nadellager
- b) nach der vorwiegenden Belastbarkeit in Radial- oder Axiallager.

Radiallager sind für überwiegend radiale Belastungen ausgelegt und weisen einen Druckwinkel ≤ 45° auf. Axiallager hingegen haben grundsätzlich Druckwinkel > 45°. Beispiele sind etwa

- Radial-Zylinderrollenlager
- Radial-Rillenkugellager
- Axial-Schrägkugellager
- Axial-Zylinderrollenlager

usw.

 c) nach deren Verwendung in Normlager (Standardlager) für den allgemeinen Maschinenbau oder Sonderlager mit spezifischen Eigenschaften für Spezialanwendungen.

Sonderlager werden von den Lagerherstellern in enger Zusammenarbeit mit den Kunden entwickelt und bieten daher eine optimale Lösung für den jeweiligen Anwendungsfall. Beispiele für Sonderlager sind:

- Fahrmotorlager für Schienenfahrzeuge
- Lauf- und Stützrollen
- Rostfreie Kugellager
- Rillenkugellager für hohe Temperaturen
- Walzwerkslager für Hüttenbetriebe
- Stromisolierte Wälzlager

usw.

d) nach der Montierbarkeit in

zerlegbare Lager, bei denen zumindest ein Lagerring unabhängig vom anderen eingebaut werden kann (Kegelrollenlager, die meisten Nadel- und Zylinderrollenlager) und in

nicht zerlegbare Lager, die immer als Einheit zu behandeln sind (Rillenkugellager, Schrägkugellager ...)

Übersicht der wichtigsten Lagerbauarten und deren spezifische Merkmale

Radial-Rillenkugellager

Einreihige Rillenkugellager (Abb. 2.1) sind die mit Abstand am häufigsten verwendeten Wälzlager.

Die Kugeln laufen in tiefen Rillen in Innen- und Außenring, dadurch können Rillenkugellager sowohl radiale als auch axiale bzw. kombinierte Belastungen aufnehmen.

Diese Lager erreichen aufgrund ihrer geringen Reibung die höchsten Drehzahlen aller Wälzlager und sind in einer Vielzahl unterschiedlicher Ausführungen verfügbar.

Rillenkugellager werden häufig in "lebensdauergeschmierter" Ausführung mit Deckscheiben oder Dichtscheiben eingesetzt, wodurch sich der konstruktive Aufwand zur Abdichtung und Schmierung der Lagerstellen wesentlich verringert.

Rillenkugellager mit einem Außendurchmesser $\leq 3/8$ " ($\leq 9,525$ mm) werden auch als **Miniaturlager** bezeichnet. Einreihige Rillenkugellager mit Füllnuten, sogenannte "**Max-Type Bearings**" weisen sehr hohe radiale Tragzahlen auf, sind aber wegen der Einfüllnuten in einer Richtung nur eingeschränkt axial belastbar. Eine andere häufig verwendete Variante ist die Ausführung mit Sprengringnut und Sprengring.

Weitere Informationen siehe Seite 386ff.

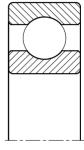


Abb. 2.1

Schrägkugellager

Einreihige Schrägkugellager (Abb. 2.2) übertragen Belastungen in einem bestimmten Winkel α zur Lagerachse. Sie eignen sich für hohe und sehr hohe Drehzahlen und können sowohl radiale als auch axiale bzw. kombinierte Belastungen aufnehmen.

Einreihige Schrägkugellager können Axiallasten nur in einer Richtung aufnehmen und müssen bei beidseitiger Axialbelastung immer paarweise eingesetzt werden, d. h. sie werden zu Gegenführung gegen ein zweites Schrägkugellager angestellt.

Einreihige Schrägkugellager werden auch in Hochgenauigkeitsausführungen zur Lagerung von Werkzeugmaschinenspindeln hergestellt.

Weitere Informationen zu einreihigen Schrägkugellagern siehe Seite 439ff

Einreihige Schrägkugellager in Universalausführung (O-Anordnung, Abb. 2.3) sind bereits für einen satzweisen Einbau ausgelegt.

Die Lager sind so aufeinander abgestimmt, dass sie im Betrieb eine bestimmte Axialluft oder Vorspannung aufweisen. Gepaarte einreihige Schrägkugellager sind – je nach Anordnung der Einzellager in X-, Ooder Tandemanordnung – sehr gut zur Aufnahme von Kippmomenten, sowie hoher Radial- und / oder Axiallasten geeignet.

Weitere Informationen dazu siehe Seite 462ff

Zweireihige Schrägkugellager (Abb. 2.4) entsprechen in ihrem Innenaufbau zwei einreihigen Schrägkugellagern in O-Anordnung, weisen aber eine geringere Baubreite auf. Sie ergeben sehr starre Lagerungen und eignen sich zur Übertragung kombinierter Belastungen, können aber auch Kippmomente gut aufnehmen. (Zweireihige Schrägkugellager mit Stahlblechkäfig weisen auf einer Seite Füllnuten auf und sind daher auf dieser Seite weniger zur Axiallastaufnahme geeignet).

Konstruktionen mit Kunststoffkäfigen weisen keine Füllnuten mehr auf und sind daher in beiden Richtungen gleich gut zur Aufnahme von Axiallasten geeignet. Zweireihige Schrägkugellager sind sehr empfindlich gegen Schiefstellung und Fluchtungsfehler.

Diese Lager sind auch mit Dichtungen oder Deckscheiben lieferbar. Weitere Informationen über zweireihige Schrägkugellager siehe Seite 470ff.

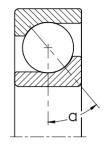
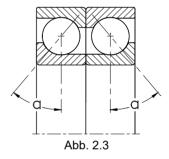



Abb. 2.2

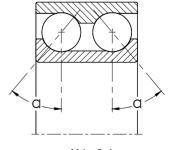
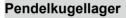


Abb. 2.4

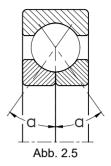

Vierpunktlager

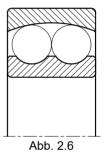
Vierpunktlager (Abb. 2.5) gehören zu den einreihigen Schrägkugellagern, können aber Radialbelastungen sowie Axiallasten in beiden Richtungen aufnehmen. Sie weisen einen geteilten Innenring auf und sind daher zerlegbar.

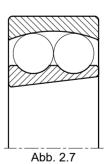
Wegen der Berührverhältnisse muss bei Vierpunktlagern das Verhältnis von radialer zu axialer Lagerbelastung in einer bestimmten Relation stehen, da ansonsten sehr großer Verschleiß auftritt.

Zur Aufnahme rein axialer Belastung müssen diese Lager radial freigestellt werden.

Weitere Informationen zu Vierpunktlagern siehe Seite 484ff.

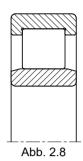

Pendelkugellager (Abb. 2.6) sind zweireihige Lager mit einer hohlkugeligen Laufbahn im Außenring. Sie sind dadurch winkeleinstellbar und gleichen Fluchtungsfehler bzw. Wellendurchbiegungen aus. Sie sind nicht zerlegbar und eignen sich für geringe radiale und axiale Belastungen.


Bei einigen Typen von Pendelkugellagern stehen die Kugeln seitlich über die Planfläche des Lagers vor. Dies ist bei der Dimensionierung der Anschlussteile zu berücksichtigen.


Häufig werden **Pendelkugellager** auch **mit kegeliger Bohrung** (Kegel 1:12) zur Montage mittels Spannhülsen eingesetzt (Abb. 2.7). Dadurch können die Lager ohne aufwendige Bearbeitung von Lagersitzen direkt auf gezogene Wellen montiert werden.

Verschiedene Reihen von Pendelkugellagern werden auch mit Dichtscheiben (-2RS) angeboten.

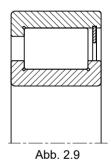
Weitere Informationen zu Pendelkugellagern siehe Seite 495ff.



Zylinderrollenlager

Einreihige Zylinderrollenlager eignen sich zur Übertragung hoher Radialkräfte. Je nach Ausführung bzw. nach Anordnung der Borde können auch kleine bis mittlere Axialbelastungen in eine oder beide Richtungen übertragen werden. Einreihige Zylinderrollenlager sind zerlegbar, was die Montage wesentlich erleichtert.

Je nach Lagerbauart können einreihige Zylinderrollenlager als reine Loslager (Bauformen **N** und **NU** (Abb. 2.8), als Lager zur Aufnahme von Axialbelastungen in einer Richtung (Bauform **NJ**) oder als Festlager (Bauform **NJ** mit Winkelring **HJ** bzw. Bauform **NUP**) verwendet werden. Einreihige Zylinderrollenlager sind auch für höhere Drehzahlen geeignet.



Weitere Informationen zu einreihigen Zylinderrollenlagern siehe Seite **550ff**.

Vollrollige Zylinderrollenlager (Abb. 2.9) weisen die größtmögliche radiale Tragfähigkeit auf. Sie haben keinen Käfig, um möglichst viele Rollen im vorhandenen Querschnitt unterzubringen. Im Betrieb berühren sich daher die Rollen im entgegengesetzten Drehsinn, wodurch vollrollige Zylinderrollenlager eine wesentlich höhere Reibung und dadurch eine niedrigere Drehzahl aufweisen als Zylinderrollenlager mit Käfig.

Vollrollige Zylinderrollenlager werden in ein- und zweireihiger Ausführung gefertigt, Lager der Reihe NNF **50...2LS-V** sind abgedichtet.

Weitere Informationen zu vollrolligen Zylinderrollenlagern siehe Seite **598ff**.

Pendelrollenlager

Pendelrollenlager (Abb. 2.10) sind zweireihige Lager mit einer hohlkugeligen Laufbahn im Außenring. Die tonnenförmigen Rollen (Tonnenrollen) ermöglichen eine Selbsteinstellung des Lagers. Pendelrollenlager sind somit winkeleinstellbar und gleichen Fluchtungsfehler oder Wellendurchbiegungen sehr gut aus.

Sie sind nicht zerlegbar und eignen sich zur Übertragung sehr großer Radialkräfte, aber auch axiale Belastungen sind in beiden Richtungen möglich. Aufgrund ihrer kinematischen Eigenschaften sind Pendelrollenlager für niedrigere bzw. mittlere Drehzahlen geeignet.

Der Großteil der heutigen Pendelrollenlager wird serienmäßig mit Schmierbohrungen und Schmiernut angeboten (Nachsetzzeichen W33).

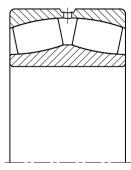


Abb. 2.10

20

Sehr oft werden Pendelrollenlager mit **kegeliger Bohrung** (Abb. 2.11) verwendet. Dabei werden die Lager mittels Spann- oder Abziehhülsen, seltener direkt auf einen kegeligen Wellensitz, montiert. Bei den meisten Pendelrollenlagern beträgt der **Kegel 1:12** (Nachsetzzeichen **K**), lediglich bei den Lagerreihen mit geringerer Querschnittshöhe ist der Kegel flacher (Verhältnis 1:30, Nachsetzzeichen **K30**). Durch die kegelige Bohrung können die Lager ohne aufwendige Bearbeitung von Lagersitzen direkt auf gezogene Wellen bzw. auf Wellen mit gedrehten Lagersitzen montiert werden. Große Pendelrollenlager werden häufig mit hydraulisch wirkenden Hilfsmitteln (Hydraulikmuttern bzw. Spannund Abziehhülsen mit Ölkanälen und Hydraulikanschlüssen) montiert.

Eine Sonderform stellen **Pendelrollenlager für Schwingsiebanwendungen** (Ausführung **SQ 34**) dar. Diese sind mit Messingmassivkäfigen ausgestattet und weisen gegenüber Lagern der Standardausführung eingeschränkte Toleranzen auf.

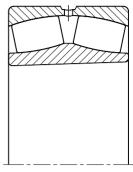


Abb. 2.11

Weitere Informationen zu Pendelrollenlagern siehe Seite 707ff.

Kegelrollenlager

Kegelrollenlager (Abb. 2.12) sind zerlegbare Radiallager. Sie bestehen aus einem Innenteil (Innenring mit Rollensatz und Käfig) und einem Iosen Außenring. Durch den Berührwinkel bewirkt jede radiale Belastung eine axiale Kraftkomponente. Da Kegelrollenlager Axialkräfte nur in einer Richtung aufnehmen können, müssen sie zur Gegenführung gegen ein zweites, spiegelbildlich angeordnetes Kegelrollenlager angestellt werden. Kegelrollenlager können sehr hohe radiale und axiale Kräfte übertragen, erfordern aber gut fluchtende Lagerstellen, sowie eine sorgfältige Einstellung.

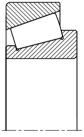


Abb. 2.12

Weitere Information zu Kegelrollenlagern siehe Seite 649ff.

Gepaarte einreihige Kegelrollenlager sind einbaufertige, vom Hersteller bereits eingestellte Lagerpaare. Dabei wird ein Paar einreihiger Kegelrollenlager mit Abstandsringen auf ein definiertes Axialspiel oder eine definierte Vorspannung eingestellt. Je nach Anwendungsfall können diese in X-, O- oder Tandemanordnung geliefert werden. Dadurch kann das Abstimmen der Zwischenringe bzw. das Einstellen der Lager bei der Montage entfallen. Verschiedene Typen gepaarter einreihiger Kegelrollenlager werden standardmäßig in X-Anordnung (Nachsetzzeichen **DF**, siehe Abb. 2.13) angeboten.

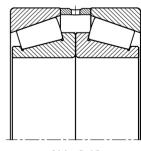


Abb. 2.13

Zweireihige Kegelrollenlager (Abb. 2.14) sind ebenfalls einbaufertige Lagereinheiten und bestehen zumeist aus einem Innenring mit 2 Rollenreihen in X-Anordnung und einem mehrteiligen Außenring. Zweireihige Kegelrollenlager gehören zum Bedarfsserienprogramm und sind auf Anfrage lieferbar.

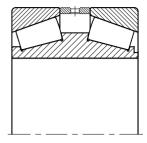


Abb. 2.14

Vierreihige Kegelrollenlager (Abb. 2.15) gehören ebenfalls zum Bedarfsserienprogramm. Sie sind einbaufertige Lagereinheiten und werden bei der Lagerung von Walzgerüsten verwendet. Aufgrund der vielen unterschiedlichen Abmessungen und Varianten gehören diese Lagereinheiten bereits zu den Sonderlagern, die von den Lagerherstellern auftragsbezogen gefertigt werden.

Vierreihige Kegelrollenlager sind auf Anfrage lieferbar.

Nähere Informationen über das NKE-Produktprogramm an mehrreihigen Kegelrollenlagern teilen wir Ihnen auf Anfrage gerne mit.

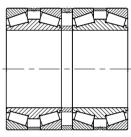


Abb. 2.15

Axial-Rillenkugellager

Axial-Rillenkugellager werden in ein- und zweiseitig wirkender Ausführung gefertigt. Sie sind zerlegbar und damit einfach zu montieren. Axial-Rillenkugellager nehmen hohe Axiallasten, jedoch keine radial wirkenden Kräfte auf

Einseitig wirkende Axial-Rillenkugellager (Abb. 2.16) bestehen aus der Wellenscheibe, der Gehäusescheibe und dem dazwischen laufenden Kugelkranz. Diese Lager können Axialkräfte nur in einer Richtung aufnehmen.

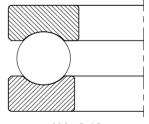
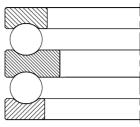


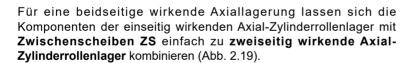
Abb. 2.16

Dagegen können **zweiseitig wirkende Axial-Rillenkugellager** (Abb. 2.17) die Welle in beiden Richtungen axial führen. Sie bestehen aus zwei Gehäusescheiben, zwei Kugelkränzen und der in der Mitte angeordneten Wellenscheibe. Beide Lagerarten nehmen hohe Axialkräfte auf, lassen jedoch keine Winkelfehler zu.

Zum Ausgleich von Fluchtungsfehlern und Schiefstellungen sind Axial-Rillenkugellager auch mit kugeligen Gehäusescheiben lieferbar.

Weitere Informationen zu Axial-Rillenkugellagern siehe Seite 797ff.




Abb. 2.17

Axial-Zylinderrollenlager

Axial-Zylinderrollenlager (Abb. 2.18) gehören ebenfalls zu den zerlegbaren Axiallagern.

Sie sind axial wesentlich tragfähiger als Axial-Rillenkugellager. Axial-Zylinderrollenlager in einseitig wirkender Ausführung bestehen aus einer Wellenscheibe, einer Gehäusescheibe und dem dazwischen laufenden Rollenkranz.

Axial-Zylinderrollenlager sind stoßunempfindlich und werden dort eingesetzt, wo eine sehr hohe axiale Tragfähigkeit gefordert wird. Sie nehmen sehr hohe axiale Kräfte, aber keine Radiallasten auf. Axial-Zylinderrollenlager sind sehr starre Lagerungen und lassen daher keinerlei Schiefstellung zu.

Zwischenscheiben gehören zum Bedarfsserienprogramm und sind auf Anfrage lieferbar.

Weitere Informationen zu Axial-Zylinderrollenlagern siehe Seite 841ff.

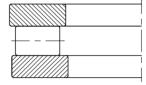


Abb. 2.18

Abb. 2.19

Axial-Pendelrollenlager

Im Gegensatz zu den bisher genannten **Axiallagerbauarten** sind Axial-Pendelrollenlager (Abb. 2.20) in sich selbst winkeleinstellbar. Sie sind zerlegbar und damit einfach zu montieren. Axial-Pendelrollenlager sind einseitig wirkend, eignen sich für hohe axiale Belastungen, aber auch radial wirkende Kräfte werden bis zu einer bestimmten Größe aufgenommen. Axial-Pendelrollenlager kommen dort zum Einsatz, wo hohe axiale Tragfähigkeit und eine Kompensation von Fluchtungsfehlern erforderlich sind.

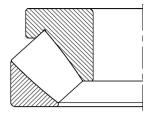


Abb. 2.20

Laufrollen

Laufrollen sind Kugellager, die mit dem Außenring direkt auf einer Schiene oder einer Führungsfläche laufen. Der Außenring ist bei Laufrollen besonders dickwandig ausgeführt und daher in der Lage, auch stoßartige Belastungen aufzunehmen. Da Laufrollen meist unter sehr rauen Betriebsbedingungen eingesetzt werden, sind diese serienmäßig mit Deck- oder Dichtscheiben ausgestattet.

Da Laufrollen öfters Verkantungen ausgesetzt werden, werden sie häufig mit einem balligen Außendurchmesser eingesetzt.

Einreihige Laufrollen (Abb. 2.21) sind in ihrem Aufbau den einreihigen Rillen-kugellagern sehr ähnlich.

Die **zweireihigen Laufrollen** (Abb. 2.22) basieren auf zweireihigen Schrägkugellagern der Reihen 32.. und 33... . Sie weisen einen Kunststoffkäfig auf. Um eine optimale Funktion auch unter extremen Einsatzbedingungen zu gewährleisten, sind diese Laufrollen mit Schmierbohrungen im Innenring versehen.

Weitere Informationen zu Laufrollen siehe Seite 875ff.

Abb. 2.21

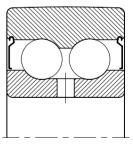
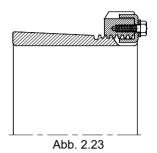


Abb. 2.22



Lagerzubehör

Der Begriff "**Zubehör**" beinhaltet sowohl Bestandteile zerlegbarer Lager (Zylinderrollenlager-Winkelringe, Nadellager-Innenringe usw.) als auch die zur Befestigung und Fixierung von Wälzlagern dienenden Teile.

Beispiele dafür sind Spann- (siehe Abb. 2.23) und Abziehhülsen (Abb. 2.24), Sicherungsbleche, Wellenmuttern, aber auch Sprengringe zur axialen Befestigung von Lagern mit Ringnut.

Weitere Informationen zu Lagerzubehör sind siehe Seite 967ff.

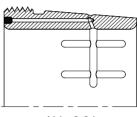


Abb. 2.24

Wälzlagerbezeichnungen

Allgemeines

Die Bezeichnungen von Wälzlagern und Wälzlagerzubehör bestehen aus Kombinationen von Buchstaben und Zahlen, die nach einem logischen Prinzip aufgebaut sind.

Das Bezeichnungssystem ist so gestaltet, dass verschiedene Teile der Bezeichnung Bauart, Größe und Eigenschaften des Lagers exakt wiedergeben.

Neben den Standardlagern, deren Bezeichnungen weitgehend genormt sind, existiert eine Reihe von Sonderlagern bzw. von Normlagern in Sonderausführungen, deren Bezeichnungssystem je nach Hersteller variiert.

In der DIN-Norm **DIN 623** sind Grundlagen des Bezeichnungssystems für Wälzlager und Lagerzubehör festgehalten.

DIN und ISO-Maßpläne

Bauarten, Hauptabmessungen und Toleranzen von Normlagern sind durch international anerkannte Standards definiert, beispielsweise durch ISO 15, ISO 355 und ISO 104 bzw. in der DIN 616 und DIN ISO 355.

Die in diesen Normen enthaltenen Maßpläne definieren Querschnitte und Hauptabmessungen der gebräuchlichsten Lagerbauformen nach mathematischen Regeln.

Dabei wurden jedem Bohrungsdurchmesser mehrere mögliche Querschnitte zugeordnet, daher spricht man hierbei auch von Durchmesserreihen und Breitenreihen.

Beispiele zum Aufbau der Maßpläne sind in Abb. 3.1 dargestellt.

In diesen Normen wurden Lagerbauform, Bohrungsdurchmesser (d), Außendurchmesser (D), Lagerbreite (B) bzw. – bei Axiallagern – die Bauhöhe (H, T) sowie Mindest-Kantenabstände (r) festgelegt (Abb. 3.2).

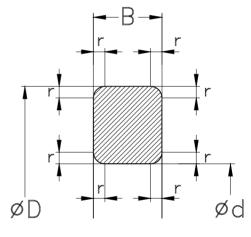


Abb. 3.2

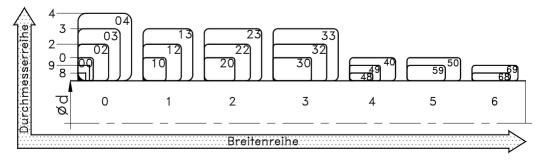


Abb. 3.1

Bezeichnungssystem von Normlagern

Auf der Einteilung in **Durchmesserreihen** und **Breitenreihen** basiert das Bezeichnungssystem von Normlagern.

Das Bezeichnungsschema umfasst:

- Vorsetzzeichen
- Basiskennzeichen
- Nachsetzzeichen

(siehe Abb. 3.3)

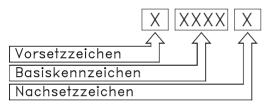


Abb. 3.3

Bei **Kegelrollenlagern** existiert parallel zum Bezeichnungsschema nach **DIN 720** ein eigenes Bezeichnungssystem nach **DIN ISO 355**.

In Abb. 3.4 ist der Aufbau des Bezeichnungssystems für Normlager schematisch dargestellt. Im Folgenden wird auf die Bedeutung der einzelnen Symbole im Detail eingegangen.

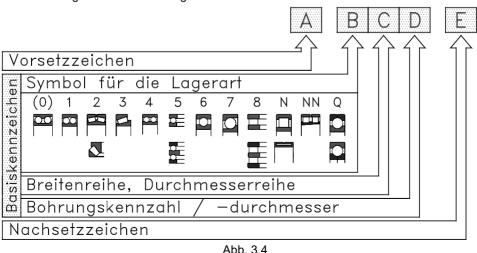
Vorsetzzeichen

Vorsetzzeichen bezeichnen üblicherweise einzelne Teile von Wälzlagern bzw. bei Lagern aus rostfreiem Stahl den abweichenden Werkstoff.

Beispiele für Lagerteile:

Bei einigen zerlegbaren Lagerbauarten wie beispielsweise bei Zylinderrollenlagern oder Nadellagern werden manchmal nur einzelne Ringe verwendet.

In diesen Fällen werden die Teile durch folgende Vorsetzzeichen bezeichnet:


L... freier Ring

z.B. **LNU314-E**

Innenring eines Zylinderrollenlagers NU314-E

IR . . . freier Ring z.B. IR40X50X20

Separater Nadellager-Innenring

Wälzlagerbezeichnungen

R...Ring mit Wälzkörpersatz

z.B. **RNU**314-F

Außenring mit Rollensatz eines Zylinderrollenlagers NU314-E

BO . . . Bordscheibe

z.B. **BO-**NUP220-E

Bordscheibe eines Zylinderrollenlagers NUP220E

AXK . . . Axialnadelkranz

z.B. AXK5578

Nadelkranz eines Axialnadellagers

GS . . . Gehäusescheibe

z.B. GS-81111

Gehäusescheibe eines Axial-Zylinderrollenlagers 81111

WS . . . Wellenscheibe

z.B. WS-81111

Wellenscheibe eines Axial-Zylinderrollenlagers 81111

Beispiele für Werkstoff:

Im Normalfall werden Ringe und Wälzkörper aus Chromstahl entsprechend **DIN 17230**, z. B. **100Cr6**, hergestellt. Wälzlager aus rostfreiem Stahl haben das Nachsetzzeichen **SS** (Stainless Steel).

SS . . . Werkstoff

z.B. 6205-2Z-SS

Rillenkugellager **6205** aus rostfreiem Stahl, beidseitig mit Deckscheiben.

Basiskennzeichen

Das **Basiskennzeichen** bezeichnet Bauart, Ausführung und Größe eines Lagers.

Standardlager haben üblicherweise Basiskennzeichen, die entweder nur aus einer Zahlenfolge oder einer Kombination von Buchstaben und Ziffern bestehen. Sie bezeichnen

- Art und Querschnitt des Lagers (Lagerreihe)
- Lagergröße (Bohrungsdurchmesser)

Abb. 3.5 zeigt schematisch den Aufbau des Basiskennzeichens für Standardlager.

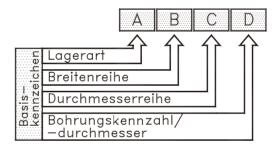


Abb. 3.5

Lagerreihen

Das Symbol für die Lagerreihe beinhaltet Informationen zur Lagerart und die Zuordnung eines Lagers zu einer bestimmten Breiten- und Durchmesserreihe bzw. bei Axiallagern zur Bauhöhe und Durchmesserreihe

Die einzelnen Lagerreihen werden durch Ziffern oder Buchstaben oder durch eine Kombination von Ziffern und Buchstaben identifiziert.

Lagerart

Die **Lagerart** wird durch die ersten Symbole des Basiskennzeichens bezeichnet.

Lagerarten können sowohl durch Zahlen oder Buchstaben bezeichnet werden.

In einigen Fällen wird bei bestimmten Lagerarten die Ziffer der Lagerart, teilweise auch die erste Ziffer der Kennzahl der Maßreihe (die Breitenreihe) weggelassen.

Die gebräuchlichsten Lagerreihen sind:

(0) Zweireihige Schrägkugellager

Die "0" entfällt in der praktischen Verwendung.

Gebräuchliche Reihen:

(0)32

(0)33

1 Pendelkugellager

Die "1" wird in einigen Fällen weggelassen. Gebräuchliche Reihen:

122	1(0)3	1(1)
104	1(0)2	
(1)23	(1)22	

2 Pendelrollenlager

Gebräuchliche Reihen:

Radial-Pendelrollenlager:

223	231	238
213	240	248
232	241	239
222	230	249

Axial-Pendelrollenlager:

292 293 294

3 Kegelrollenlager

Gebräuchliche Reihen:

302	303	313
320	322	323
330	331	332
329		

4 Zweireihige Rillenkugellager

Die "2" der Breitenreihe entfällt in der praktischen Verwendung.

Reihen: **4**(2)**2 4**(2)**3**

5 Axial-Rillenkugellager

Gebräuchliche Reihen:

510	511	
512	513	514
522	523	524
532	533	534
542	543	544

6 Einreihige Rillenkugellager

Bei den einreihigen Rillenkugellagern entfällt die "0" bzw. die "1" der Breitenreihe in den meisten Fällen.

Gebräuchliche Reihen:

618		619		
(60) 2		(60) 3		
622		623		630
16 (0) 0		16(0) 1		
6(1)0	6 (0) 2	6 (0) 3	6 (0) 4	

7 Einreihige Schrägkugellager

Bei den einreihigen Schrägkugellagern entfallen die "0" bzw. die "1" der Breitenreihe in den meisten Fällen.

Gebräuchliche Reihen:

708		718		719
7(1)0	7 (0) 2	7 (0) 3	7 (0) 4	

8 Axial-Zylinderrollenlager

Gebräuchliche Reihen:

811	812
893	894

Wälzlagerbezeichnungen

N Zylinderrollenlager

Dem Buchstaben N können noch einer oder mehrere Buchstaben folgen, welche die Lagerbauform näher bezeichnen

Beispiele: **NU, NJ, NUP, NCF, NNU, NNCF,** usw. Wenn die Lagerbezeichnung mit "**NN**" beginnt, handelt es sich um mehrreihige Lager.

Bei Zylinderrollenlagern entfallen in den meisten Fällen die "0" bzw. die "1" der Durchmesserreihe.

Gebräuchliche Reihen:

(0) 2	(0) 3	(0) 4	
22	23		
10	20	30	50
18	29	39	
48	49	69	

NA/NK Nadellager

Die Bezeichnung von Nadellagern mit spanabhebend bearbeiteten Laufringen beginnt mit **NK** oder **NA**.

Q/QJ Vierpunktlager

Je nach Bauform beginnt die Bezeichnung eines Vierpunktlagers mit **Q** (geteilter Außenring) oder **QJ** (geteilter Innenring).

Auch bei den Vierpunktlagern entfällt in der Praxis die "0" der Durchmesserreihe.

Gebräuchliche Reihen:

10 (0)**2** (0)**3**

T Kegelrollenlager

Die Bezeichnung eines metrischen Standard-Kegelrollenlagers nach **DIN ISO 355** beginnt mit dem Buchstaben "T".

Bohrungsdurchmesser

Im Normalfall wird der Bohrungsdurchmesser eines Lagers im Basiskennzeichen als zweistellige **Bohrungskennzahl** angegeben.

Die Bohrungskennzahl wird im Anschluss an das Symbol der **Lagerreihe** geschrieben (Abb. 3.4 und Abb. 3.5).

Die **Bohrungskennzahl** ergibt, mit 5 multipliziert, den Bohrungsdurchmesser in Millimeter.

Beispiele:

62 05	Einreihiges Rillenkugellager, Bohrung 05 x 5 = 25mm	
NU23 36	Einreihiges Zylinderro Bohrung 36 x 5 =	
33 18	Zweireihiges Schrägk Bohrung 18 x 5 =	ugellager <u>90mm</u>

Ausnahmen von dieser Regel:

In einigen Fällen wird der Bohrungsdurchmesser abweichend vom üblichen Schema angegeben.

Fs sind dies

a) Lager mit Bohrungsdurchmessern von 10, 12, 15 oder 17 mm.

Für diese Bohrungsdurchmesser sind folgende Kennzahlen vorgesehen:

00 = 10 mm 01 = 12 mm 02 = 15 mm 03 = 17 mm

Beispiel:

60**02** Einreihiges Rillenkugellager, Bohrung <u>15mm</u>

b) Lager mit Bohrungsdurchmessern unter 10 mm und über 500 mm.

Bei diesen Lagern wird der Bohrungsdurchmesser durch einen Schrägstrich von der Bezeichnung der Lagerreihe getrennt, unverschlüsselt in Millimetern angegeben.

Beispiele:

62/2,5 Einreihiges Rillenkugellager,

Bohrung 2,5mm

230/710 Pendelrollenlager,

Bohrung 710mm

618/850 Einreihiges Rillenkugellager,

Bohrung **850mm**

Lager mit von Standardgrößen abweichenden Bohrungsdurchmessern.

Bohrungsdurchmesser, die von den Standardgrößen abweichen, werden, durch einen Schrägstrich von der Bezeichnung der Lagerreihe getrennt, ebenfalls immer direkt in Millimetern angegeben.

Bei einigen Lagerarten mit Bohrungen unter 10 mm Durchmesser wird die Bohrung ebenfalls unverschlüsselt angegeben, jedoch ohne Schrägstrich direkt nach den Kennziffern für die Lagerreihe angehängt.

Beispiele:

320/22 Kegelrollenlager,

Bohrung **22mm**

608 Einreihiges Rillenkugellager,

Bohrung 8mm

62/32 Einreihiges Rillenkugellager,

Bohrung **32mm**

12**7** Pendelkugellager,

Bohrung 7mm

Nachsetzzeichen

Nachsetzzeichen werden im Anschluss an das Basiskennzeichen geschrieben.

Sie geben detaillierte Hinweise auf Einzelheiten der Lagerkonstruktion, sofern diese von einer definierten Standardausführung abweichen.

Nachsetzzeichen müssen immer in Zusammenhang mit dem zugehörigen Lager oder der betreffenden Lagerart betrachtet werden. So kann beispielsweise der Buchstabe "E" je nach Lagerart komplett unterschiedliche Bedeutungen haben.

Nicht alle Nachsetzzeichen sind genormt. Viele Details, speziell in der Ausführung von Dichtungen oder Käfigvarianten, werden nach eigenen Werknormen benannt.

Folgende Eigenschaften und Merkmale werden, sofern diese von der jeweiligen Standardausführung abweichen, durch Nachsetzzeichen bezeichnet:

- Innenkonstruktion
- äußere Form
- Deck- und Dichtscheiben
- Käfigausführung
- Toleranzklasse und Genauigkeit
- Lagerluft
- Wärmebehandlung
- Fettfüllung

Wälzlagerbezeichnungen

In der Praxis werden oft auch mehrere Nachsetzzeichen in einem, meist nach Werknormen benannten Symbol zusammengefasst.

Beispiele für Nachsetzzeichen

Nachsetzzeichen für die Innenkonstruktion

Geänderte Innenkonstruktionen werden bei Bedarf durch Nachsetzzeichen unterschieden.

Diese Nachsetzzeichen sind nicht genormt; sie werden je nach Bedarf verwendet.

Beispiele: Nachsetzzeichen A, B, C, D, E

3210**B** Zweireihiges Schrägkugellager,

Ausführung ohne Füllnuten

Nachsetzzeichen der äußeren Form

Nachsetzzeichen K

Lager mit kegeliger Bohrung, Kegel 1:12

Beispiel: 1207-K

Nachsetzzeichen K30

Lager mit kegeliger Bohrung, Kegel 1:30

Beispiel: 24138-K30

Nachsetzzeichen Z

Lager mit einer Deckscheibe auf einer Seite

Beispiel: 6207-Z

Nachsetzzeichen -2Z

Lager mit Deckscheiben auf beiden Seiten

Beispiel: 6207-2Z

Nachsetzzeichen RS

Lager mit schleifender Dichtung auf einer Seite

Beispiel: 6207-RS

Nachsetzzeichen -2RS2

Lager mit berührenden Dichtungen auf beiden

Seiten, Bauform **RS2** Beispiel: **6208-2RS2**

Nachsetzzeichen -2RS

Lager mit berührenden Dichtungen auf beiden Seiten Beispiel: **6207-2RS**

Nachsetzzeichen -2RSR

Lager mit berührenden Dichtungen auf beiden

Seiten, Bauform **RSR** Beispiel: **6208-2RSR**

Nachsetzzeichen -2LS

Zylinderrollenlager mit zwei am Außenring

berührenden Dichtungen Beispiel: **NNF 5016-2LS-V**

Nachsetzzeichen -2LFS

Lager mit berührungsfreien Dichtungen auf beiden Seiten, Bauform LFS (Low Friction Seal)

Beispiel: 6205-2LFS

Nachsetzzeichen N

Lager mit Sprengringnut im Außenring,

Beispiel: 6207-N

Nachsetzzeichen -NR

Lager mit Sprengringnut und Sprengring im

Außenring

Beispiel: 6008-NR

Nachsetzzeichen Z-N

Lager mit einer Deckscheibe auf einer Seite und mit Ringnut im Mantel des Außenringes auf der entgegengesetzten Seite.

Beispiel: 6206-Z-N

Für Lager mit berührender Dichtung lautet das

Nachsetzzeichen -RS-N Beispiel: 6206-RS-N

Bei zwei Deck- oder Dichtscheiben: Beispiel: **6206-2Z-N bzw. 6206-2RSR-N**

Nachsetzzeichen N2

Zwei Haltenuten auf einer Seite des Außenringes

oder in der Gehäusescheibe

Beispiel: QJ228-N2

Nachsetzzeichen der Käfigausführung

Nachsetzzeichen für Käfige der Standardausführung müssen nicht eigens angegeben werden.

Ohne Nachsetzzeichen wird die vom Hersteller für die betreffende Lagerart und -größe als jeweiliger Standard definierte Käfigausführung geliefert.

In Fällen, in denen die Käfigausführung weiter spezifiziert wird, werden folgende Bezeichnungen verwendet:

Käfigwerkstoffe

J Stahlblechkäfig

Stahlblechkäfige stellen bei vielen Lagerarten die Standardausführung dar und werden daher in der Regel nicht eigens angeführt.

- M Messing-Massivkäfig
- F Massivkäfig aus Stahl oder Eisenwerkstoffen

TV Kunststoffkäfig

Hauptsächlich Polyamid 6.6 mit oder ohne Glasfaseranteile.

Käfigbauart

Die Symbole für die Käfigbauart sind nur gemeinsam mit den Zeichen für den Käfigwerkstoff zu verwenden.

Р	Fensterkäfig

H Schnappkäfig

A Führung im Außenring

B Führung am Innenring

S Käfig mit Schmiernuten in den

Führungsflächen

Beispiele:

MB Innenringgeführter Messing-Massivkäfig

MPB Innenringgeführter Messing-Massivkäfig, Ausführung als Fensterkäfig

MAS Außenringgeführter Messing-Massivkäfig mit Schmiernuten in den Führungsflächen

Eventuelle an die Käfigbezeichnung anschließende Zahlen bezeichnen Konstruktionsvarianten dieser Käfige.

Beispiele:

M6 Wälzkörpergeführter Messing-Massivkäfig für Zylinderrollenlager, Ausführung mit angefrästen, trapezoiden Nieten

MA6 Außenringgeführter Messing-Massivkäfig für Zylinderrollenlager, Ausführung mit angefrästen, trapezoiden Nieten

Lager ohne Käfig

Unter bestimmten Umständen wird auf eine Führung der Wälzkörper durch einen Käfig verzichtet. Man spricht dann von vollkugeligen oder vollrolligen Lagern.

Diese Lager werden durch eigene Nachsetzzeichen identifiziert:

V vollkugeliges oder vollrolliges Lager

VH vollrolliges Zylinderrollenlager mit selbsthaltendem Rollensatz

Toleranzklassen

Wälzlager werden in verschiedenen **Toleranz-klassen** gefertigt.

Lager der **Normaltoleranz** (**PN**) erfüllen hinsichtlich Maß-, Lauf- und Formgenauigkeit alle im allgemeinen Maschinenbau gestellten Anforderungen.

Für besondere Betriebsbedingungen werden Wälzlager auch mit eingeschränkten Toleranzen (Toleranzklassen **P6**, **P5**, **P4** und **P2**) gefertigt.

Die Toleranzen der meisten Lagerbauarten sind nach **DIN 620** festgelegt.

Für die genormten Toleranzklassen sind folgende Nachsetzzeichen anzuwenden:

PN	I (P0)	Lager der Normaltoleranz .

Das Nachsetzzeichen PN wird nicht eigens angegeben. Früher wurde die Normaltoleranz mit "**P0**" bezeichnet.

P6 Lager mit gegenüber der Normaltoleranz eingeschränkten Toleranzwerten.

P5 Toleranzen kleiner als bei P6
 P4 Toleranzen kleiner als bei P5
 P2 Toleranzen kleiner als bei P4

Für bestimmte Anwendungsfälle werden Wälzlager auch mit eingeschränkten Toleranzen erzeugt bzw. werden die Toleranzen einzelner Merkmale wie Rundlauf, Seitenschlag usw. eingeschränkt.

Beispiele für Lager mit eingeschränkten Toleranzen sind Pendelrollenlager für schwingende Beanspruchungen der Ausführung **SQ34**.

Die Toleranzen dieser Produkte sind den entsprechenden Produkttabellen zu entnehmen.

Lagerluft

Um das Betriebsspiel eines Wälzlagers in eingebautem Zustand an die jeweiligen Passungsverhältnisse optimal anpassen zu können, werden die unterschiedlichen Lagerbauarten in verschiedenen Lagerluftklassen gefertigt.

Je nach Lagerart unterscheidet man dabei zwischen Radialluft und Axialluft

Für die meisten Lagerbauarten sind die Luftwerte in **DIN 620** festgelegt.

Lagerluft kleiner als bei C2

Lagerluftklassen:

C1

	3
C2	Lagerluft kleiner als bei CN
CN (C0)	Lagerluft "Normal".
	Das Nachsetzzeichen CN wird nicht eigens angegeben. Früher wurde die Normalluft mit "C0" bezeichnet.
C3	Lagerluft größer als bei CN
C4	Lagerluft größer als bei C3
C5	Lagerluft größer als bei C4

Sonder-Lagerluft:

In Fällen, in denen eine besondere, von den genormten Klassen abweichende Lagerluft vereinbart wird, ist diese in der Lagerbezeichnung anzugeben.

Je nachdem, ob es sich hierbei um eine Radiale oder Axiale Lagerluft handelt, wird ein "R" bzw. ein "A", gefolgt durch die Werte des festgelegten Luftbereichs in µm angegeben. Der Kleinst- und Größtwert wird hierbei durch "&" getrennt.

Beispiele:

R80&150 Spezielle Radialluft.

Luft zwischen 80 und 150 µm

A70&110 Spezielle Axialluft.

Luft zwischen 70 und 110 µm

Falls erforderlich kann der in der Norm vorgesehene Bereich einer Lagerluftklasse noch weiter eingeschränkt werden.

Diese Einschränkung wird durch einen dem Symbol der Lagerluftklasse folgenden Buchstaben **H**, **M** oder **L** angezeigt.

Beispiele:

C2L Lagerluft auf die untere Hälfte der Lagerluftklasse C2 eingeschränkt.

C3M Lagerluft im mittleren Bereich der Lagerluftklasse C3 eingeschränkt.

C4H Lagerluft auf die obere Hälfte der Lagerluftklasse C4 eingeschränkt.

Toleranz und Lagerluft

Bei Lagern mit besonderer Toleranz, die dazu noch eine spezielle Lagerluft aufweisen, werden diese beiden Informationen zu einem Symbol zusammengefasst, wobei das "C" für die Lagerluft entfällt.

Toleranz **P6 +** Lagerluft **C2 = P62**Toleranz **P5 +** Lagerluft **C4 = P54**

Wärmebehandlung

Die Wärmebehandlung der Wälzlager ist von der maximalen Betriebstemperatur abhängig. NKE-Wälzlager sind standardmäßig für Betriebstemperaturen von +120°C bis hinauf zu +200°C maßstabilisiert.

Die jeweiligen Stabilisierungsbehandlungen haben einen großen Einfluss auf die maximal zulässigen Betriebstemperaturen und sind in Stabilitätsklassen mit jeweils steigender Maßstabilität eingeteilt:

SN Wärmestabilisierung bis 120 °C. Standardwärmebehandlung, daher wird SN nicht eigens angegeben.

S0 Wärmestabilisierung der Lagerringe oder Laufscheiben bis 150 °C.

S1 Wärmestabilisierung der Lagerringe oder Laufscheiben bis 200 °C.

S2 Wärmestabilisierung der Lagerringe oder Laufscheiben bis 250 °C.

S3 Wärmestabilisierung der Lagerringe oder Laufscheiben bis 300 °C.

S4 Wärmestabilisierung der Lagerringe oder Laufscheiben bis 350 °C.

Verschiedene Lagerbauarten und Größen, wie größere Zylinderrollenlager und Pendelrollenlager werden serienmäßig für höhere Betriebstemperaturen als **SN** stabilisiert.

Nähere Informationen dazu sind in den jeweiligen Produktinformationen enthalten.

In bestimmten Fällen kann auch eine Stabilisierung einzelner Lagerringe für höhere Temperaturen erforderlich sein.

Eine solche Wärmebehandlung wird in folgender Weise gekennzeichnet:

S0B Wärmestabilisierung nur des Innenringes oder der Wellenscheiben bis 150 °C.

Die restlichen Komponenten dieses Lagers weisen die Standardwärmebehandlung auf.

S1B Wärmestabilisierung des Innenringes oder der Wellenscheiben bis 200 °C.

Die restlichen Komponenten dieses Lagers weisen die Standardwärmebehandlung auf.

Sonderbefettungen

Das **NKE-Bezeichnungsschema** für Wälzlager mit Sonderbefettung setzt sich aus folgenden Symbolen zusammen:

A) Symbol für die Temperatureignung:

LT TieftemperaturfettMT MitteltemperaturfettHT Hochtemperaturfett

LHT Hoch- und Tieftemperaturfett

XX) Fortlaufende Nummerierung

B) Symbol für Fettfüllmenge in Prozent des Lagerfreiraumes

A Fettfüllung 10% bis 15%

B 15% ÷ 25% des Freiraumes im Lager

-- Fettfüllung 25% bis 50% (Standard)

M Fettfüllung 45% bis 60%X Fettfüllung 70% bis 90%

(Vollfettfüllung)

C Fettfüllungsgrad nach Kundenspezifikation

Beispiel: LHT23

LHT Sonderfett für den Hoch- und Tieftemperaturbereich

23.. fortlaufende Nummerierung

- - Standardfüllmenge

Bezeichnungssystem für metrische Kegelrollenlager nach DIN ISO 355

Für metrische Kegelrollenlager gelten während einer Übergangszeit zwei parallel verwendete Bezeichnungssysteme:

Nach **DIN 616** beginnt die Bezeichnung der Lagerreihen von einreihigen metrischen Kegelrollenlagern mit der Ziffer "3" (siehe auch Seite 29).

DIN ISO 355 bezeichnet metrische Kegelrollenlager mit einem "T" (für Tapered roller bearing), gefolgt von einer 6-stelligen Buchstaben- und Zahlenkombination:

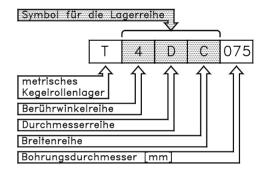


Abb. 3.6

Berührwinkelreihen:

Cumbal	Berührwinkel α		
Symbol	>	≤	
1	reserviert		
2	10°	13°52'	
3	13°52'	15°59'	
4	15°59'	18°55'	
5	18°55'	23°	
6	23°	27°	
7	27°	30°	

Tabelle 3.1

Durchmesserreihen:

Die Durchmesserreihen werden durch das Querschnittsverhältnis, also das Verhältnis von Bohrungsdurchmesser zu Außendurchmesser definiert:

Symbol	D d ^{0,77}			
	> ≤			
Α	reserviert			
В	3,4	3,8		
С	3,8	4,4		
D	4,4	4,7		
E	4,7	5,0		
F	5,0	5,6		
G	5,6	7,0		

Tabelle 3.2

Breitenreihen:

Die Breitenreihen werden durch die Hauptabmessungen definiert:

Symbol	T (D - d) ^{0,95}			
	> ≤			
Α	reserviert			
В	0,50	0,68		
С	0,68	0,80		
D	0,80	0,88		
E	0,88	1,00		

Tabelle 3.3

Bohrungsdurchmesser:

Bei den Bezeichnungen nach **DIN ISO 355** werden die Bohrungsdurchmesser der metrischen Kegelrollenlager unverschlüsselt in Millimetern angegeben.

Sonderausführungen

In vielen Anwendungen kommen Standardlager zum Einsatz, die im Zuge einer gemeinsamen Entwicklung mit dem Kunden optimiert wurden.

Dies geschieht durch die Anpassung einzelner Merkmale eines Lagers an spezielle Anforderungen in einem bestimmten Anwendungsfall.

Diese Anpassungen werden in Sonder Qualitätsvorschriften (**SQ**) zusammengefasst, die bestimmte Merkmale genau definieren.

Einige Beispiele für NKE-Sonder-Qualitätsvorschriften sind:

SQ1 Wälzlager für Traktionsmotore bei Schienenfahrzeugen

SQ2 Wälzlager für Radsatzlager von Schienenfahrzeugen

SQ34 Pendelrollenlager für schwingende Beanspruchung (Schwingsiebe).

Sonderlager

Bei Anwendungsfällen, in denen mit Standardlagern bzw. mit Normlagern in Sonderausführung nicht mehr das Auslangen gefunden wird, kommen "maßgeschneiderte" Sonderlager zum Einsatz.

Diese sind für ganz bestimmte Anwendungsfälle konstruiert und unterscheiden sich daher häufig wesentlich von Standardlagern.

Um mögliche Verwechslungen mit Standardlagern zu vermeiden, haben Sonderlager ein eigenes, je nach Hersteller unterschiedliches, Bezeichnungsschema.

Abb. 3.7 zeigt den Aufbau des Bezeichnungsschemas für **NKE-Sonderlager**.

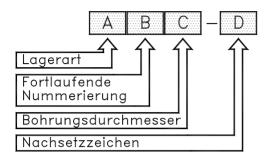


Abb. 3.7

A) Symbol für die Lagerart:

CRB Sonder-Zylinderrollenlager
DGB Sonder-Rillenkugellager
ACB Sonder-Schrägkugellager
SRB Sonder-Pendelrollenlager
TRB Sonder-Kegelrollenlager
SG Sonder-Gehäuse

usw.

B) Fortlaufende Numerierung

C) Symbol für den Bohrungsdurchmesser

Wie bei Normlagern wird der Durchmesser der Lagerbohrung je nach Größe entweder als codierte Bohrungskennzahl oder unverschlüsselt angegeben. Beim Bohrungsdurchmesser wird dieser durch einen Schrägstrich von der Numerierung getrennt.

D) Nachsetzzeichen

Bei Bedarf werden auch Nachsetzzeichen für bestimmte Merkmale angegeben, sofern diese nicht ohnehin ein Bestandteil der Sondermerkmale sind.

Bezeichnungssystem von Zubehör und Teilen

Spann- und Abziehhülsen

Die Bezeichnung von **Spann- und Abziehhülsen** setzt sich aus einem oder mehreren Buchstaben zusammen, an welche die Kennzahlen für Lagerreihe und Bohrung angehängt sind.

Die **Bohrungskennziffer** einer Spann- oder Abziehhülse bezeichnet immer den Durchmesser der kegeligen Bohrung des dazugehörigen Lagers.

Zur Bezeichnung der Bohrungskennziffer einer Spann- oder Abziehhülse wird dasselbe Schema wie bei den Lagern selbst angewendet.

Bei Hülsen, deren Bohrungsdurchmesser von der Standardgröße abweicht, wird dieser, durch einen Schrägstrich getrennt, an das Basiskennzeichen angehängt.

Große Hülsen werden auch mit Ölkanälen und Anschlußbohrungen für den Ein- und Ausbau von Lagern mittels Drucköl hergestellt.

Beispiele für Spann- und Abziehhülsen:

H Metrische Standard-Spannhülse

H320 Spannhülse für Welle Ø90 mm Reihe H3, für d = Ø100 mm

OH Spannhülsen mit Ölkanälen und -bohrungen für den Ein- und Ausbau von Lagern durch Drucköl. Ansonsten baugleich mit Hülsen der Standardausführung

OH31/500

Spannhülse mit Ölkanälen, Reihe OH 31, d = Ø500 mm

AH Metrische Standard-Abziehhülsen

AH314 Abziehhülse für Welle Ø65 mm, Reihe AH3, für d = Ø70 mm

AHX Abziehhülsen mit an die ISO-Normen angepassten Abmessungen

AHX 2310

Abziehhülse für Welle Ø45 mm, Reihe AHX23, für d = Ø50 mm

AOH und AOHX

Abziehhülsen mit Ölkanälen und Ölbohrungen für den Ein- und Ausbau von Lagern durch Drucköl. Ansonsten baugleich mit Abziehhülsen der Standardausführungen AH und AHX

HA und HE

Spannhülsen für Wellen mit Zollabmessungen. Ansonsten baugleich mit Spannhülsen der Standardausführung

Wellenmuttern

Die Bezeichnung von **Wellenmuttern** beginnt mit "**KM**" bzw. "**HM**", an welche in bestimmten Fällen noch weitere Buchstaben sowie eine Kennzahl für die Gewindegröße angehängt sind. Diese Kennzahl x 5 ergibt den Gewinde-Nenndurchmesser in Millimeter.

Lediglich die Muttern der Reihen HM 30 und HM 31 bilden hier eine Ausnahme. Bei diesen Typen besteht das Basiskennzeichen aus einer vierstelligen Ziffernkombination, wovon die ersten beiden Zahlen die Reihe bezeichnen, die beiden letzten Zahlen hingegen die Kennzahl für die Gewindegröße sind.

Bei Muttern mit Gewinde-Nenndurchmessern über 500 mm wird der Nenndurchmesser, durch einen Schrägstrich getrennt, an das Basiskennzeichen angehängt.

Beispiele:

KM Standard-Wellenmuttern mit metrischem ISO-Gewinde

KM30 Wellenmutter mit Gewinde M 150x2. Außendurchmesser 195 mm **KML** Wellenmutter mit metrischem ISO-Gewinde; kleinerer Querschnitt gegen-

über normalen KM-Muttern

KML30 Wellenmutter mit Gewinde M 150x2.

Außendurchmesser 180 mm

HM Muttern mit metrischem ISO-Trapez-

gewinde

HM52-T Wellenmutter mit Trapezgewinde Tr

260x4. Außendurchmesser 330 mm

HML Muttern mit metrischem ISO-Trapez-

gewinde; kleinerer Querschnitt gegenüber normalen HM-Muttern

HML52-T Wellenmutter mit Trapezgewinde Tr

260x4. Außendurchmesser 310 mm

KMT Nutmutter mit metrischem ISO-

Gewinde; mit Klemmschrauben zur

Sicherung

KMT30 Nutmutter mit Klemmschrauben, Ge-

winde M 150x2

KMTA Wellenmutter mit metrischem ISO-

Gewinde; mit Klemmschrauben zur Sicherung. KMTA-Muttern sind im Wesentlichen baugleich mit KMT-Muttern, haben jedoch einen glatten

zylindrischen Außendurchmesser

KMTA30 Mutter mit Klemmschrauben,

glatter Außendurchmesser,

Gewinde M 150x2

Sicherungsbleche

Zur Sicherung von Wellenmuttern werden Sicherungsbleche verwendet.

Die Bezeichnungen der Sicherungsbleche beginnen mit den Buchstaben "MB" bzw. "MBL", an welche die Kennzahl für die Nenngröße angehängt sind. Diese Kennzahl x 5 ergibt den Innendurchmesser des Sicherungsbleches in Millimetern.

MB Standard-Sicherungsbleche

MB30 Standard-Sicherungsblech für Nutmutter KM30

MBL Sicherungsblech für Nutmuttern der Reihe KML, Querschnitt geringer als bei den Standard Sicherungsblechen

der Reihe MB

MBL30 Sicherungsblech für Nutmutter

KML30

Lagersätze

In bestimmten Anwendungen, werden mehrere Einzellager zu **Lagersätzen** zusammengefasst und satzweise eingebaut.

Dies betrifft hauptsächlich Kegelrollen- und Schrägkugellager, manchmal auch andere Lagerarten wie Rillenkugellager.

Bei einer Verwendung in Lagersätzen müssen die Einzellager sorgfältig aufeinander abgestimmt werden.

Lagersätze werden durch Nachsetzzeichen gekennzeichnet, die neben der Anzahl von Einzellagern im Set auch deren Anordnung zueinander angeben. Üblicherweise wird zusätzlich auch die jeweilige Lagerluft bzw. der Grad der Vorspannung des Lagersatzes angegeben. DB Zwei einzelne Lager (einreihige Rillenkugellager, Schrägkugellager oder Kegelrollenlager) zusammengepasst für den Einbau in **O**-Anordnung

DF Zwei Einzellager zusammengepaßt für den Einbau in **X**-Anordnung

TQO Zwei zusammengepasste zweireihige Kegelrollenlager

QBC Vier einreihige Rillenkugellager oder Schrägkugellager; je 2 Lager paarweise in Tandemanordnung kombiniert, in O-Anordnung

QBT Satz aus vier gepaarten einreihigen Rillenkugellager oder Schrägkugellagern; ein Lagerpaar in O-Anordnung wird mit einem Lagerpaar in Tandemanordnung kombiniert

TR Drei Rillenkugellager oder Zylinderrollenlager für eine gleichmäßige Radiallastaufnahme gepaart

2S Abgestimmte Lager für den paarweisen Einbau

Allgemeines

Neben bauartspezifischen Besonderheiten weisen alle Wälzlager gemeinsame Merkmale auf, die teilweise auch in international gültigen Normen definiert sind

Werkstoffe

Werkstoffe von Lagerringen und Wälzkörpern

Ringe und Wälzkörper der NKE Wälzlager werden aus hochwertigen Stählen höchster Reinheit hergestellt.

Für **Standardlager** mit normalen Ringquerschnitten wird durchhärtender Chromstahl entsprechend DIN 17230 (100Cr6/100CrMn6) verwendet.

Ringe mit größeren Wandstärken sowie Lagerringe von Sonderlagern werden häufig auch aus Einsatzstählen gefertigt.

In Sonderfällen kommen Vergütungsstähle sowie warmfeste Werkzeugstähle zum Einsatz.

Eine Sonderposition nehmen hierbei Ringe und Wälzkörper rostbeständiger Lager ein, die für eine optimale Korrosionsbeständigkeit aus hochlegierten Sonderstählen gefertigt werden.

Wärmebehandlung

NKE Wälzlager werden auf modernsten Härtelinien serienmäßig für Betriebstemperaturen bis +120°C stabilisiert, kurzzeitige Temperaturspitzen bis +150°C sind zulässig.

Die Härte der Lagerteile beträgt dabei im Regelfall **58 ÷ 64 HRC**.

Diese Wärmebehandlung ist Standard und wird daher auch nicht eigens gekennzeichnet.

Dauertemperaturen, die höher als **+150°C** sind, führen zu Gefügeveränderungen im Lagerstahl, die zu Härteverlust und Maß- sowie Formänderungen der Lagerteile führen können.

Auf Wunsch können alle Lagerarten auch in besonders wärmestabilisierter Ausführung für Einsätze bei höheren Dauertemperaturen geliefert werden.

Die entsprechenden Bezeichnungen sind in Tabelle 4.1 enthalten:

Wärmestabilisierung					
bis max.	Klasse	Faktor f _t *)			
120°C	SN	1,00			
150°C	S0	1,00			
200°C	S1	0,90			
250°C	S2	0,75			
300°C	S3	0,60			

Tabelle 4.1

*) f, Temperaturfaktor.

Käfigwerkstoffe

Je nach Lagerart, Bauform und Größe sind NKE Wälzlager mit einem als Standard definierten Käfig ausgestattet.

Stahlblechkäfige:

Ein- oder mehrteilige Käfige aus Tiefziehblech. Mehrteilige Stahlblechkäfige werden überlappt, vernietet oder verschweißt

Stahlblechkäfige sind Standard bei vielen Lagerbauarten, beispielsweise bei Rillenkugellagern und Kegelrollenlager und werden in der Lagerbezeichnung nicht eigens angegeben.

Polyamidkäfige:

Die Käfige zeichnen sich durch optimale Formgebung und hervorragende Montierbarkeit aus. Hauptsächlich wird Polyamid (PA 6.6) mit Glasfaseranteil verwendet. Polyamidkäfige werden als Schnappkäfige oder Massivkäfige ausgeführt.

Polyamidkäfige weisen durch die geringe Eigenmasse sowie ihre guten Laufeigenschaften sehr gute Leistungen auf.

Polyamidkäfige können für Dauertemperaturen von -40°C bis +120°C problemlos eingesetzt werden und ertragen kurzzeitig auch Temperaturspitzen bis zu +150°C.

Die Kennzeichnung von Polyamidkäfigen erfolgt durch das Nachsetzzeichen T. Weitere Buchstaben oder Zahlen bezeichnen Ausführung bzw. Konstruktionsvariante des Polyamidkäfigs (TVP, TV,..).

Metall-Massivkäfige:

Dabei wird der Käfig durch spanabhebende Bearbeitung hergestellt. Massivkäfige kommen dann zum Einsatz, wenn

- besondere Einsatzbedingungen einen sehr starken Käfig erfordern (Vibrationen, Stoßbelastung). Die Führung des Käfigs erfolgt dann zumeist nicht wie ansonsten üblich über die Wälzkörper, sondern an den Schulterflächen von Außen- oder Innenring.
- geringe Stückzahlen vorliegen, so dass eine Anfertigung von Press- oder Spritzgusswerkzeugen wirtschaftlich untragbar ist.

Beispiele: Sonderlager, größere Wälzlager

Massivkäfige werden hauptsächlich aus Messing hergestellt, für Sonderanwendungen kommen aber auch Massivkäfige aus Stahl oder Aluminium zum Einsatz.

Die Kennzeichnung von Metall-Massivkäfigen besteht üblicherweise aus einem Buchstaben für den Käfigwerkstoff (M für Messing, F für Stahl, L für Leichtmetall, ...) sowie weiteren Buchstaben oder Zahlenkombinationen, welche Ausführungsvarianten bezeichnen.

Beispiele: MA, MB, MPA, M6, M2 usw.

Käfige aus Sonderwerkstoffen:

Für besondere Einsatzbedingungen oder auch für bestimmte Lagerbaureihen können auch andere Materialien als Käfigwerkstoffe zum Finsatz kommen.

Beispiele sind Hartgewebekäfige von Hochgeschwindigkeitslagern und Spindellagern, duroplastische Käfige für Sonderlager, Käfige aus Sinterwerkstoffen usw

Werkstoffe von Dichtungen und Deckscheiben

Viele Lagerarten werden bereits in abgedeckter Ausführung mit integrierten Deck- oder Dichtscheiben angeboten.

Dadurch können Lagerstellen auf einfache Weise und ohne konstruktiven Mehraufwand abgedichtet werden. Durch die Integration der Dicht- und Deckscheiben in die Lager bieten diese auch vom Platzbedarf eine sehr günstige Lösung.

Hauptsächlich angewandt bei Kugellagerarten, können aber auch einige Bauformen von Zylinderrollenlagern abgedichtet geliefert werden. Beidseitig abgedeckte oder abgedichtete Lager werden bereits vorbefettet geliefert.

Grundsätzlich wird zwischen Deckscheiben und Dichtungen unterschieden.

Deckscheiben (Z, -2Z)

Deckscheiben stellen die einfachste Form einer Abdichtung dar.

In die in den Außenring eingedrehten Rillen (1) werden auf einer oder auf beiden Seiten des Lagers profilierte **Stahlblechscheiben** (2) eingepresst (siehe Abb. 4.1).

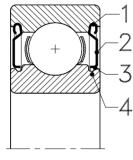
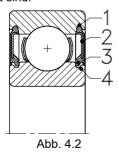
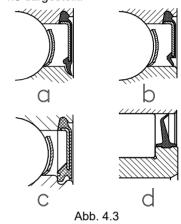



Abb. 4.1

Deckscheiben (Z-Deckel) bilden eine einfache umlaufende Spaltdichtung (3) zur Innenringschulter (4) hin. Sie verhindern einen Austritt von Schmierfett aus dem Lager und bieten ausreichenden Schutz gegen das Eindringen größerer Fremdpartikel.


Dichtungen

Dichtscheiben von Rillenkugellagern (Abb. 4.2) bestehen in der Regel aus einem elastischen Dichtungswerkstoff mit angeformter Dichtlippe (3), in die Stahlblechscheiben zur Versteifung (2) einvulkanisiert sind.

Die Dichtscheiben sitzen in eingedrehten Rillen im Außenring (1), eine oder mehrere elastische Dichtlippen (3) schleifen unter Vorspannung auf einer Gegenfläche am Innenring (4). Daher spricht man von **berührenden Dichtungen**. Diese bieten auch gegen feinen Staub und Spritzwasser Schutz.

Bei den schleifenden Dichtungen gibt es eine Vielzahl von Konstruktionsvarianten, die sich in Details unterscheiden. Einige Beispiele dafür sind in Abb. 4.3 dargestellt.

- 4.3a) Berührende Dichtung für Rillenkugellager, Bauform RS. Bei dieser Bauform liegt die Dichtlippe axial am Innenring an.
- 4.3b) Berührende Dichtung für Rillenkugellager, Bauform **RSR**.

Bei dieser Konstruktion läuft die Dichtlippe **radial** auf der geschliffenen Innenringschulter.

- 4.3c) Berührende Dichtung für Rillenkugellager, Bauform **RS2**. Bei dieser Bauform liegt die Dichtlippe **axial** am Innenring an.
- 4.3d) Berührende Dichtung, Bauform **LS** für vollrollige Zylinderrollenlager.

Die **LS**-Dichtung sitzt am Innenring, die Dichtlippe schleift auf der Außenring-laufbahn.

Drehzahleinschränkung bei berührenden Dichtungen

Bei allen **berührenden Dichtungen** wird durch das Berühren der vorgespannten Dichtlippe zusätzliche Wärme entwickelt.

Daher liegen die Höchstdrehzahlen für Lager mit berührenden Dichtungen (Nachsetzzeichen -RS2, -2RS2, -RS, -2RS, RSR, -2RSR usw.) um ein Drittel unter den für Fettschmierung empfohlenen Richtdrehzahlen offener Lager bzw. von Lagern mit Deckscheiben.

$$n_{gRS} = \frac{n_{gFett} * 2}{3}$$
 (Gl. 4.1)

wobei

n_{gRS} = Richtdrehzahl für das Lager in abgedichteter Ausführung [min⁻¹]

n_{gFett} = Richtdrehzahl laut Produkttabelle für das Lager bei Fettschmierung [min⁻¹]

Berührungsfreie Dichtungen

Für Anwendungen bei höheren Drehzahlen, in denen Lager in abgedichteter Ausführung benötigt werden, gibt es eine berührungsfreie Sonderdichtung (LFS-Dichtung oder Low Friction Seal), Abb. 4.4.

Bei der Bauart **LFS** ist die Dichtscheibe (2) mit zwei Dichtlippen, einer radialen und einer axialen, (3) versehen, von denen die radiale in eine in den Innenring eingedrehte Rille (4) reicht und so eine berührungsfreie Dichtung bildet.

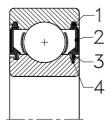


Abb. 4.4

LFS-Dichtungen haben eine erheblich bessere Dichtwirkung als Deckscheiben (Z-Deckel), sind aber den schleifenden Dichtungen (Bauformen -RS2, -2RS2, -RS, -2RSR, -2RSR) hinsichtlich deren Dichtwirkung unterlegen.

Da **LFS**-Dichtungen keine zusätzliche Reibung erzeugen, ist bei den damit ausgestatteten Lagern keine Einschränkung der Richtdrehzahlen erforderlich.

Dichtungswerkstoffe

Berührende Dichtungen der Bauformen -RS2, -2RS2, -RS, -2RS, RSR, -2RSR usw. sowie berührungsfreie LFS-Dichtungen werden standardmäßig aus synthetischem Elastomer (Nitril-Butadien-Kautschuk, Kurzzeichen NBR) hergestellt.

Zur Versteifung der Dichtscheiben werden Stahlscheiben einvulkanisiert.

Dieser Dichtungswerkstoff ist bei NKE Wälzlagern standard und wird daher in der Lagerbezeichnung nicht separat angegeben.

Standarddichtungen aus Nitrilkautschuk (**NBR**) können problemlos bei Dauertemperaturen von **-30°C** bis **+120°C** eingesetzt werden.

Für Sonderanwendungen sind auch Dichtungen aus anderen Werkstoffen lieferbar, einige Beispiele finden Sie in folgender Tabelle:

Dichtu	ingswerkstoff	Temperatur- bereich [°C] ¹⁾	
Kurz- zeichen			າ [°C] ″
NBR	Nitril-Butadien- Kautschuk	-30°	+120°
ACM	Acrylatkautschuk	-20°	+150°
MVQ	Silikonkautschuk	-60°	+180°
FPM	Flourkautschuk	-30°	+200°

Tabelle 4.2

¹⁾ Richtwerte, der zulässige Temperaturbereich kann je nach Materialzusammensetzung variieren.

Fettfüllung

NKE Wälzlager in beidseitig abgedichteter Ausführung (Nachsetzzeichen -2RS2, -2RSR, -2LFS, etc.) bzw. Lager mit beidseitigen Deckscheiben (Nachsetzzeichen -2Z) werden bereits werksseitig mit hochwertigen Wälzlagerfetten befüllt.

Als Standardfette werden verwendet:

- Einreihige Rillenkugellager bis zu einem Bohrungsdurchmesser von 60 mm:

NKE Lithiumseifenfett LHT23, Di-Esteröl, NLGI Klasse 2

Dieses Fett eignet sich grundsätzlich für Betriebstemperaturen von -50°C bis 150°C und zeichnet sich durch seine geräuscharmen bzw. geräuschdämpfenden Eigenschaften aus.

 Für größere Rillenkugellager, sowie abgedichtete Schrägkugellager, Pendelkugellager, Laufrollen und Gehäuselager:

NKE Lithiumseifenfett MT2, Mineralöl, NLGI Klasse 3

Dieses Fett eignet sich grundsätzlich für Betriebstemperaturen von -30°C bis +130°C.

Für NKE IKOS Integral-Kegelrollenlager:

NKE Lithiumseifenfett MT32, Mineralöl, NLGI Klasse 2

Dieses Fett eignet sich grundsätzlich für Betriebstemperaturen von -20°C bis +130°C.

Die standardmäßig verwendete Füllmenge beträgt 25% - 50% des jeweiligen Freiraumes im Lager.

NNF Zylinderrollenlager werden mit Sonderfetten versehen, deren Daten auf Anfrage erhältlich sind. Standardmäßig wird eine Vollfettfüllung vorgesehen.

Sonderbefettungen

Für spezielle Anwendungsbereiche können alle NKE Wälzlager bereits werksseitig mit anderen Schmierstoffen und anderen Füllmengen versehen werden.

Zur Unterscheidung dieser Ausführungen von Standardlagern werden diese durch spezielle Nachsetzzeichen (siehe S. 36) gekennzeichnet.

Hauptabmessungen der Wälzlager

Hauptabmessungen für Norm-Wälzlager sind in international gültigen Normen festgelegt, wie beispielsweise in den ISO-Normen ISO 15 (Radiallager ohne Kegelrollenlager), ISO 355 (metrische Kegelrollenlager) sowie in der ISO 104 (Axiallager) bzw. in den entsprechenden DIN Normen DIN 616 (Wälzlagermaßpläne) und DIN ISO 355 (metrische Kegelrollenlager).

Dadurch sind Wälzlager international austauschbar.

Die in den Normen enthaltenen **Maßpläne** definieren die Hauptabmessungen der verschiedenen Lagerbauformen wie Bohrung (**d**), Außendurchmesser (**D**), Lagerbreite (**B**) bzw. Bauhöhe (**H**, **T**) sowie Mindest-Kantenabstände (**r**) (Abb. 4.5).

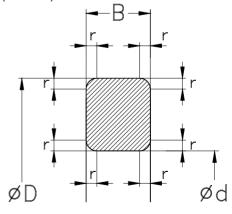


Abb. 4.5

Maßpläne Hauptabmessungen

Die nach ISO bzw. DIN genormten Maßpläne definieren Querschnitte von Standard-Lagerarten nach mathematischen Regeln.

Durch die Festlegung von **Durchmesser-** und **Breitenreihen** wurden jedem Bohrungsdurchmesser mehrere Außendurchmesser und Lagerbreiten bzw. Bauhöhen zugeordnet.

Auf dieser Zuordnung basiert auch das Bezeichnungssystem von Normlagern.

So besteht das **Basiskennzeichen** eines Normlagers aus je einem Symbol für die Lagerart, die Breitenreihe und die Durchmesserreihe (siehe Abb. 4.6).

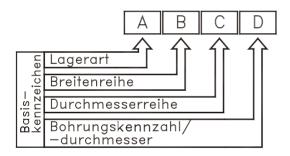
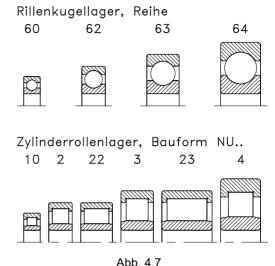



Abb. 4.6

Durch dieses Schema kann man bei gegebenem Wellendurchmesser je Lagerbauart Lager mit unterschiedlichen Querschnitten – und damit unterschiedlichen Tragfähigkeiten – auswählen (siehe Beispiel in Abb. 4.7).

Damit kann zum einen auf die baulichen Vorgaben der Umgebungskonstruktion eingegangen werden (verfügbarer Bauraum, Wellendurchmesser), als auch auf die Anforderungen an die Lagerung hinsichtlich Tragfähigkeit bzw. Lebensdauer.

Beispiele für unterschiedliche Breiten- und Durchmesserreihen am Beispiel von Rillenkugellagern und Zylinderrollenlagern.

Wie in Abb. 4.7 ersichtlich, gibt es bei den einreihigen Zylinderrollenlagern auch breite Reihen (Baureihen N22, N23..), die gegenüber den normalen einreihigen Zylinderrollenlagern bei gleichen Bohrungs- und Außendurchmessern eine größere Lagerbreite aufweisen.

Detaillierte Informationen darüber finden Sie auch im Abschnitt "Wälzlagerbezeichnungen" ab Seite **26**

Kantenabstände

Zur Vermeidung scharfer Übergänge sowie zur Erleichterung der Montage sind die Außenkanten von Wälzlagerringen mit Kantenverrundungen versehen.

Diese Kantenabstände sind nach ISO 582 bzw. nach DIN 620 / Teil 6 genormt.

In diesen Normen sind Größt- und Kleinstmaße für die Kantenabstände in radialer (\mathbf{r}_1 , \mathbf{r}_3) und in axialer Richtung (\mathbf{r}_2 , \mathbf{r}_4) vorgesehen (Abb. 4.8).

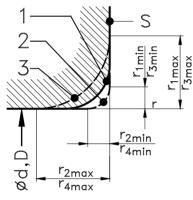


Abb. 4.8

Ød, D Bohrungs- oder Außendurchmesser des Lagers

S Stirnfläche des Lagers

r_{1min} Kleinste einzelne Kantenabstände

r_{3min} in **radialer** Richtung

 \mathbf{r}_{2min} Kleinste einzelne Kantenabstände

r_{4min} in axialer Richtung

 $\mathbf{r}_{\scriptscriptstyle{\mathsf{1max}}}$ Größte einzelne Kantenabstände

 r_{3max} in radialer Richtung

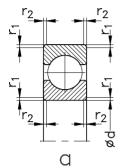
r_{2max} Größte einzelne Kantenabstände

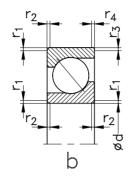
 $\mathbf{r}_{4\text{max}}$ in axialer Richtung

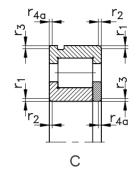
1 Tatsächlicher Kantenverlauf

2 Profil bei kleinstzulässigen

Kantenabständen


3 Profil bei größtzulässigen


Kantenabständen


Die Kleinstwerte der Kantenabstände sind in den Produkttabellen angegeben, die zulässigen Größtwerte sind in den folgenden Tabellen angeführt:

Grenzwerte für die Kantenabstände von metrischen Radiallagern [mm] (ohne Kegelrollenlager)

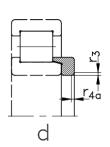
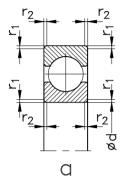
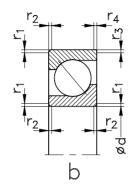
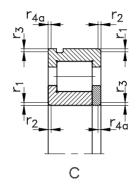


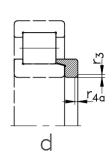
Abb. 4.9

- 4.9a) Zuordnung bei symmetrischem Lagerquerschnitt
- 4.9b) Kantenabstände bei asymmetrischem Querschnitt
- 4.9c) Kantenabstände bei Sprengringnut am Außenring, Bordscheibe
- 4.9d) Kantenabstände an Winkelringen


(Gleiche Indizes bedeuten gleiche Nennmaße)


Tabelle 4.3: Grenzwerte für Kantenabstände von Radiallagern (ohne Kegelrollenlager)


_	_ Ø d	d	r ₁ ; r ₃	r ₂ ; r ₄	r _{4a}
r _{s min}	>	≤	max	max	max
0,05	1	ı	0,1	0,2	0,1
0,08	•	-	0,16	0,3	0,16
0,1	ı	ı	0,2	0,4	0,2
0,15	-	-	0,3	0,6	0,3
0,2	ı	-	0,5	0,8	0,5
0,3	-	40	0,6	1	0,8
0,5	40	-	0,8	1	0,8
0,5	-	40	1	2	1,5
0,5	40	-	1,3	2	1,5
0,6	-	40	1	2	1,5
0,0	40	-	1,3	2	1,5
1	-	50	1,5	3	2,2
<u>'</u>	50	-	1,9	3	2,2
1,1	-	120	2	3,5	2,7
1,1	120	-	2,5	4	2,7



Grenzwerte für die Kantenabstände von metrischen Radiallagern [mm] (ohne Kegelrollenlager)

Fortsetzung Tabelle 4.3:

	Ø	d	r ₁ ; r ₃	r ₂ ; r ₄	r _{4a}
r _{s min}	^	≤	max	max	max
1,5	-	120	2,3	4	3,5
1,5	120	-	3	5	3,5
	-	80	3	4,5	4
2	80	220	3,5	5	4
	220	-	3,8	6	4
2,1	-	280	4	6,5	4,5
2,1	280	-	4,5	7	4,5
	-	100	3,8	6	5
2,5	100	280	4,5	6	5
	280	-	5	7	5
3	-	280	5	8	5,5
	280	-	5,5	8	5,5
4	-	-	6,5	9	6,5
5	-	-	8	10	8
6	-	-	10	13	10
7,5	-	-	12,5	17	12,5
9,5	-	-	15	19	15
12	-	-	18	24	18
15	-	-	21	30	21
19	-	-	25	38	25

Grenzwerte für die Kantenabstände [mm] metrischer Kegelrollenlager

_	Ø	d, D	r₁; r₃	r ₂ ; r ₄
r _{s min}	>	≤	max	max
0,3	-	40	0,7	1,4
	40	-	0,9	1,6
0,6	-	40	1,1	1,7
	40	-	1,3	2
1	-	50	1,6	2,5
	50	-	1,9	3
1,5	-	120	2,3	3
	120	250	2,8	3,5
	250	-	3,5	4
2	-	120	2,8	4
	120	250	3,5	4,5
	250	-	4	5
2,5	-	120	3,5	5
	120	250	4	5,5
	250	-	4,5	6
3	- 120 250 400	120 250 400	4 4,5 5 5,5	5,5 6,5 7 7,5
4	-	120	5	7
	120	250	5,5	7,5
	250	400	6	8
	400	-	6,5	8,5
5	-	180	6,5	8
	180	-	7,5	9
6	-	180	7,5	10
	180	-	9	11

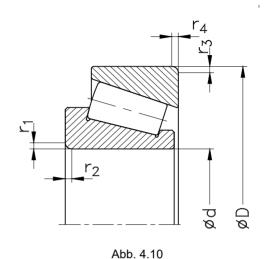
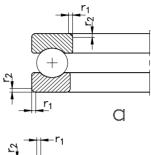
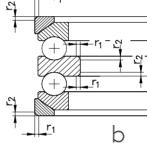
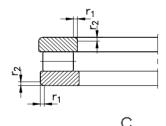


Tabelle 4.4


Grenzwerte für die Kantenabstände [mm] von Axiallagern


r _{s min}	r ₁ ; r ₂ max
0,05	0,1
0,08	0,16
0,1	0,2
0,15	0,3
0,2	0,5
0,3	0,8
0,6	1,5
1	2,2
1,1	2,7
1,5	3,5
2	4
2,1	4,5
3	5,5
4	6,5
5	8
6	10
7,5	12,5
9,5	15
12	18
15	21
19	25


Tabelle 4.5

Legende:

- 4.11a) Einseitig wirkendes Axialkugellager
- 4.11b) Zweiseitig wirkendes Axialkugellager mit Kugeligen Gehäusescheiben und Unterlegscheiben
- 4.11c) Einseitig wirkendes Axial-Zylinderrollenlager
- 4.11d) Axial-Pendelrollenlager

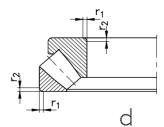


Abb. 4.11

Allgemeines

Standardwerte für Toleranzen sowie die in folgenden Tabellen verwendeten Symbole und Formelzeichen sind, soweit genormt, in den international gültigen Normen DIN ISO 1132 bzw. nach DIN 620 Teil 2 definiert.

Verwendete Symbole

Bohrungsdurchmesser

d Nennmaß der Lagerbohrung (kleiner Durchmesser bei kegeliger Bohrung)

d_s einzelner Bohrungsdurchmesser

d_{mp} mittlerer Bohrungsdurchmesser in einer radialen Ebene

$$\frac{d_{ps max} + d_{ps min}}{2}$$

d_{ps max} größter Bohrungsdurchmesser in einer radialen Fhene

d_{ps min} kleinster Bohrungsdurchmesser in einer radialen Ebene

Δ_{dmp} d_{mp} - d
Abweichung des mittleren Bohrungsdurchmessers vom Nennmaß

 Δ_{ds} d_s - dAbweichung eines einzelnen Bohrungsdurchmessers vom Nennmaß

 $\begin{array}{ccc} \Delta_{\text{d1mp}} & \textbf{d}_{\text{1mp}} \textbf{-} \textbf{d}_{1} \\ & \text{Abweichung des mittleren großen} \\ & \text{Durchmessers vom Nennmaß bei} \\ & \text{kegeliger Bohrung} \end{array}$

V_{dp} d_{ps max} - d_{ps min}
Schwankung des Bohrungsdurchmessers in einer radialen Ebene

V_{dmp} d_{mp max} - d_{mp min} Schwankung des mittleren Bohrungsdurchmessers; Differenz zwischen größtem und kleinstem mittleren Bohrungsdurchmesser

Außendurchmesser

D Nennmaß des Außendurchmessers

D_s einzelner Außendurchmesser

D_{mp} mittlerer Außendurchmesser in einer radialen Ebene

$$\frac{D_{ps max} + D_{ps min}}{2}$$

D_{ps max} größter Außendurchmesser in einer radialen Ebene

D_{ps min} kleinster Außendurchmesser in einer radialen Ebene

 $\begin{array}{lll} \Delta_{\text{Dmp}} & \textbf{D}_{\text{mp}} \textbf{-} \textbf{D} \\ & \text{Abweichung des mittleren Außendurchmessers vom Nennmaß} \end{array}$

 Δ_{Ds} D_s - D

Abweichung eines einzelnen Außendurchmessers vom Nennmaß

V_{Dp} D_{ps max} - D_{ps min}
Schwankung des Außendurchmessers
in einer radialen Ebene

V_{Dmp} D_{mp max} - D_{mp min} Schwankung des mittleren Außendurchmessers; Differenz zwischen größtem und kleinstem mittleren Außendurchmesser

Breite und Höhe

- B Nennmaß der Innenringbreite
- C Nennmaß der Außenringbreite
- **B**_s an einer Stelle gemessene Breite des Innenrings
- **C**_s an einer Stelle gemessene Breite des Außenrings
- Δ_{cs} C_s CAbweichung einer einzelnen Außenringbreite vom Nennmaß
- V_{Bs} B_{smax} B_{smin} Schwankung der Innenringbreite
- V_{cs} C_{smax} C_{smin} Schwankung der Außenringbreite
- Nennmaß der Gesamthöhe von Kegelrollenlagern
- T_s an einer Stelle gemessene Gesamtbreite eines Kegelrollenlagers
- T_{1s} an einer Stelle gemessene Gesamtbreite eines Kegelrollenlagers über Innenring und Außenring-Normal
- T_{2s} an einer Stelle gemessene Gesamtbreite eines Kegelrollenlagers über Innenring-Normal und Außenring
- Δ_{Ts} $T_s T$, $\Delta_{T1s} = T_{1s} T_1$, $\Delta_{T2s} = T_{2s} T_2$ Abweichung der an einer Stelle gemessenen Gesamtbreite eines Kegelrollenlagers vom Nennmaß
- H_s , H_{1s}, H_{2s}, H_{3s}, H_{4s}
 An einer Stelle gemessene Gesamthöhe eines Axiallagers
- Δ_{Hs} $H_s H$, $\Delta_{H1s} = H_{1s} H_1$, $\Delta_{H2s} = H_{2s} H_2$ Abweichung der an einer Stelle gemessenen Gesamthöhe eines Axiallagers vom Nennmaß

Laufgenauigkeit

- K_{ia} Radialschlag: Rundlauf des Innenrings bei komplettem Lager
- K_{ea} Radialschlag: Rundlauf des Außenrings bei komplettem Lager
- S_d Seitenschlag: Planlauf der Innenringseitenfläche zur Bohrung
- Seitenschlag: Schwankung der Neigung der Mantellinie zur Bezugsseitenfläche
- S_{ia} Axialschlag von Radiallagern:
 Planlauf der Innenringseitenfläche zur
 Innenringlaufbahn bei komplettem Lager
- S_{ea} Axialschlag von Radiallagern:
 Axialschlag des Innen- und Außenrings
 am zusammengebauten Lager
- S_i Axialschlag von Axiallagern: Wanddickenschwankung der Wellenscheibe von Axiallagern
- S_e Axialschlag von Axiallagern:
 Wanddickenschwankung der
 Gehäusescheibe von Axiallagern

Innenring

Alle Maße in [mm]

Nennmaß der	über	2,5	10	18	30	50	80	120	180	250	315	400	500	630	800	1000	1250	1600
Lagerbohrung	bis	10	18	30	50	80	120	180	250	315	400	500	630	800	1000	1250	1600	2000

Toleranzklasse PN (Normal)

Toleranzwerte in **µm**

Bohrung, zylind Abweichung	drisch	$\Delta_{ ext{dmp}}$	0 -8	0 -8	0 -10	0 -12	0 -15	0 -20	0 -25	0 -30	0 -35	0 -40	0 -45	0 -50	0 -75	0 -100	0 -125	0 -160	0 -200
Schwankung V _{dp}		messer- 7, 8, 9	10	10	13	15	19	25	31	38	44	50	56	63					
	0, 1		8	8	10	12	19	25	31	38	44	50	56	63					
	2, 3, 4	1	6	6	8	9	11	15	19	23	26	30	34	38					
Schwankung		V_{dmp}	6	6	8	9	11	15	19	23	26	30	34	38					
Bohrung, Kege Abweichung	1:12	$\Delta_{ ext{dmp}}$	+15 0	+18 0	+21 0	+25 0	+30 0	+35 0	+40 0	+46 0	+52 0	+57 0	+63 0	+70 0	+80 0	+90 0	+105 0	+125 0	+150 0
Abweichung		Δ_{d1mp} - Δ_{dmp}	+15 0	+18 0	+21 0	+25 0	+30 0	+35 0	+40 0	+46 0	+52 0	+57 0	+63 0	+70 0	+80 0	+90 0	+105 0	+125 0	+150 0
Schwankung		V_{dp}	10	10	13	15	19	25	31	38	44	50	56						
Bohrung, Kege Abweichung	1:30	Δ_{dmp}					+15 0	+20 0	+25 0	+30 0	+35 0	+40 0	+45 0	+50 0	+75 0	+100 0	+125 0	+160 0	+200
Abweichung		Δ _{d1mp} - Δ _{dmp}					+35 0	+40 0	+50 0	+55 0	+60 0	+65 0	+75 0	+85 0	+100 0	+100 0	+115 0	+125 0	+150 0
Schwankung		$\overline{V_{dp}}$					19	25	31	38	44	50	56	63					
Breiten- abweichung		Δ _{Bs}	0 -120	0 -120	0 -120	0 -120	0 -150	0 -200	0 -250	0 -300	0 -350	0 -400	0 -450	0 -500	0 -750	0 -1000	0 -1250	0 -1600	0 -2000
Breiten- schwankung		V _{Bs}	15	20	20	20	25	25	30	30	35	40	50	60	70	80	100	120	140
Rundlauf		K_{ia}	10	10	13	15	20	25	30	40	50	60	65	70	80	90	100	120	140

Toleranzklasse P6

Abweichung		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Abwelchung	∆ dmp	-7	-7	-8	-10	-12	-15	-18	-22	-25	-30	-35	-40	-50	-60	-75	-90	-115
Schwankung V _{dp}	Durchmesser- reihe 7, 8, 9	9	9	10	13	15	19	23	28	31	38	44	50					
	0, 1	7	7	8	10	15	19	23	28	31	38	44	50					
	2, 3, 4	5	5	6	8	9	11	14	17	19	23	26	30					
Schwankung	V_{dmp}	5	5	6	8	9	11	14	17	19	23	26	30					
Breiten-	ΔBs	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
abweichung	⊿ bs	-120	-120	-120	-120	-150	-200	-250	-300	-350	-400	-450	-500	-750	-1000	-1250	-1600	-2000
Breiten-		15	20	20	20	25	25	30	30	35	40	45	50	55	60	70	70	80
schwankung	V_{Bs}	15	20	20	20	20	25	30	30	33	40	45	50	55	60	70	70	00
Rundlauf	K _{ia}	6	7	8	10	10	13	18	20	25	30	35	40	45	50	60	70	80

Außenring

Alle Maße in [mm]

Nennmaß des	über	6	18	30	50	80	120	150	180	250	315	400	500	630	800	1000	1250	1600	2000
Außendurchmessers	bis	18	30	50	80	120	150	180	250	315	400	500	630	800	1000	1250	1600	2000	2500

Toleranzklasse PN (Normal)

Toleranzwerte in µm

Abweichung	1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Abwelchung	$oldsymbol{\Delta}_{Dmp}$	-8	-9	-11	-13	-15	-18	-25	-30	-35	-40	-45	-50	-75	-100	-125	-160	-200	-250
Schwankung V _{Dp}	Durchmesser- reihe 7, 8, 9	10	12	14	16	19	23	31	38	44	50	56	63	94	125				
	0, 1	8	9	11	13	19	23	31	38	44	50	56	63	94	125				
	2, 3, 4	6	7	8	10	11	14	19	23	26	30	34	38	55	75				
	abgedichtete Lager 2, 3, 4	10	12	16	20	26	30	38											
Schwankung	V_{Dmp}	6	7	8	10	11	14	19	23	26	30	34	38	55	75				
Rundlauf	K _{ea}	15	15	20	25	35	40	45	50	60	70	80	100	120	140	160	190	220	250

¹⁾ Bei Schulterkugellagern beträgt die Abweichung Δ_{Dmp} einheitlich 0 / +10 µm. Die Breitentoleranzen Δ_{Cs} und V_{Cs} sind ident mit Δ_{Bs} und V_{Bs} des zugehörigen Innenrings.

Toleranzklasse P6

Abweichung	<u> </u>	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Abwelchung	Δ_{Dmp}	-7	-8	-9	-11	-13	-15	-18	-20	-25	-28	-33	-38	-45	-60	-75	-90	-115	-135
Schwankung V _{Dp}	Durchmesser- reihe 7, 8, 9	9	10	11	14	16	19	23	25	31	35	41	48	56	75				
	0, 1	7	8	9	11	16	19	23	25	31	35	41	48	56	75				
	2, 3, 4	5	6	7	8	10	11	14	15	19	21	25	29	34	45				
	abgedichtete Lager 0,1,2, 3, 4	9	10	13	16	20	25	30											
Schwankung	V_{Dmp}	5	6	7	8	10	11	14	15	19	21	25	29	34	45				
Rundlauf	K _{ea}	8	9	10	13	18	20	23	25	30	35	40	50	60	75	85	100	100	120

Die Breitentoleranzen Δ_{Cs} und V_{Cs} sind ident mit Δ_{Bs} und V_{Bs} des zugehörigen Innenrings.

Innenring

Alle Maße in [mm]

Nennmaß der	über	2,5	10	18	30	50	80	120	180	250	315	400	500	630	800	1000	1250	1600
Lagerbohrung	bis	10	18	30	50	80	120	180	250	315	400	500	630	800	1000	1250	1600	2000

Toleranzklasse P5

Toleranzwerte in µm

		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Abweichung	$\Delta_{ ext{dmp}}$	-5	-5	-6	-8	-9	-10	-13	-15	-18	-23	-28	-35	-45	-60	-75	-90	-115
Schwankung V _{dp}	Durchmesser- reihe 7, 8, 9	5	5	6	8	9	10	13	15	18	23							
	0, 1,2, 3, 4	4	4	5	6	7	8	10	12	14	18							
Schwankung	V_{dmp}	3	3	3	4	5	5	7	8	9	12							
Breiten-	A	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
abweichung	∆ Bs	-40	-80	-120	-120	-150	-200	-250	-300	-350	-400	-450	-500	-750	-1000	-1250	-1600	-2000
Breiten-	V	5	5	5	5	6	7	8	10	13	15	17	20	26	32	38	45	55
schwankung	V_{Bs})	5) 3	Э	О	′	0	10	13	15	17	20	20	32	30	45	55
Rundlauf	K _{ia}	4	4	4	5	5	6	8	10	13	15	17	19	22	26	30	35	40
Planlauf	S _d	7	7	8	8	8	9	10	11	13	15	17	20	26	32	38	45	55
Planlauf	S _{ia} 1)	7	7	8	8	8	9	10	13	15	20	23	25	30	30	30	30	30

 $^{^{1)}}$ Die Planlaufwerte S_{ia} gelten für Rillenkugellager und Schrägkugellager.

Außenring

Alle Maße in [mm]

Nennmaß des	über	6	18	30	50	80	120	150	180	250	315	400	500	630	800	1000	1250	1600	2000
Außendurchmessers	bis	18	30	50	80	120	150	180	250	315	400	500	630	800	1000	1250	1600	2000	2500

Toleranzklasse P5

Toleranzwerte in µm

Abweichung	$oldsymbol{\Delta}_{Dmp}$	0 -5	0 -6	0 -7	0 -9	0 -10	0 -11	0 -13	0 -15	0 -18	0 -20	0 -23	0 -28	0 -35	0 -50	0 -63	0 -80	0 -100	0 -125
Schwankung V _{Dp}	Durchmesser- reihe 7, 8, 9	5	6	7	9	10	11	13	15	18	20	23	28	35					
	0, 1, 2, 3, 4	4	5	5	7	8	8	10	11	14	15	17	21	26					
Schwankung	V_{Dmp}	3	3	4	5	5	6	7	8	9	10	12	14	18					
Breiten- schwankung	V _{Cs}	5	5	5	6	8	8	8	10	11	13	15	18	20	25	30	35	38	45
Rundlauf	K _{ea}	5	6	7	8	10	11	13	15	18	20	23	25	30	35	40	45	55	65
Neigungsschwa	ankung S _D	8	8	8	8	9	10	10	11	13	13	15	18	20	25	30	35	40	50
Planlauf	S _{ea} 1)	8	8	8	10	11	13	14	15	18	20	23	25	30	35	45	55	55	55

 $^{^{1)}}$ Die Planlaufwerte S $_{\rm ea}$ gelten für Rillenkugellager und Schrägkugellager. Die Breitentoleranz $\Delta_{\rm Cs}$ ist ident mit $\Delta_{\rm Bs}$ des zugehörigen Innenrings.

Innenring

Alle Maße in [mm]

	-	•												
Nennmaß der	über	10	18	30	50	80	120	180	250	315	400	500	630	800
Lagerbohrung	bis	18	30	50	80	120	180	250	315	400	500	630	800	1000

Toleranzklasse PN (Normal)

Toleranzwerte in µm

Abweichung		0	0	0	0	0	0	0	0	0	0	0	0	0
Abwelchung	Δ_{dmp}	-12	-12	-12	-15	-20	-25	-30	-35	-40	-45	-50	-75	-100
Schwankung	V_{dp}	12	12	12	15	20	25	30	35	40	45	50	75	100
_	V_{dmp}	9	9	9	11	15	19	23	26	30				
Breiten-		0	0	0	0	0	0	0	0	0	0	0	0	0
abweichung	ΔBs	-120	-120	-120	-150	-200	-250	-300	-350	-400	-450	-500	-750	-1000
Rundlauf	K _{ia}	15	18	20	25	30	35	50	60	70	70	85	100	120
Breiten-		+200	+200	+200	+200	+200	+350	+350	+350	+400	+400	+500	+600	+750
abweichung	Δ_{Ts}	0	0	0	0	-200	-250	-250	-250	-400	-400	-500	-600	-750
		+100	+100	+100	+100	+100	+150	+150	+150	+200				
	Δ_{T1s}	0	0	0	0	-100	-150	-150	-150	-200				
		+100	+100	+100	+100	+100	+200	+200	+200	+200				
	∆ _{T2s}	0	0	0	0	-100	-100	-100	-100	-200				

Toleranzklasse P6X

Abweichung		0	0	0	0	0	0	0	0	0		
Abweichung	Δ _{dmp}	-12	-12	-12	-15	-20	-25	-30	-35	-40		
Schwankung	V_{dp}	12	12	12	15	20	25	30	35	40		
	V_{dmp}	9	9	9	11	15	19	23	26	30		
Breiten-	A	0	0	0	0	0	0	0	0	0		
abweichung	Δ _{Bs}	-50	-50	-50	-50	-50	-50	-50	-50	-50		
Rundlauf	K_{ia}	15	18	20	25	30	35	50	60	70		
Breiten-	A .	+100	+100	+100	+100	+100	+150	+150	+200	+200		
abweichung	Δ _{Ts}	0	0	0	0	0	0	0	0	0		
		+50	+50	+50	+50	+50	+50	+50	+100	+100		
	Δ_{T1s}	0	0	0	0	0	0	0	0	0		
		+50	+50	+50	+50	+50	+100	+100	+100	+100		
	∆ T2s	0	0	0	0	0	0	0	0	0		

Außenring

Alle Maße in [mm]

Nennmaß des	über	18	30	50	80	120	150	180	250	315	400	500	630	800	1000
Außendurchmessers	bis	30	50	80	120	150	180	250	315	400	500	630	800	1000	1250

Toleranzklasse PN (Normal)

Toleranzwerte in μm

Abweichung	$oldsymbol{\Delta}_{Dmp}$	0 -12	0 -14	0 -16	0 -18	0 -20	0 -25	0 -30	0 -35	0 -40	0 -45	0 -50	0 -75	0 -100	0 -125
Schwankung	V_{Dp}	12	14	16	18	20	25	30	35	40	45	50	75	100	125
	V_{Dmp}	9	11	12	14	15	19	23	26	30	34	38			
Rundlauf	K _{ea}	18	20	25	35	40	45	50	60	70	80	100	120	120	120

Die Breitentoleranz Δ_{Cs} ist ident mit Δ_{Bs} des zugehörigen Innenrings.

Toleranzklasse P6X

Aburaiahuna	4	0	0	0	0	0	0	0	0	0	0	0		
Abweichung	ΔDmp	-12	-14	-16	-18	-20	-25	-30	-35	-40	-45	-50		
Schwankung	V_{Dp}	12	14	16	18	20	25	30	35	40	45	50		
	V_{Dmp}	9	11	12	14	15	19	23	26	30	34	38		
Breiten-	Δcs	0	0	0	0	0	0	0	0	0	0	0		
abweichung		-100	-100	-100	-100	-100	-100	-100	-100	-100	-100	-100		
Rundlauf	K _{ea}	18	20	25	35	40	45	50	60	70	80	100		

Innenring

Alle Maße in [mm]

Nennmaß der	über	10	18	30	50	80	120	180	250	315	400	500	630
Lagerbohrung	bis	18	30	50	80	120	180	250	315	400	500	630	800

Toleranzklasse P5

Toleranzwerte in µm

Abusiahuna		0	0	0	0	0	0	0	0	0	0	0	0
Abweichung	$\Delta_{ ext{dmp}}$	-7	-8	-10	-12	-15	-18	-22	-25	-30	-35	-40	-75
Schwankung	V_{dp}	5	6	8	9	11	14	17					
	V_{dmp}	5	5	5	6	8	9	11					
Breiten-		0	0	0	0	0	0	0					
abweichung	ΔBs	-200	-200	-240	-300	-400	-500	-600					
Rundlauf	K _{ia}	5	5	6	7	8	11	13					
Planlauf	S _d	7	8	8	8	9	10	11	13	15	17	20	30
Breiten-	$oldsymbol{\Delta}_{Ts}$	+200	+200	+200	+200	+200	+350	+350	+350	+400	+400	+500	+600
abweichung	ΔTs	-200	-200	-200	-200	-200	-250	-250	-250	-400	-400	-500	-600

Außenring

Alle Maße in [mm]

Nennmaß des	über	18	30	50	80	120	150	180	250	315	400	500	630	800
Außendurchmessers	bis	30	50	80	120	150	180	250	315	400	500	630	800	1000

Toleranzklasse P5

Toleranzwerte in µm

		0	0	0	0	0	0	0	0	0	0	0	0	0
Abweichung	Δ_{Dmp}	-8	-9	-11	-13	-15	-18	-20	-25	-28	-33	-38	-45	-60
Schwankung	V_{Dp}	6	7	8	10	11	14	15	19	22				
	V_{Dmp}	5	5	6	7	8	9	10	13	14				
Rundlauf	K _{ea}	6	7	8	10	11	13	15	18	20	23	25	30	35
Neigungsschwan	kung S _D	8	8	8	9	10	10	11	13	13	15	18	20	30

Die Breitentoleranz Δ_{Cs} ist ident mit Δ_{Bs} des zugehörigen Innenrings.

Toleranzen der NKE Kegelrollenlager in Zollabmessungen

Innenring

Alle Maße in [mm]

Nennmaß der	über		76,2	266,7	304,8	609,6
Lagerbohrung	bis	76,2	266,7	304,8	609,6	914,4

Toleranzwerte in µm

Toleranzklasse 4 (Normal)

Abweichung	$\Delta_{\sf ds}$	+13 0	+25 0	+25 0	+51 0	+76 0
Breiten-	Δ_{Bs}	+76	+76	+76	+76	+76
abweichung		-254	-254	-254	-254	-254

Toleranzklasse 2

Abweichung	$oldsymbol{\Delta}_{ds}$	+13 0	+25 0	+25 0	+51 0	+76 0
Breiten-	<u> </u>	+76	+76	+76	+76	
abweichung	Δ_{Bs}	-254	-254	-254	-254	

Toleranzklasse 3

Abweichung	$oldsymbol{\Delta}_{ds}$	+13 0	+13 0	+13 0	+25 0	+38 0
Breiten-		+76	+76	+76	+76	+76
abweichung	Δ_{Bs}	-254	-254	-254	-254	-254

Gesamtlagerbreite, einreihig

Nennmaß der	über		101.6	266,7	304,8	304,8	609,6
Lagerbohrung	bis	101,6	266,7	304,8	609,6	609,6	
Nennmaß des	über					508	
Außen durchmessers	bis				508		

Breiten-	Klasse 4	+203	+356	+356	+381	+381	+381
abweichung	NIA556 4	0	-254	-254	-381	-381	-381
	Klasse 2	+203	+203	+203	+381	-	
ΔTs	Niasse 2	0	0	0	-381		
	Vlassa 2	+203	+203	+203	+203	+381	+381
	Klasse 3	-203	-203	-203	-203	-381	-381

Toleranzen der NKE Kegelrollenlager in Zollabmessungen

Außenring

Alle Maße in [mm]

Nennmaß des	über		266,7	304,8	609,6	914,4	1219,2
Außendurchmessers	bis	266,7	304,8	609,6	914,4	1219,2	

Toleranzwerte in µm

Toleranzklasse 4 (Normal)

Abweichung	$oldsymbol{\Delta}_{Ds}$	+25 0	+25 0	+51 0	+76 0	+102 0	+127 0
Breiten-	$oldsymbol{\Delta}_{ extsf{Cs}}$	+51	+51	+51	+51	+51	+51
abweichung		-254	-254	-254	-254	-254	-254

Toleranzklasse 2

Abweichung	$\Delta_{ extsf{Ds}}$	+25 0	+25 0	+51 0	+76 0	
Breiten-		+51	+51	+51	+51	
abweichung	Δcs	-254	-254	-254	-254	

Toleranzklasse 3

Abweichung		+13	+13	+25	+38	+51	+76
Abwelchung	ΔDs	0	0	0	0	0	0
Breiten-		+51	+51	+51	+51	+51	+51
abweichung	Δ _{Cs}	-254	-254	-254	-254	-254	-254

Toleranzen der NKE Axiallager

Wellenscheibe

Alle Maße in [mm]

Nennmaß der	über	-	18	30	50	80	120	180	250	315	400	500	630	800	1000
Lagerbohrung	bis	18	30	50	80	120	180	250	315	400	500	630	800	1000	1250

Toleranzklasse PN (Normal)

Toleranzwerte in µm

Abweichung	Α.	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Abwelchung	$\Delta_{ ext{dmp}}$	-8	-10	-12	-15	-20	-25	-30	-35	-40	-45	-50	-75	-100	-125
Schwankung	V_{dp}	6	8	9	11	15	19	23	26	30	34	38			
Wanddicken-	S _i *)	10	10	10	10	15	15	20	25	30	30	35	40	45	50
schwankung	S _i)	10	10	10	10	13	15	20	25	30	30	33	40	45	30
Unterlagscheibe		+70	+70	+85	+100	+120	+140	+140	+160	+180	+180				
Abweichung	Δdu	0	0	0	0	0	0	0	0	0	0				

Toleranzklasse P6

Abweichung	$oldsymbol{\Delta}_{dmp}$	0 -8	0 -10	0 -12	0 -15	0 -20	0 -25	0 -30	0 -35	0 -40	0 -45	0 -50	0 -75	0 -100	0 -125
Schwankung	V _{dp}	6	8	9	11	15	19	23	26	30	34	38			
Wanddicken- schwankung	S _i *)	5	5	6	7	8	9	10	13	15	18	21	25	30	35

Toleranzklasse P5

Abweichung	$oldsymbol{\Delta}_{dmp}$	0 -8	0 -10	0 -12	0 -15	0 -20	0 -25	0 -30	0 -35	0 -40	0 -45	0 -50	0 -75	0 -100	0 -125
Schwankung	V_{dp}	6	8	9	11	15	19	23	26	30	34	38			
Wanddicken-	C *\	2	2	2	4	4	5	E	7	7	_	11	12	15	18
schwankung	S _i)	J	3	3	4	4	5	5	'	'	9	11	13	15	10

^{*)} Die Werte der Wanddickenschwankung der Wellenscheibe S_i gelten auch für die Gehäusescheibe

Toleranzen der NKE Axiallager

Gehäusescheibe

Alle Maße in [mm]

Nennmaß des	über	-	30	50	80	120	180	250	315	400	500	630	800	1000	1250
Außendurchmessers	bis	30	50	80	120	180	250	315	400	500	630	800	1000	1250	1600

Toleranzklasse PN (Normal)

Toleranzwerte in µm

Abweichung		0	0	0	0	0	0	0	0	0	0	0	0	0	0
	ΔDmp	-13	-16	-19	-22	-25	-30	-35	-40	-45	-50	-75	-100	-125	-160
Schwankung	V_{Dp}	10	12	14	17	19	23	26	30	34	38	55	75		
Unterlagscheibe		0	0	0	0	0	0	0	0	0	0				
Abweichung	ΔDu	-30	-35	-45	-60	-75	-90	-105	-120	-135	-180				

Toleranzklasse P6

	Abweichung	Δ_{Dmp}	0 -13	0 -16	0 -19	0 -22	0 -25	0 -30	0 -35	0 -40	0 -45	0 -50	0 -75	0 -100	0 -125	0 -160
Γ	Schwankung	V _{Dp}	10	12	14	17	19	23	26	30	34	38	55	75		

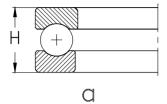
Toleranzklasse P5

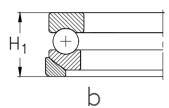
Abweichung	Δ_{Dmp}	0 -13	0 -16	0 -19	0 -22	0 -25	0 -30	0 -35	0 -40	0 -45	0 -50	0 -75	0 -100	0 -125	0 -160
Schwankung	V _{Dp}	10	12	14	17	19	23	26	30	34	38	55	75		

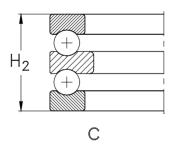
Bauhöhen der NKE Axiallager

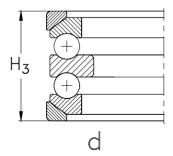
Werte für Toleranzklassen PN (Normal), P6, P5

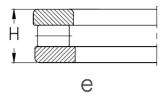
Alle Maße in [mm]
Toleranzwerte in [µm]


Nennmaß der	über	-	30	50	80	120	180	250	315	400	500	630	800	1000
Lagerbohrung	bis	30	50	80	120	180	250	315	400	500	630	800	1000	1250
Abweichung		+20	+20	+20	+25	+25	+30	+40	+40	+50	+60	+70	+80	+100
_	Δ _{Hs}	-250	-250	-300	-300	-400	-400	-400	-500	-500	-600	-750	-1000	-1400
		+100	+100	+100	+150	+150	+150	+200	+200	+300	+350	+400	+450	+500
_	∆ H1s	-250	-250	-300	-300	-400	-400	-400	-500	-500	-600	-750	-1000	-1400
	[+150	+150	+150	+200	+200	+250	+350	+350	+400	+500	+600	+700	+900
_	∆ _{H2s}	-400	-400	-500	-500	-600	-600	-700	-700	-900	-1100	-1300	-1500	-1800
		+300	+300	+300	+400	+400	+500	+600	+600	+750	+900	+1100	+1300	+1600
_	∆ _{H3s}	-400	-400	-500	-500	-600	-600	-700	-700	-900	-1100	-1300	-1500	-1800
	_	+20	+20	+20	+25	+25	+30	+40	+40	+50	+60	+70	+80	+100
	∆ _{H4s}	-300	-300	-400	-400	-500	-500	-700	-700	-900	-1200	-1400	-1800	-2400


Legende zu Abb. 5.1:


- a) Axial-Rillenkugellager, einseitig wirkend
- b) Axial-Rillenkugellager, einseitig wirkend mit kugeliger Gehäusescheibe und Unterlegscheibe
- c) Axial-Rillenkugellager, zweiseitig wirkend
- d) Axial-Rillenkugellager, zweiseitig wirkend mit kugeligen Gehäusescheiben und Unterlegscheiben
- e) Einseitig wirkendes Axial-Zylinderrollenlager
- f) Zweiseitig wirkendes Axial-Zylinderrollenlager
- g) Axial-Pendelrollenlager




Bauhöhen der NKE Axiallager

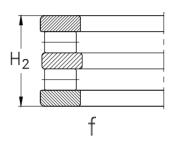




Abb. 5.1

Toleranzen für kegelige Bohrungen

(Siehe Definitionen Abb. 5.2) Alle Maße in [mm]

Kegelige Bohrung, Kegel 1:12

Halber Kegelwinkel bei Kegel 1:12: α= 2°23'9,4"

Theoretischer großer Durchmesser d₁ für Kegel 1:12

$$d_1 = d + \frac{B}{12}$$
 (GI. 5.1)

Werte für Toleranzklassen PN (Normal) und P6

Toleranzwerte in [µm]

Nennmaß der	über	18	30	50	80	120	180	250	315	400	500	630	800	1000
Lagerbohrung	bis	30	50	80	120	180	250	315	400	500	630	800	1000	1250
Abweichung		+21	+25	+30	+35	+40	+46	+52	+57	+63	+70	+80	+90	+105
	∆dmp	0	0	0	0	0	0	0	0	0	0	0	0	0
Abweichung	Δ_{d1mp}	+21	+25	+30	+35	+40	+46	+52	+57	+63	+70	+80	+90	+105
	Δ_{dmp}	0	0	0	0	0	0	0	0	0	0	0	0	0
Abweichung	V_{dp}	13	15	19	25	31	38	44	50	56	-	-	-	-

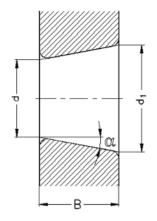
Kegelige Bohrung, Kegel 1:30

Halber Kegelwinkel bei Kegel 1:30: $\alpha = 0^{\circ}57'17,4''$

Theoretischer großer Durchmesser d₁ für Kegel 1:30

$$d_1 = d + \frac{B}{30}$$

(Gl. 5.2)


Werte für Toleranzklassen PN (Normal)

Toleranzwerte in [µm]

Nennmaß der	über	50	80	120	180	250	315	400	500	630	800	1000
Lagerbohrung	bis	80	120	180	250	315	400	500	630	800	1000	1250
Abweichung		+15	+20	+25	+30	+35	+40	+45	+50	+75	+100	+125
	Δdmp	0	0	0	0	0	0	0	0	0	0	0
Abweichung	Δ_{d1mp}	+35	+40	+50	+55	+60	+65	+75	+85	+100	+100	+125
	Δ_{dmp}	0	0	0	0	0	0	0	0	0	0	0
Schwankung	V_{dp}	19	25	31	38	44	50	56	63	-	-	-

Toleranzen für kegelige Bohrungen

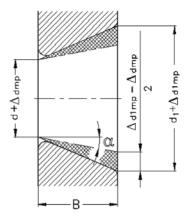


Abb. 5.2

Legende zu Abb. 5.2:

d theoretischer kleiner Durchmesserd theoretischer großer Durchmesser

α Halber Kegelwinkel

B Lagerbreite

 $\begin{array}{lll} \Delta_{\text{\tiny dmp}} & \text{Abweichung des mittleren Bohrungsdurchmessers vom Nennmaß} \\ \Delta_{\text{\tiny d1mp}} & \text{Abweichung des mittleren großen Durchmessers vom Nennmaß bei} \end{array}$

kegeliger Bohrung

Allgemeines

Wälzlager sind Maschinenelemente, die Schlüsselfunktionen in jeder Maschine erfüllen. Wälzlager übertragen Kräfte, Momente und Drehbewegungen und führen Achsen, Wellen und Spindeln.

Hohe Zuverlässigkeit, optimale Lebensdauer und wirtschaftliche Aspekte bestimmen wesentlich die Lagerwahl.

Bevor ein Lager für einen bestimmten Einsatzzweck ausgewählt werden kann und dessen rechnerische Lebensdauer ermittelt wird, muss man sich über die Eckdaten der gewünschten Lagerung im Klaren sein.

Zumeist kann man auf Erfahrungswerte mit bereits bestehenden gleichartigen oder zumindest ähnlichen Lagerungen zurückgreifen. Für neu zu gestaltende Lagerungen empfiehlt es sich, die Anforderungen an die Lagerung zusammen mit den darauf einwirkenden Umgebungsparametern in schriftlicher Form zusammenzufassen und mit dem Wälzlagerhersteller gemeinsam eine Auswahl zu treffen.

Erforderliche Grundsatzüberlegungen

Um eine Lagerung in technischer und wirtschaftlicher Hinsicht zweckmäßig auswählen zu können, muss man folgende Aspekte betrachten:

- Definition der auftretenden Belastungsarten (Kräfte, Momente) und Auswahl einer geeigneten Lagerbauart
- Höhe und Ausprägung der wichtigsten lebensdauer- und funktionsbestimmenden Parameter
- Zusammenhänge zwischen Lagerart Belastung - Betriebsbedingungen - Wartung -Lebensdauer
- Einfluss einer fachgerechten Montage und Schmierung auf die Funktionsfähigkeit von Lagem

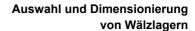
Einflussgrößen

Lastgröße und -richtung:

Diese Daten ergeben sich aus den Eckdaten der projektierten Maschine. Dabei ist im ersten Auswahlschritt nicht so sehr die Größe der wirkenden Belastungen von Belang, als vielmehr deren Wirkungsrichtung und -ausprägung:

- Ist ein zusätzliches Axiallager erforderlich oder kann ein Radiallager die Lastkombination aufnehmen?
- Liegt eine eher statische oder dynamische Lagerbelastung vor?
- Liegen kombinierte Belastungen vor? Wenn ja, wie ist deren Größenverhältnis?
- Kann die Lastrichtung wechseln?
- Können Vibrationen oder stoßartige Belastungen auftreten?

Vorhandener Einbauraum


Bei der Lagerauswahl hat man sich zumeist nach durch die Maschinenkonstruktion bereits vorgegebenen Daten (Wellendurchmesser, mögliche Baubreite usw.) zu richten.

Steifigkeit, Schiefstellung

- Kann es zu Schiefstellungen (Fluchtungsfehler, Fertigungstoleranzen, Verformungen) in den Lagerstellen kommen und wenn ja, wie groß können diese maximal werden?
- Muss eine mögliche Deformation des Gehäuses berücksichtigt werden?
- Welche Anforderungen werden an die Steifigkeit der Lagerung gestellt?

Wellen- und Lageranordnung

- Sind die Wellen horizontal oder vertikal angeordnet?
- Welche Passungen sind aufgrund der vorliegenden Belastungsfälle erforderlich?
- Wie ist die Los-Festlager-Anordnung beabsichtigt?

 Ist eine Anstellung bzw. Einstellung oder Vorspannung der Lager erforderlich?

Lebensdauererwartung

- Welche Lebensdauer der Lagerung ist realistischerweise anzustreben bzw. vom Auftraggeber gefordert?
- Existieren bereits Erfahrungswerte mit ähnlich gelagerten Maschinen oder Aggregaten?

Genauigkeit, Laufgeräusch, Laufverhalten

- Gibt es besondere Anforderungen an die Laufruhe der Lagerung, wie beispielsweise bei Haushaltsgeräten, Lüftern oder Elektromotoren?
- Ist eine besonders präzise Führung der Welle erforderlich?
- Erwartet man von der Lagerung ein niedrigeres Anlaufreibmoment als normal?

Umgebungseinflüsse

- Gibt es besondere Einflussgrößen wie extremen Staubanfall, Spritzwasser, korrosive Medien?
- Ist mit einer zusätzlichen Wärmezuführung bzw. Fremderwärmung zu rechnen?
- Ist eine Kühlung vorgesehen?
- Umgebungstemperatur?

Schmierung, Montage und Wartung

- Welche Schmierung ist grundsätzlich vorgesehen?
- Kann die Lagerung durch bereits vorhandene Schmierkreisläufe mitversorgt werden?
- Ist eine spezielle Schmierung (Minimalschmierung, Ölnebelschmierung) vorzusehen?
- Ist eine zusätzliche Wärmeabfuhr erforderlich?
- Wie sind Schmierkanäle bzw. Schmierstoffleitungen, Fetträume usw. zu dimensionieren oder gestalten?

- Wie ist die Abdichtung der Lagerstelle(n) auszulegen?
- Wie kann die Lagerung rasch, betriebssicher und wirtschaftlich montiert werden?
- Wie groß ist der zur Lagereinstellung erforderliche Zeitaufwand?
- Ist es wirtschaftlich und technisch sinnvoll, die Lager mit Spann- oder Abziehhülsen zu montieren?
- Wie kann die Lagerung rasch, betriebssicher und wirtschaftlich demontiert werden? Könnten eventuell konstruktive Vorkehrungen einen Lagerausbau erleichtern?
- Wie gestaltet sich die Nachschmierung der Lagerstellen in der Praxis?
- Kann man eine allfällige Inspektion der Lager durch konstruktive Maßnahmen erleichtern?

Wirtschaftliche Aspekte

Auch der Konstrukteur muss wirtschaftliche Gesichtspunkte berücksichtigen.

Im Regelfall ist eine weitgehende Nutzung des Standardprogramms der Lagerhersteller zu empfehlen, da Normlager aufgrund deren Losgrößen ein sehr gutes Preis-Leistungsverhältnis haben und relativ rasch erhältlich sind.

Sonderlager sollten nur ausgesprochenen Spezialanwendungen vorbehalten sein, bei denen mit Standardlagern keine befriedigenden Ergebnisse erreicht werden.

Bei Sonderlagern ist zu beachten, dass diese grundsätzlich auftragsbezogen gefertigt werden, d.h. dass entsprechende Lieferzeiten berücksichtigt werden müssen.

Daher sollten auch folgende Fragen beantwortet werden:

- Kann ein Standardlager bzw. eine Variante eines Standardlagers die Lagerungsanforderungen hinreichend abdecken?
- Wie "gebräuchlich" ist das ausgewählte Lager?
- Wie hoch ist der voraussichtlich anfallende Bedarf an Lagern und Lagerzubehör?
- Ab wann sollen die Lieferungen einsetzen?
- Wie lange ist die Lieferzeit?
- Wie sieht die Verfügbarkeit des gewählten Lagers in 2, 3, oder 5 Jahren aus?
- Wie sieht die Verfügbarkeit des gewählten Schmierstoffes aus?
- Ist das vorgesehene Lager im Reparaturfall auch für Ihren Kunden verfügbar, oder bieten Sie als Hersteller der Maschine eine Bevorratung der Ersatzlager an?

Auswahl der Lagerbauart

Bei diesem ersten Schritt der Lagerauslegung geben die im Produktteil beschriebenen spezifischen Lagereigenschaften wesentliche Hinweise. Als Entscheidungshilfe sind in Tabelle 6.1 einige Eckdaten der wichtigsten Lagerarten zusammengefasst:

Legende:

- +++ sehr gut geeignet
- ++ gut geeignet
- + geeignet
- a abhängig von Bauform oder Ausführung (siehe produktspezifische Informationen)
- → in einer Richtung

Diese Matrix kann nur eine grobe Übersicht der spezifischen Eigenschaften einer jeden Lagerbauart darstellen.

Daher muss für den Einzelfall die Eignung jeder Lagerart im Detail überprüft werden.

In diesem Stadium der Lagerauswahl sollte man bereits eine Vorstellung zu der künftigen Fest-Loslageranordnung haben.

	Eignung	g für				
Lagerart		Belastu	ıng	Kipp-	Drehzahl	Schief-
	(rein) radial	(rein) axial	kombiniert	momente		stellungen
Einreihige Rillenkugellager	+	+ ↔	+ ↔		+++	+ a
Zweireihige Rillenkugellager	+	+ a ↔	+ ↔	+	+	
Einreihige Schrägkugellager	+	++ →	+→		+++	
Einreihige Schrägkugellager, gepaart	++	++ a ↔	++ a ↔	++ a	++	
Zweireihige Schrägkugellager	++	++ a ↔	++ ↔	++	++	
Vierpunktlager		++ ↔	+↔	++	++	
Pendelkugellager	+				++	+++
Einreihiges Zylinderrollenlager	++		+ a		++	
Pendelrollenlager	+++	+↔	++ ↔		+	+++
Einreihige Kegelrollenlager	++	++ →	+++ →		+	
Einreihige Kegelrollenlager, gepaart	+++	++ ↔ a	+++ ↔ a	++ a	+	
Axial-Rillenkugellager		+ a				
Axial-Zylinderrollen- und Nadellager		++ a				
Axial-Pendelrollenlager		+++	+→			+++
Einreihige Zylinderrollenlager, vollrollig	+++		+ a			

Tabelle 6.1

Tragfähigkeit und Lagerlebensdauer

Eine Wälzlagerung unterliegt im Betrieb einer Vielzahl von Einflussfaktoren. Die erzielbare Nutzungsdauer eines Lagers hängt von den an die Lagerung gestellten Ansprüchen ab.

Daher unterscheidet man bei der Lagerauslegung zwischen mehreren unterschiedlichen Begriffen, die jeweils eine festumrissene Bedeutung haben.

Zur Verdeutlichung werden diese im Folgenden kurz beschrieben:

Statische Tragfähigkeit

 ermöglicht die Abschätzung der maximal zulässigen Belastung für ein stillstehendes, Schwenkbewegungen ausführendes oder nur sehr langsam laufendes Wälzlager, ohne dass es zu bleibenden Deformationen an den Lagerteilen kommt.

Dynamische Lagerlebensdauer

 ist eine statistische Größenordnung, die auf der Werkstoffermüdung des Wälzlagerstahls im Betrieb beruht.

Gebrauchsdauer

 ist eine für jeden Anwendungsfall unterschiedliche Größe, die die tatsächliche Verwendungsdauer beschreibt.

So etwa kann die **Gebrauchsdauer** einer mit abgedichteten Rillenkugellagern ausgestatteten Maschine erheblich unter der theoretisch **erzielbaren dynamischen Lagerlebensdauer** liegen, da das Fett in den abgedichteten Lagern eine kürzere Verwendungsdauer als die Lager selbst haben kann.

Daher ist eine Überprüfung der Gebrauchsdauer an Hand der modifizierten Lebensdauerberechnung, durch die auch Umgebungseinflüsse wie Schmierung und Sauberkeit berücksichtigen werden, (siehe Seite 82) anzuwenden.

Die Gebrauchsdauer wird auch wesentlich durch rechnerisch nicht oder kaum erfassbare, zusätzliche Belastungen beeinflusst, wie z. B:

- Fluchtungsfehler,
- abweichende Betriebsbedingungen,
- unangemessenes Betriebsspiel,
- Vibrationen,
- Schädigungen bei der Montage, dem Transport,
- Fettalterung.

Statische Tragfähigkeit

Wälzlager übertragen zum Teil sehr große Belastungen über verhältnismäßig kleine Kontaktflächen zwischen Laufbahnen und den Wälzkörpern.

In diesen Berührflächen treten hohe Flächenpressungen, die so genannte **Hertz'sche Pressung**, auf, die zu Verformungen in den Gegenflächen führen können.

Bis zu einer gewissen Größenordnung finden diese Verformungen im elastischen Bereich statt, d.h. bei Entlastung federn die Teile vollständig in deren Ausgangsform zurück.

Bei größeren Belastungen können diese Kräfte zu bleibenden, d.h., plastischen Verformungen an den Lagerteilen führen.

In umfangreichen Versuchsreihen wurde ermittelt, dass eine bleibende Gesamtverformung von weniger als dem 0,0001 fachen (0,01%) des jeweiligen Wälzkörperdurchmessers keinen nennenswerten negativen Einfluss auf ein Lager hat.

Die nach ISO 76: 2009 genormte **statische Tragzahl** eines Lagers gibt jene statische Belastung an, bei der dieser Wert in der Berührzone zwischen dem am meisten belasteten Wälzkörper und der Laufbahn ungefähr erreicht wird.

Es werden folgende Werte für die Hertz'sche Pressung angegeben:

für Pendelkugellager: 4600 MPa für Kugellager allgemein: 4200 MPa für Rollenlager: 4000 MPa (1 MPa = 1N/mm²)

Die Werte für die statischen Tragzahlen (\mathbf{C}_{0r} für Radiallager und \mathbf{C}_{0a} bei Axiallagern) sind in den Produkttabellen angegeben.

Berechnung der Lager bei statischer Belastung

Überprüft wird dabei die **statische Trag-sicherheit S**₀. Das ist das Verhältnis der statischen Lagerbelastung zur statischen Tragfähigkeit des Lagers.

Bei Radiallagern unter rein radial wirkender Lagerbelastung bzw. bei Axiallagern unter reiner Axialbelastung gilt:

$$S_0 = \frac{C_0}{P_0}$$
 (Gl. 6.1)

wobei

S₀ = statische Tragsicherheit

 C_0 = statische Tragzahl [kN] (bei Radiallagern C_{0r} , bei Axiallagern C_{0a})

P₀ = maximale statisch äquivalente Belastung [kN]

Erfahrungswerte für die statische Tragsicherheit finden Sie in **Tabelle 6.2**.

Statisch äquivalente Belastung Po

Beim Vorliegen kombinierter Belastung, d.h. radialer und axialer Kräfte, müssen diese zur Ermittlung der statischen Tragsicherheit in eine gedachte, rein radiale bzw. axiale Belastung umgerechnet werden, die dieselben Verformungen wie die tatsächlich wirkenden Kräfte bewirken würde. Diese gedachte Belastung bezeichnet man als statisch äquivalente Belastung.

es gilt:

$$P_0 = X_0 * F_r + Y_0 * F_a$$
 (Gl. 6.2)

bzw.:

$$P_0 = F_r$$

(Gl. 6.3)

Der jeweils **größere Wert** für **P**₀ ist bei der Überprüfung der statischen Tragsicherheit zu verwenden.

wobei

P₀ = statisch äquivalente Belastung [kN]

X₀ = statischer Radiallastfaktor (in den Produkttabellen angegeben)

F_r = radiale Lagerbelastung [kN]

Y₀ = statischer Axiallastfaktor (in den Produkttabellen angegeben)

F_a = axiale Lagerbelastung [kN]

Erfahrungswerte für die erforderliche, statische Tragsicherheit S₀

Anforderungen an die Laufruhe	Erfahrungswerte für S₀ bei		
	Kugellager	Rollenlager	
Hoch	≥ 2	≥ 3	
Normal	≥ 1	≥ 1,5	
Gering	≥ 0,5	≥ 1	

Tabelle 6.2

Ausnahmen:

Bei folgenden Lagerbauformen muss aus Festigkeitsgründen die statische Tragsicherheit höher gewählt werden:

Axial-Pendelrollenlagern: $S_{0min} \ge 4$

Dynamische Lagerlebensdauer

Die dynamische Lebensdauer von Wälzlagern basiert auf dem Mechanismus der Werkstoffermüdung des Wälzlagerstahles.

Dies ist ein natürlicher Vorgang, welcher von der Größe der im Material auftretenden Spannungen zum einen und der Stahlqualität zum anderen abhängt.

Durch die auf das Lager wirkenden Kräfte treten im Gefüge des Lagerstahles Normal- und Schubspannungen auf, die im Laufe der Zeit zu Materialermüdungen und somit zu Mikrorissen im Lagerwerkstoff führen. Dieser natürliche Prozess folgt den Gesetzen der Statistik und ist somit rechnerisch erfassbar.

Zur Ermittlung der dynamischen Lagerlebensdauer wird die in den Produkttabellen angegebene dynamische Tragzahl herangezogen. Diese wird unter Zuhilfenahme eines nach DIN ISO 281:2009 international genormten Berechnungsverfahrens ermittelt.

Dynamische Tragzahl C, bzw. C,

Diese Bezugsgröße ist laut DIN ISO 281 definiert als eine in Größe und Richtung konstante Radialbzw. Axiallast, die ein Radialbzw. Axiallager theoretisch für eine nominelle Lebensdauer von 10⁶ (eine Million) Umdrehungen aufnehmen kann.

Nominelle Lebensdauer L₁₀

Die mit einer Erlebenswahrscheinlichkeit von 90% erreichbare Lebensdauer einer Anzahl gleichartiger Lager bevor ein Werkstoffermüdungsschaden eintritt, wird als nominelle Lebensdauer bezeichnet.

Diese Festlegung beruht auf den Ergebnissen einer langen Reihe von Untersuchungen und gibt gute Anhaltswerte.

In der Praxis hat sich erwiesen, dass der Großteil der Lager die errechneten Werte übertraf und die Hälfte aller untersuchten Lager sogar die fünffache Lebensdauer erreichten.

Berechnung dynamisch belasteter Lager

Bei Angabe der nominellen Lagerlebensdauer L_{10} in **Millionen Umdrehungen** gilt Gleichung 6.4:

$$L_{10} = \left(\frac{c}{P}\right)^{p}$$
 (Gl. 6.4)

wobei

p = Lebensdauerexponent bei Kugellagern: p = 3 bei Rollenlagern: p = 10/3

 L_{10} = nominelle Lebensdauer [10⁶ U]

 C = dynamische Tragzahl [kN] (bei Radiallagern C_r, bei Axiallagern C_a)

P = äquivalente Lagerbelastung [kN]

Bei Angabe der nominellen Lagerlebensdauer L_{10h} in Betriebsstunden gilt:

$$L_{10 h} = \frac{\left(\frac{C}{P}\right)^p * 10^6}{60 * n}$$
 (Gl. 6.5)

wobei

p = Lebensdauerexponent
 bei Kugellagern: p = 3
 bei Rollenlagern: p = 10/3

 L_{10h} = nominelle Lebensdauer [h]

 C = dynamische Tragzahl [kN] (bei Radiallagern C_r, bei Axiallagern C_a)

P = äquivalente Lagerbelastung [kN]

N = Betriebsdrehzahl [min⁻¹]

Anhaltswerte für die nominelle Lebensdauer L_{10h} finden Sie in **Tabelle 6.3** auf Seite **76**.

Anwendung	L _{10h} [h]	Anmerkungen
Aufzüge, Lifte	10.000 ÷ 15.000	Hohe Betriebssicherheit
Baumaschinen und -geräte		
Raupen, Bagger, Frontlader	2.000 ÷ 5.000	Oft starke Staubbelastung
Vibrationswalzen	4.000 ÷ 8.000	Stoßartige Belastung
Brecher, Mahlwerke	20.000 ÷ 40.000	Stoßartige Belastung
Elektromotore		
Kleinmotore für Haushaltsgeräte	2.000 ÷ 5.000	Hohe Laufruhe gefordert
Industriemotore	30.000 ÷ 70.000	
Großmotore	50.000 ÷ 100.000	
Haushaltsgeräte	500 ÷ 2.000	Kurzzeitbetrieb, hohe Laufruhe
Handwerkzeuge	3.000 ÷ 10.000	Kurze Betriebszeiten
Holzbearbeitungsmaschinen	3.000 ÷ 10.000	Hohe Drehzahlen, Holzstaub
Fördertechnik		
Fördereinrichtungen allgemein	15.000 ÷ 20.000	Häufig starke Staubbelastung
Förderbandrollen	15.000 ÷ 100.000	
Getriebe		
Industriegetriebe	5.000 ÷ 20.000	Z.T. hohe Anforderungen an
Großgetriebe	40.000 ÷ 100.000	Betriebssicherheit
Schienenfahrzeug - Achsgetriebe	20.000 ÷ 75.000	
Kompressoren	5.000 ÷ 30.000	
Kraftwerke	80.000 200.000	Hohe Betriebssicherheit
Landwirtschaftliche Maschinen		
Traktoren, Ackerschlepper	4.000 ÷ 8.000	Z.T. große Staubbelastung
Landwirtschaftliche Maschinen allg.	1.000 ÷ 2.000	Häufig lange Stillstandzeiten
Mühlen, Brecher	30.000 ÷ 70.000	Häufig stoßartige Belastung,
Papiermaschinen		Dauerbetrieb
Nassbereich	75000 ÷ 100.000	Hohe Betriebssicherheit gefordert,
Trockenbereich	100.000 ÷ 150.000	Teilweise hohe Temperaturen
Pressen, mechanisch	10.000 ÷ 50.000	
Pumpen		
Kreiselpumpen	20.000 ÷ 80.000	
Kolbenpumpen	1.000 ÷ 10.000	
Zahnradpumpen	1.000 ÷ 10.000	
Rührwerke	30.000 ÷ 50.000	
Schwingsiebe	10.000 ÷20.000	Eigene Schwingsiebausführung
Unwuchtmotore	2.500 ÷7.500	Eigene Schwingsiebausführung
Ventilatoren	20.000 ÷100.000	Z.T. hohe Betriebssicherheit
Walz- und Hüttenwerke	10.000 ÷50.000	Belastung durch Staub, Zunder
Werkzeugmaschinen		Hohe Laufgenauigkeit erforderlich
Zentrifugen		Hohe Beschleunigungen

Tabelle 6.3

Bei Angabe der nominellen Lagerlebensdauer L_{10S} in Fahrkilometern gilt:

$$L_{10 S} = \left(\frac{C}{P}\right)^{p} * \pi * D$$
 (Gl. 6.6)

wobei

p = Lebensdauerexponent
 bei Kugellagern: p = 3
 bei Rollenlagern: p = 10/3

L_{10S} = nominelle Lebensdauer [km]
C = dynamische Tragzahl [kN]

(bei Radiallagern C_r, bei Axiallagern C_a)

P = äquivalente Lagerbelastung [kN]

D = Raddurchmesser [mm]

Erfahrungswerte für die nominelle Lagerlebensdauer L_{108} finden Sie in **Tabelle 6.4**:

Radlagerungen von Kraftfahrzeugen:

Achslagerungen von	Schienenfahrzeugen
Güterwagen	800.000 ÷ 1.000.000
U-Bahnen	1.000.000
Straßenbahnen	1.500.000
Lokomotiven	3.000.000 ÷ 5.000.000
Fernverkehrwaggons	3.000.000
Triebwagen	3.000.000 ÷ 4.000.000

Tabelle 6.4

Die oben angeführten Erfahrungswerte sind lediglich als Orientierungshilfen gedacht.

In der Praxis erzielte bzw. geforderte Werte können selbstverständlich davon abweichen.

Dynamisch äquivalente Belastung P

Die vorgenannten Gleichungen der dynamischen Lagerlebensdauer erfordern eine in Größe und Richtung konstant wirkende Belastung, die bei Radiallagern rein radial und bei Axiallagern rein axial wirkt

Beim Vorliegen einer kombinierten Belastung, d.h. radialer und axialer Kraftkomponenten müssen diese in eine gedachte konstant wirkende Belastung, die dynamisch äquivalente Belastung P, umgerechnet werden. Diese übt denselben Einfluss auf das Lager aus wie die tatsächlich wirkenden Kräfte.

es gilt:

$$P = X * F_r + Y * F_a$$
 (Gl. 6.7)

wobei

P = dynamisch äquivalente Belastung [kN]

X = dynamischer Radialfaktor (in den Produkttabellen angegeben)

F_r= radiale Lagerbelastung [kN]

f = dynamischer Axialfaktor (in den Produkttabellen angegeben)

F_a= axiale Lagerbelastung [kN]

Grenzlastverhältnis e

Bei einreihigen Radiallagern unter kombinierter Belastung müssen axiale Kraftkomponenten bei der Ermittlung der äquivalenten dynamischen Belastung erst dann berücksichtigt werden, wenn diese einen bestimmten Grenzwert übersteigen.

Dies gilt auch für **Axiallager**, die auch radiale Lastkomponenten aufnehmen können, wie etwa Axial-Pendelrollenlager.

Bei **zweireihigen Radiallagern** hingegen müssen selbst kleinste axiale Kraftkomponenten berücksichtigt werden.

Der **Grenzwert e** ist von der jeweiligen Eignung einer Lagerbauart zur Aufnahme kombinierter Belastungen abhängig und wird in den Produkttabellen angegeben.

Detaillierte Informationen zur Eignung jeder Lagerbauart zur Aufnahme kombinierter Belastungen sind in den jeweiligen produktspezifischen Textseiten im Produktteil angegeben.

Bestimmung der Lagerbelastung

Für eine realistische Berechnung der Lagerlebensdauer müssen alle auf die Lagerung wirkenden Belastungen so genau wie möglich erfasst werden.

Eckdaten wie die Eigenmasse von Welle und deren Anbauteile sind als bekannt vorauszusetzen, ebenso die Antriebsleistung, sowie mögliche Getriebedaten

Die auf eine Lagerung wirkenden dynamischen Belastungen, insbesondere durch Stöße oder Vibrationen, lassen sich hingegen nur selten exakt hestimmen

Höhe sowie die Richtung einer Lagerbelastung kann über die Betriebsdauer schwanken, auch die Betriebsdrehzahlen können varijeren.

Daher kommen bei der Lagerauslegung – neben eigenen Erfahrungswerten – auch eine Reihe von Faktoren zum Einsatz, mit denen die bekannten Belastungen hochgerechnet werden.

es ailt:

 $P_{\text{eff}} = P_{\text{nom}} * f_{\text{S}} * f_{\text{Z}}$ (Gl. 6.8)

wobei

P_{eff} = effektiv wirkende dynamische Lagerbelastung [kN]

 P_{nom} = nominelle Lagerbelastung [kN] f_s = Stoßfaktoren (siehe Tabelle 6.5)

 f_z = Zusatzfaktoren für dynamische Lagerbelastung (siehe Tabellen 6.6.

und 6.7.)

Stoßfaktor fs:

In vielen Anwendungsfällen treten im Betrieb zusätzlich zu den bekannten bzw. den errechneten Massenkräften Schwingungen, Vibrationen oder Stöße auf, die durch die sogenannten **Stoßfaktoren** zu berücksichtigen sind.

Die bewegten Massen eines Aggregates sind mit den in Tabelle 6.5 angeführten Stoßfaktoren zu multiplizieren:

Auftretende Stöße	Anwendungs- beispiele	Stoßfaktor f _s
	Elektromotore	
geringe Stoß-	Generatoren	1,0 ÷ 1,2
belastung	Werkzeugmaschinen	1,0 . 1,2
Delastaring	Pumpen	
normale	Ventilatoren	
Stoß-	Förderanlagen	1,2 ÷ 1,5
belastung	Kompressoren	
	Brecher	
starke	Schwingsiebe	1,5 ÷ 3,0
Stöße	Mühlen, Mahlwerke	1,5 + 3,0
	Walzwerke	

Tabelle 6.5

Verzahnungsfaktor fz:

Bei Zahnradgetrieben entstehen zusätzlich zu den aus der Verzahnung selbst resultierenden Lagerbelastungen und Kräften auch typische, durch Unwuchten, Form- und Profilfehler an den Zahnrädern hervorgerufene Schwingungen und Vibrationen, die bei der Lagerberechnung durch die in Tabelle 6.6 angegebenen **Verzahnungsfaktoren** berücksichtigt werden:

Verzahnungsfaktor fz:

Verzahnungsart und -qualität	Zuschlagsfaktor für Verzahnung f _z
Präzisionsverzahnung (Teilungs- und Zahnform- fehler < 0,02 mm)	1,05 ÷ 1,1
Standardverzahnung (Teilungs- und Zahnform- fehler > 0,02 und < 0,1 mm)	1,1 ÷ 1,3

Tabelle 6.6

Zusatzkräfte bei Ketten- und Riementrieben:

Auch bei **Ketten- und Riementrieben** entstehen Zusatzkräfte, die bei der Lagerauslegung zu berücksichtigen sind.

Riementriebe laufen immer unter Vorspannung, dabei treten häufig Schwingungen auf.

Bei **Kettentrieben** kommt es im Betrieb oft zu Schwingungen des losen Kettentrums sowie zu stoßartigen Belastungen.

In Tabelle 6.7 sind Zuschlagsfaktoren \mathbf{f}_z , mit denen die ermittelten Umfangskräfte zu multiplizieren sind, angeführt:

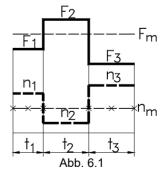
Antriebsweise	Zuschlags- faktor f _z
Kettentriebe	1,1 ÷ 1,5
Riementriebe	
Keilriemen	1,5 ÷ 2,5
Zahnriemen	1,1 ÷ 1,5
Flachriemen	3 ÷ 4
Flachriemen mit Spannrolle	2,5 ÷ 3

Tabelle 6.7

Berechnung von Lagerbelastung und Drehzahl bei variablen Betriebsbedingungen

Maschinen und Anlagen werden nur selten unter konstanten Belastungen und gleich bleibenden Drehzahlen betrieben.

Zumeist ändern sich während des Betriebs sowohl die Höhe der wirkenden Belastungen, als auch die Betriebsdrehzahl.


Oft liegen diesen Anlagen sich nach einem vorbestimmten Schema periodisch ändernde Belastungen und/oder Drehzahlen zugrunde, häufig werden auch Lastkollektive als Grundlage zur Lagerberechnung herangezogen.

Bei variablen Lagerbelastungen werden diese häufig zur Vereinfachung der Lagerberechnung in eine gedachte, konstant wirkende **mittlere** Lagerbelastung \mathbf{F}_{m} bzw. eine **mittlere Drehzahl** \mathbf{n}_{m} umgewandelt.

Je nach Belastungsfall bzw. Lastkollektiv kann die Berechnung der **mittleren** Lagerbelastung \mathbf{F}_{m} bzw. der gemittelten Drehzahl \mathbf{n}_{m} nach folgenden Formeln erfolgen:

Stufenförmiger Verlauf

Häufig vorkommender Belastungsverlauf bei Kraftübertragungen, z.B. bei mechanischen Schaltgetrieben, ist ein stufenförmiger Verlauf von Last und/oder Drehzahl.

Die Berechnung der **mittleren Lagerbelastung** für ein Lastkollektiv wie in Abb. 6.1 erfolgt nach **Gleichung 6.9**

$$F_{m} = \left[\frac{\sum \left(F_{i}^{p} \times n_{i} \times t_{i}\right)}{\sum (n_{i} \times t_{i})}\right]^{\frac{1}{p}}$$
(01.6)

(Gl. 6.9)

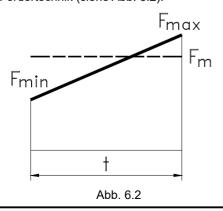
wobei

 F_m = mittlere Lagerbelastung [kN]

 \mathbf{F}_{i} = Lagerbelastung im Intervall i [kN]

n_i = Drehzahl im Intervall i [min⁻¹]

t_i = Dauer des Intervalls i
 Diese kann als Zeiteinheit oder auch
 als prozentueller Anteil eines
 Zyklusangegeben werden.


p = Lebensdauerexponent für Kugellager: p = 3 fürRollenlager: p = 10/3

Bei konstanter Last kann vereinfacht die gemittelte Betriebsdrehzahl nach Gleichung 6.10 errechnet werden:

$$n_{m} = \frac{\sum (n_{i} * t_{i})}{\sum t_{i}}$$
(GI. 6.10)

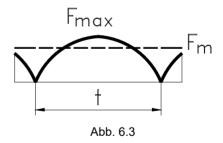
Periodische lineare Laständerungen

Lineare Änderung der Belastungshöhe über der Zeit bei konstanter Drehzahl, beispielsweise in der Fördertechnik (siehe Abb. 6.2).

Die mittlere Lagerbelastung \mathbf{F}_{m} kann mit ausreichender Genauigkeit nach Gl. 6.11 näherungsweise berechnet werden:

$$F_{m} = \frac{F_{min} + 2 * F_{max}}{3}$$

wobei

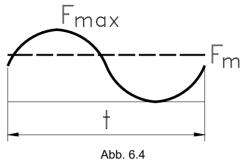

(Gl. 6.11)

 F_m = mittlere Lagerbelastung [kN] F_{min} = minimale Lagerbelastung [kN] F_{max} = maximale Lagerbelastung [kN]

Sinusförmige Laständerungen

Die Änderung der Belastungshöhe entspricht dem Verlauf einer Sinuskurve. Dabei werden zwei Hauptfälle unterschieden:

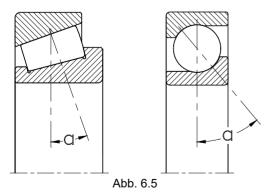
 a) die Belastung geht auf Null zurück, um im folgenden Intervall wieder ein Maximum zu erreichen (siehe Abb. 6.3).



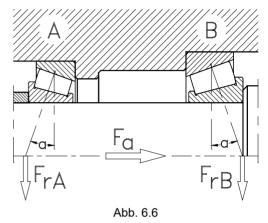
Bei konstanter Drehzahl lässt sich die mittlere Lagerbelastung \mathbf{F}_{m} näherungsweise nach Gl. 6.12 berechnen:

$$F_{m} = 0.75 * F_{max}$$
 (GI. 6.12)

b) die Belastung wechselt in einem sinusförmigen Verlauf zwischen minimaler und maximaler Lagerbelastung (siehe Abb. 6.4).



Bei konstanter Drehzahl beträgt die mittlere Lagerbelastung \mathbf{F}_{m} näherungsweise:


$$F_{m} = 0.65 * F_{max}$$
 (GI. 6.13)

Berechnung der Lagerbelastung bei paarweise angeordneten Kegelrollenlagern und Schrägkugellagern

Schrägkugellager und Kegelrollenlager übertragen Kräfte durch ihre geneigten Laufbahnen in einem Winkel α zur Lagerachse (siehe Abb. 6.5).

Dadurch erzeugt auch eine rein radial wirkende, äußere Lagerbelastung eine axiale Kraftkomponente, die für das jeweilige Gegenlager wiederum eine äußere Axialbelastung darstellt (siehe Abb. 6.6).

Diese induzierte Axiallastkomponente kommt allerdings nur dann zum Tragen, wenn sie den **Grenzwert e** übersteigt. Betroffen ist jeweils das Lager, welches die kleinere Kraftkomponente ausübt.

Nähere Informationen dazu sind in den produktspezifischen Informationen zu Schrägkugellagern sowie zu Kegelrollenlagern im Produktteil enthalten.

Berechnung der nominellen Lebensdauer bei Schwenkbewegungen

Wenn sich ein Lager nicht dreht, sondern, wie in Abb. 6.7 dargestellt, lediglich eine oszillierende Bewegung (Schwenkbewegung) ausführt, wird die nominelle Lebensdauer nach Gl. 6.15 ermittelt:

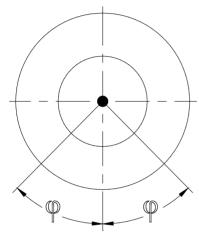


Abb. 6.7

es gilt:

$$L_{10 \text{ osz}} = \frac{\left(\frac{C}{P}\right)^{p} * 180}{2 * \varphi}$$
 (GI. 6.14)

wobei

φ = halber Schwenkwinkel [°]

Erweiterte Lebensdauerberechnung

Vergleiche von errechneten Lebensdauerwerten mit tatsächlich erzielten Laufleistungen haben gezeigt, dass diese teilweise erheblich voneinander abweichen.

Somit wurden Bestrebungen zur weiteren Verfeinerung der Berechnungsmöglichkeiten unternommen, die in der DIN ISO 281:2009 schließlich als erweiterte Lebensdauerberechnung veröffentlicht wurde.

Die dieser Berechnungsmethode zugrunde liegende Idee ist, den Einfluss weiterer Betriebsbedingungen auf die Lagerlebensdauer zusätzlich erfassen zu können.

Während bei der Berechnung der nominellen Lagerlebensdauer lediglich von Lagerbauart und dem Verhältnis von dynamischer Tragfähigkeit zu tatsächlicher Lagerbelastung ausgegangen wird, werden bei der erweiterten Lebensdauerberechnung noch folgende Einflussgrößen berücksichtigt:

- Erlebenswahrscheinlichkeit, Zuverlässigkeit
- Schmierbedingung
- Verschmutzung

 $L_{nm} = a_1 * a_{190} * L_{10}$

- Festigkeit des Lagerwerkstoffs

Die Formel der erweiterten Lebensdauer L_{nm} lautet:

$$L_{nm} = a_1 * a_{ISO} * (C/P)^p$$
(GI. 6.16)

wobei

L_{nm}= erweiterte Lebensdauer [10⁶ U]

a₁ = Beiwert für die Zuverlässigkeit

a_{iso}= Beiwert für die Systembetrachtung Schmierung, Werkstoff, Verunreinigung

Beiwert für die Zuverlässigkeit a₁

Die laut Norm errechnete **nominelle** Lagerlebensdauer (siehe Gleichung Gl. 6.4) basiert auf einer statistischen **Erlebenswahrscheinlichkeit** von **90%**, d.h. dass theoretisch bis zu 10% einer großen Anzahl gleichartiger, unter gleichen Bedingungen laufenden Lager auch vor dem Erreichen der errechneten nominellen Lebensdauer ausfallen könnten

In der Praxis laufen jedoch mehr als 50% der untersuchten Lager wesentlich länger, z.T. bis zum Fünffachen der errechneten Lebensdauer.

Im allgemeinen Maschinenbau kommt man mit dieser Erlebenswahrscheinlichkeit zumeist aus; einige Anwendungen erfordern aber höhere Sicherheiten.

Diese lassen sich anhand der in folgender Tabelle angegebenen a,-Werte ermitteln:

Erlebenswahrscheinlichkeit [%]	Beiwert L _{nm}	Beiwert a ₁
90	L _{10m}	1,00
95	L _{5m}	0,64
96	L_{4m}	0,5
97	L _{3m}	0,47
98	L _{2m}	0,37
99	L _{1m}	0,25

Tabelle 6.8

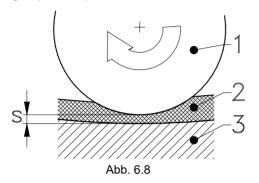
Daraus ist ersichtlich, dass die rechnerische Lebensdauer bei einer Erlebenswahrscheinlichkeit von 99% (L_{1a}) nur mehr 1/4 des L_{10m}-Wertes beträgt.

Beiwert a_{iso} für die Systembetrachtung (Schmierung, Verschmutzung, Lagerwerkstoff)

Wenn die Schmierbedingungen, die Sauberkeit und andere Betriebsbedingungen günstig sind, können NKE Lager wegen der verwendeten, hochwertigen Stähle und der hohen Herstellqualität unterhalb einer bestimmten Belastung eine unendliche Lebensdauer erreichen. Üblicherweise ist die Ermüdungsgrenzspannung bei ca. 1.500 MPa Kontaktspannung am höchstbelasteten Wälzkörper erreicht. Die zugehörige Grenzbelastung Cu ist von der Lagerbauart, dem inneren Lageraufbau, der Wälzkörperprofilierung und den Werkstoffeigenschaften abhängig und wird in den Produkttabellen angegeben.

Gelangen mit dem Schmierstoff feste Verunreinigungen in den Schmierspalt zwischen den Kontaktpartner bewirken diese durch bleibende Eindrückungen eine lebensdauerschädigenden Belastungsverstärkung. Tabelle 6.9 bietet gute Anhaltswerte für die Praxis.

Verunreinigungsgrad	e _c für d _m < 100 mm	e _c für d _m ≥ 100 mm
Extreme Sauberkeit	1	1
Hohe Sauberkeit	0,8 bis 0,6	0,9 bis 0,8
Normale Sauberkeit	0,6 bis 0,5	0,8 bis 0,6
Leichte Verunreinigung	0,5 bis 0,3	0,6 bis 0,4
Mäßige Verunreinigung	0,3 bis 0,1	0,4 bis 0,2
Starke Verunreinigung	0,1 bis 0	0,1 bis 0
Sehr starke Verunreinigung	0	0


Tabelle 6.9

e_c = Verunreinigungsbeiwert

Eine der Grundlagen für die störungsfreie Funktion von Wälzlagern liegt in der Wahl eines geeigneten Schmierstoffes.

Der Schmierstoff hat hauptsächlich die Aufgabe, für eine Trennung der metallischen Lagerteile zu sorgen (Abb. 6.8).

Die Formel für die **nominelle** Lagerlebensdauer (siehe Gl. 6.4) setzt normale Sauberkeit im Betrieb sowie ausreichende Trennung der metallischen Oberflächen voraus. Diese wird dann erreicht, wenn der sich zwischen den Laufbahnen von Ringen (3) und Wälzkörpern (1) aufbauende Schmierfilm (2) dick genug ist, die Oberflächen vollständig zu trennen.

Dazu muss der Schmierfilm eine Dicke (s) aufweisen, die größer ist als die Summe der Oberflächenrauheiten der Laufbahnen. Außerdem dürfen keine größeren Verunreinigungen oder Fremdpartikel im Schmierstoff vorhanden sein.

Die Bildung eines Schmierfilmes ist wesentlich von der Zähigkeit des Schmierstoffs unter Einsatzbedingungen, der so genannten **Betriebsviskosität** eines Schmierstoffes abhängig.

Mit Viskosität bezeichnet man die Fließfähigkeit einer Flüssigkeit. Sie ist eine der wichtigsten Kenngrößen von Ölen. Bei Schmierfetten wird die Viskosität des Grundöles angegeben. (siehe dazu auch den Abschnitt "Wälzlagerschmierung" ab Seite 145).

Bei Schmierstoffen wird als Kenngröße die sogenannte **kinematische Nennviskosität** V_{40} angegeben. Dieser Wert bezeichnet die Viskosität des Schmierstoffes bei einer Prüftemperatur von 40°C .

Die erforderliche Mindest-Schmierstoffviskosität, die kinematische Bezugsviskosität, hängt von folgenden Faktoren ab:

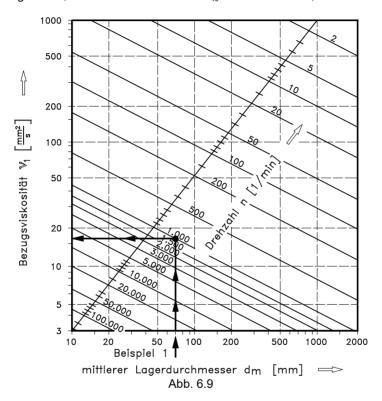
- Lagergröße
- Betriebstemperatur
- Drehzahl

Eine einfache, zumeist aber durchaus ausreichende Abschätzung der Einflüsse der Schmierung auf die rechnerische Lagerlebensdauer lässt sich schnell unter Zuhilfenahme einiger Diagramme durchführen

Folgende Einzelschritte sind dazu erforderlich:

- 1) Berechnung des mittleren Lagerdurchmessers d_m
- 2) Abschätzung der kinematischen Bezugsviskosität V₁
- 3) Ermittlung der tatsächlich vorhandene Betriebsviskosität V
- Bildung des Verhältnisses von vorhandener Betriebsviskosität zu Bezugsviskosität:
 Viskositätsverhältnis κ
- 5) Berechnung des Lebensdauerbeiwertes a_{iso}

Diese Einzelschritte sollen anhand des auf den folgenden Seiten dargestellten Beispieles näher erläutert werden.


Berechnungsbeispiel 1

Gesucht wird das Viskositätsverhältnis K für ein Rillenkugellager 6210 (Bohrung Ø50 mm, Außen Ø90 mm)

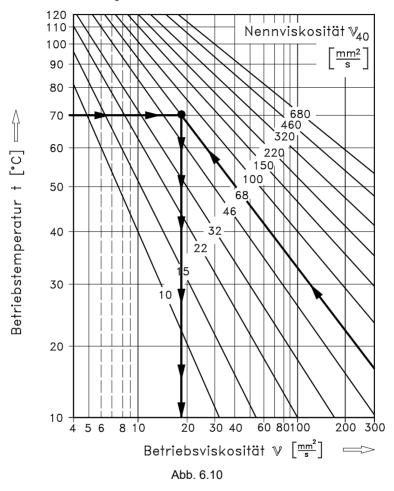
Betriebsbedingungen: Drehzahl $n = 1000 \text{ min}^{-1}$

Betriebstemperatur t_{max} = 70°C

Fettschmierung vorgesehen, Grundölviskosität $V_{40} = 68 \text{ mm}^2/\text{ s}$,

Schritt 1: Mittlerer Lagerdurchmesser $d_m = (d + D) / 2 = (50 + 90) / 2 = 70 \text{ mm}$

Schritt 2: Im Diagramm (Abb. 6.9) (siehe Pfeil) geht man bei $d_m = 70$ mm nach oben bis zum Schnittpunkt mit der gesuchten Drehzahl, im vorliegenden Beispiel bis zur Linie n = 1.000 min⁻¹.


Anschließend von diesem Schnittpunkt nach links bis zum Rand des Diagramms, wo die für diese Lagergröße und Drehzahl erforderliche **Bezugsviskosität** v_1 abgelesen werden kann. In obigem Beispiel beträgt v_1 etwa 16 mm² / s.

ν- t- Diagramm

Die Viskosität eines Schmierstoffes ändert sich stark mit der Einsatztemperatur. Bei höheren Temperaturen werden Öle dünnflüssiger (die Viskosität sinkt), bei tiefen Temperaturen wird ein Schmierstoff steif, d.h. die Viskosität nimmt gegenüber der kinematischen Nennviskosität ν_{40} stark zu. Ob es sich dabei um Öl- oder Fettschmierung handelt, ist vorerst unerheblich.

Im ν - **t- Diagramm** (Abb. 6.10) ist dieser Zusammenhang für die gebräuchlichsten Nennviskositäten ν_{40} mineralölbasischer Schmierstoffe dargestellt.

Schritt 3: Im Diagramm Abb. 6.10 folgt man der Linie für die Nennviskosität des Grundöles v_{40} = 68 mm²/s bis zum Schnittpunkt mit der Linie der Betriebstemperatur t_{max} = 70°C. Eine von diesem Schnittpunkt nach unten gezogene Linie bezeichnet die für diesen Schmierstoff bei dieser Temperatur ungefähr zu erwartende Betriebsviskosität.

Im gezeigten Beispiel beträgt die zu erwartende Betriebsviskosität ν ca. 18 mm²/s.

Viskositätsverhältnis κ

Mit den bisher gefundenen Werten lässt sich das **Viskositätsverhältnis** κ bilden. Diese Zahl drückt das Verhältnis der tatsächlich zu erwartenden **Betriebsviskosität** ν des vorgesehenen Schmierstoffes zur theoretisch erforderlichen **Bezugsviskosität** ν_1 aus.

$$K = \frac{v}{v_1}$$

(GI. 6.17)

wobei

κ = Viskositätsverhältnis

v = Unter gegebenen Einsatzbedingungen zu erwartende Betriebsviskosität [mm² / s] (siehe. Auswertung Diagramm 6.10 / Seite **86**)

 v_1 = Für die vorgesehene Lagergröße und Drehzahl erforderliche **Bezugsviskosität** [mm² / s] (siehe. Auswertung Diagramm 6.9 / Seite 85)

In anderen Worten, der Wert κ gibt eine Vorstellung über die Trennung der metallischen Oberflächen im Lager. Bei $\kappa \geq 1$ liegt eine gute bis sehr gute Schmierung vor, darunter herrscht Mischreibung, die Verwendung geeignet additivierter Schmierstoffe ist zu empfehlen. Nähere Informationen dazu finden Sie auch im Abschnitt "Wälzlagerschmierung" ab Seite 145.

Schritt 4:

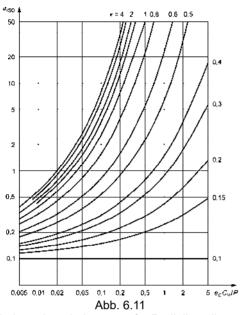
Im gezeigten Beispiel beträgt das Viskositätsverhältnis K

$$K = \frac{v}{v_1} = \frac{18}{16} = 1,125$$
 (GI. 6.18)

Das bedeutet, dass der vorgesehene Schmierstoff hinsichtlich dessen Viskosität eine gute Wahl für diese Einsatzbedingungen darstellt.

Die zu erwartende Betriebsviskosität verspricht eine ausreichend gute Trennung der Oberflächen.

Schritt 5:


Berechnung des Lebensdauerbeiwertes also

Nach Ermittelung des κ-Wertes ist die zugehörige Kurve aus der Kurvenschar auszuwählen

- in der Abb. 6.11 für Radial-Kugellager
- in der Abb. 6.12 für Radial-Rollenlager
- in der Abb. 6.13 für Axial-Kugellager
- in der Abb. 6.14 für Axial-Rollenlager

Der Schnittpunkt des Quotienten ($\frac{e_c^* C_u}{P}$) mit der Kurve für $_{\mathbf{K}}$ ergibt den gesuchten Beiwert a_{ISO} .

Lebensdauerbeiwert a_{ISO} für Radialkugellager

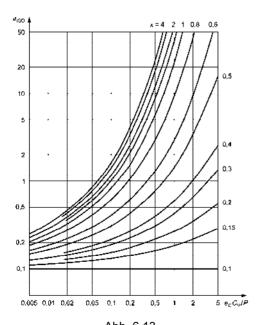
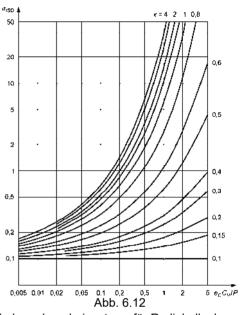
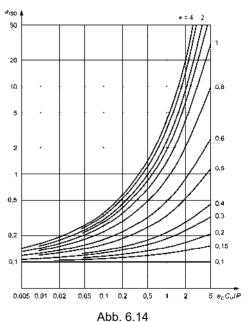




Abb. 6.13 Lebensdauerbeiwert $a_{\rm ISO}$ für Axialkugellager

Lebensdauerbeiwert $a_{\rm ISO}$ für Radialrollenlager

Lebensdauerbeiwert a_{ISO} für Axialrollenlager

Weitere Einflussgrößen

Erforderliche Mindestbelastung

Neben einer Überlastung kann auch eine zu geringe Lagerbelastung vorzeitige Lagerausfälle verursachen.

Dies liegt in den kinematischen Eigenheiten eines Wälzlagers begründet:

Die zwischen den Laufringen laufenden Wälzkörper brauchen für optimale, d. h. möglichst schlupfarme Abwälzvorgänge eine bestimmte Mindestbelastung.

Wird diese nicht erreicht, kann es vorkommen, dass die Wälzkörper auf den Laufbahnen nicht mehr abrollen, sondern darüber gleiten - Schlupf tritt auf.

Wenn es dem Schmierfilm nicht mehr gelingt die metallischen Kontaktpartner zu trennen, treten hoher Verschleiß, Materialaufschmierungen an den Laufflächen sowie rauer Lauf, erhöhtes Laufgeräusch und starke Vibrationen bis hin zum Totalausfall des Lagers auf. Die Lebensdauerberechnung berücksichtigt diesen Ausfallmechanismus nicht.

Die Höhe der erforderlichen Mindestbelastung richtet sich nach Lagerbauart und Betriebsdrehzahl.

Meist wird die erforderliche Mindestbelastung bereits durch das Eigengewicht von Welle und den damit gelagerten Teilen erreicht.

Bestimmte Lagerarten, wie etwa Axialkugelund Rollenlager sind sehr empfindlich gegen Unterbelastung, da es durch Zentrifugalkräfte bei höheren Drehzahlen zu Schlupf (Gleitreibung) im Lager kommen kann.

Sofern in den produktspezifischen Informationen der einzelnen Lagerbauformen keine detaillierten Vorgaben enthalten sind, können folgende Werte als Faustregel zur Höhe der Mindestbelastung angesetzt werden:

Lagerbauart	Mindest- belastung P _{min} [%]
Radial-Kugellager	
Kugellager mit Käfig	≥ 1 % * C _r
Vollkugelige Lager	≥ 4 % * C _r
Radial-Rollenlager	
Rollenlager mit Käfig	≥ 2 % * C _r
Vollrollige Lager	≥ 4 % * C _r

Tabelle 6.10

Einfluss der Betriebstemperatur

Die dynamische Tragzahl von Wälzlagern beruht auf einem nach **DIN ISO 281:2009** genormten Berechnungsschema.

Dieses setzt eine bestimmte Härte der aus Wälzlagerstahl gefertigten Lagerringe und Wälzkörper voraus.

NKE Wälzlager sind durch die standardmäßige Wärmebehandlung der Ringe und Wälzkörper für Einsatztemperaturen bis 150 °C einsetzbar.

Bei höheren Dauertemperaturen kommt es ohne geänderte Wärmebehandlung zu Gefügeveränderungen im Lagerwerkstoff, wodurch neben Maß- und Formänderungen an den Lagerteilen auch die Härte des Lagerstahles und somit die dynamische Tragfähigkeit der Lager abnimmt.

Lager für diese Betriebsbedingungen erfordern eine gesonderte Wärmebehandlung, die mit den Nachsetzzeichen

- S1 für Betriebstemperaturen bis 200 °C
- S2 für Betriebstemperaturen bis 250 °C
- S3 für Betriebstemperaturen bis 300 °C

gekennzeichnet werden und auf Anfrage erhältlich sind.

Reibung bei Wälzlagern

Obwohl sie in der praktischen Anwendung zumeist vernachlässigt werden kann, kann es in einigen Anwendungsfällen dennoch erforderlich werden, sich damit zu beschäftigen.

Die Größe der Reibung in einem Wälzlager hängt von Lagergröße und -bauart, der Belastung sowie der Schmierung ab.

Rillenkugellager weisen eine sehr geringe Reibung auf, weshalb diese auch für hohe Drehzahlen geeignet sind.

Relativ hohe Reibung herrscht hingegen bei den kinematisch ungünstig geformten Lagerbauarten wie Axialnadel- und Zylinderrollenlager.

Auch berührende Dichtungen erzeugen höhere Reibung, während Deckscheiben eine berührungsfreie Spaltdichtung darstellen, die keine zusätzliche Reibung erzeugt.

Eine in der Praxis normalerweise ausreichend genaue Aussage über die Reibung in Wälzlagern ist nach Formel 6.19 möglich:

$$M = \frac{\mu + P_{max} + d}{2}$$
 (GI. 6.19)

wobei

M = Reibmoment [Nmm]

µ = Bauformabhängiger Reibkoeffizient aus Tabelle 6.11

P_{max} = max. äquivalente Lagerbelastung [N]

d = Lagerbohrung [mm]

Lawanhawant	Reibkoeffizient
Lagerbauart	μ
Rillenkugellager, offen	0,0010 ÷ 0,0015
Schrägkugellager, einreihig	0,0020
Schrägkugellager, zweireihig	0,0025
Vierpunktlager	0,0025 ÷ 0,0040
Pendelkugellager, offen	0,0010 ÷ 0,0020
Zylinderrollenlager	0,0015 ÷ 0,0020
Zylinderrollenlager, vollrollig	0,0020 ÷ 0,0040
Nadellager	0,0025 ÷ 0,0035
Nadellager, vollnadelig	0,0035 ÷ 0,0055
Pendelrollenlager	0,0020 ÷ 0,0025
Kegelrollenlager, einreihig	0,0015 ÷ 0,0020
Kegelrollenlager, gepaart	0,0025 ÷ 0,0040
Axial-Rillenkugellager	0,0010 ÷ 0,0020
Axial-Zylinderrollenlager	0,0050 ÷ 0,0070
Axial-Nadellager	0,0050 ÷ 0,0075
Axial-Pendelrollenlager	0,0020 ÷ 0,0030

Tabelle 6 11

Reibung bei abgedichteten Lagern

Die durch die Reibung der berührenden Dichtungen erzeugte zusätzliche Wärme bewirkt eine Einschränkung der maximal zulässigen Betriebsdrehzahlen von abgedichteten Lagern.

Bei Lagern mit berührender Dichtung (Nachsetzzeichen -RS, -2RS, -RSR, -2RSR u.s.w.) entsteht neben der nach Gleichung 6.19 errechneten Reibung noch zusätzliche Reibung durch die Berührung der Dichtlippe an der Ringschulter.

Diese Zusatzreibung lässt sich mit ausreichender Genauigkeit nach folgender Formel berechnen:

$$M_D = \left(\frac{d + D}{f_3}\right)^2 + f_4$$
 (GI. 6.20)

wobei

M_D= Reibmoment durch die schleifenden Dichtungen [Nmm]

d = Lagerbohrung [mm]

D = Außendurchmesser des Lagers [mm]

 $\mathbf{f_3}$ = Bauformabhängiger Faktor aus Tabelle 6.12

f₄ = Bauformabhängiger Faktor aus Tabelle 6.12

Lagarbayart (abgadiahtat)	Faktoren	
Lagerbauart (abgedichtet)	f ₃	f ₄
Rillenkugellager	20	10
Schrägkugellager, zweireihig	20	10
Pendelkugellager,	20	15
Zylinderrollenlager, vollrollig	10	50

Tabelle 6.12

Die überschlägig ermittelte Gesamtreibung eines abgedichteten Lagers beträgt somit:

$$\mathbf{M}_{\mathrm{ges}} = \mathbf{M} + \mathbf{M}_{\mathrm{D}}$$
 (Gl. 6.21)

Die mit o.a. Formeln errechneten Näherungswerte sind für die praktische Anwendung in der Regel ausreichend. Für präzisere Auskünfte steht Ihnen unser technischer Service gerne zur Verfügung.

Auswahl spezifischer Lagermerkmale

Allgemeines

Nach der Auswahl der geeigneten Lagerart und der Bestimmung der erforderlichen Lagergröße kann eine Überprüfung der Eignung bestimmter Merkmale des gewählten Lagers für den vorgesehenen Anwendungsfall erforderlich werden.

Drehzahlen

Wälzlager können nur bis zu einer gewissen Drehzahl zuverlässig betrieben werden. Diese Drehzahlgrenze wird durch die Lagerart und -größe, die innere Konstruktion, die Belastung, die Schmierungsverhältnisse, etc. bestimmt.

In den Produkttabellen werden im Allgemeinen zwei Drehzahlen angegeben; die (thermische) Referenzdrehzahl und die (kinematische) Grenzdrehzahl

Thermische Referenzdrehzahl

Die Berechnung der thermischen Referenzdrehzahl $n_{\theta r}$ ist in ISO 15312 genormt. Sie ist jene Drehzahl, bei der sich unter definierten Bezugsbedingungen eine Lagertemperatur von 70°C einstellt. Die Referenzdrehzahl wird als Hilfsgröße zur Berechnung der thermisch zulässigen Drehzahl n_{θ} verwendet.

Bezugsbedingungen

Die Bezugsbedingungen spiegeln die üblichen Betriebsbedingungen der wichtigsten Lagerbauarten und -größen wieder. Sie sind in ISO 15312 wie folgt festgelegt:

- mittlere Umgebungstemperatur θ_{Ar} = 20°C
- mittlere Lagertemperatur am Außenring θ. = 70°C
- Belastung bei Radiallagern: P_{1r} = 0,05 C_{0r}
- Belastung bei Axiallagern: P_{1a} = 0,02 C_{0a}
- die Betriebsviskositäten sind für Radiallager so, dass sich für Öl- und Fettschmierung etwa gleiche Referenzdrehzahlen ergeben:
 - Radiallager: 12 mm²s⁻¹ (ISO VG 32)
 - Axiallager: 24 mm²s⁻¹ (ISO VG 68)
- die Wärmeabfuhr über die Lagersitzflächen nach den folgenden Gleichungen:

Radiallager, Lagersitz A $_r \le 50~000~\text{mm}^2$ q_r = 0,016 W / mm²

(Gl. 6.22)

Radiallager, Lagersitz A_r > 50 000 mm²

$$q_r = 0.016* \left(\frac{A_r}{50000}\right)^{-0.34} W / mm^2$$
 (Gl. 6.23)

Axiallager, Lagersitz A_r ≤ 50 000 mm²

$$q_r = 0.020 \text{ W / mm}^2$$
 (Gl. 6.24)

Axiallager, Lagersitz A_r > 50 000 mm²

$$q_r = 0.020 * \left(\frac{A_r}{50000}\right)^{-0.16} W / mm^2$$
 (GI. 6.25)

Grenzdrehzahl

Die Grenzdrehzahl $n_{\rm G}$ beruht auf Erfahrungen aus der Praxis und berücksichtigt zusätzliche Kriterien wie Laufruhe. Dichtfunktion und Fliehkräfte.

Achtung!

Die Grenzdrehzahl darf auch bei günstigen Betriebsbedingungen und Kühlverhältnissen nicht überschritten werden!

Für Lager, welche mit Fettschmierung versehen werden, ist die in den Produkttabellen angegebene, Grenzdrehzahl um 25% zu reduzieren.

Ausgenommen sind Axial-Zylinderrollenlager, hier ist die Grenzdrehzahl um 60% zu vermindern.

Bei den, von Werk aus mit Dichtungen und Fett versehenen, Lagern wurden die verminderten Drehzahlen bei den Katalogangaben bereits berücksichtigt.

Thermisch zulässige Drehzahl

Die thermisch zulässige Drehzahl n_{θ} wird nach DIN 732 berechnet. Grundlage dafür sind die Wärmebilanz am Lager, das Gleichgewicht zwischen der drehzahlabhängigen Reibungsleistung und der temperaturabhängigen Wärmeabfuhr. Im Gleichgewichtszustand ist die Lagertemperatur konstant.

Die zulässige Betriebstemperatur bestimmt die thermisch zulässige Drehzahl n_{θ} des Lagers. Voraussetzungen für die Berechnung sind ein ordnungsgemäßer Einbau, ein normales Betriebsspiel und konstante Betriebsbedingungen.

Das Berechnungsverfahren gilt nicht für:

 abgedichtete Lager mit berührender Dichtung, denn die maximale Drehzahl wird von der zulässigen Gleitgeschwindigkeit an der Dichtlippe begrenzt

- Laufrollen
- Axial-Rillenkugellager und Axial-Schrägkugellager.

Berechnen der thermisch zulässigen Drehzahl

Die thermisch zulässige Drehzahl n_θ ergibt sich aus der Referenzdrehzahl $n_{\theta r}$ und dem Drehzahlverhältnis f_n :

$$n_{\theta} = n_{\theta r} * f_{n} \tag{GI. 6.26}$$

Achtung!

Grenzdrehzahl n_G beachten!

Das Drehzahlverhältnis ergibt sich aus Abb. 6.15:

$$k_L * f_n^{5/3} + k_p * f_n = 1$$
 (GI. 6.27)

Im praxisüblichen Bereich von $0.01 < k_L < 10$ und $0.01 < k_P < 10$ kann f_n mit einer Näherungsgleichung berechnet werden:

$$f_n = \frac{490,77}{1+498,78 * K_L^{0.599} + 852.88 * K_P^{0.963} - 504,5 * K_L^{0.055} * K_P^{0.832}}$$
(GI. 6.28)

Wärmeabfuhr über die Lagersitzflächen Q_s , (siehe Abb. 6.16)

$$Q_S = k_q * A * \Delta_{VA}$$
 (Gl. 6.29)

Wärmeabfuhr mit dem Schmierstoff Q:

$$Q_L = 0.0286 * \frac{KW}{I / min * k} * V_L * \Delta \theta_L$$
 (Gl. 6.30)

Gesamter abgeführter Wärmestrom Q:

$$Q = Q_S + Q_L - Q_E$$
 (GI. 6.31)

Schmierstoffparameter k_L:

$$k_L=10^{-6}*\frac{\pi}{30}*n_B*\frac{10^{-7}*f_0*(\nu^*nB)^{\frac{2}{3}}*d_M^3}{Q}$$
 (GI. 6.32)

Lastparameter
$$k_{p}$$
: $k_{p} = 10^{-6} * \frac{\pi}{30} * n_{B} * \frac{f_{1} * P_{1} * d_{M}}{Q}$ (Gl. 6.33)

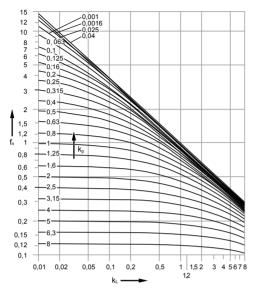
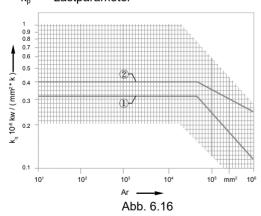



Abb. 6.15

f_n = Drehzahlverhältnis

k_L= Schmierfilmparameter

kp= Lastparameter

k_a= Wärmedurchgangskoeffizient

A_r= Lagersitzfläche

Wärmedurchgangskoeffizient $k_{\scriptscriptstyle q}$, abhängig von der Lagersitzfläche $A_{\scriptscriptstyle r}$

- ① Bezugsbedingungen für Radiallager
- ② Bezugsbedingungen für Axiallager

Bezeichnungen, Einheiten und Bedeutungen

Lagersitzfläche für Radiallager:

 $A_r = \pi^* B^* (D+d)$ (GI. 6.34)

Axiallager:

 $A_r = \pi/2*(D^2-d^2)$ (GI. 6.35)

Kegelrollenlager:

 $A_r = \pi^* T^* (D+d)$ (GI. 6.36)

Axial-Pendelrollenlager:

 $A_r = \pi/4*(D^2 + d_1^2 - D_1^2 - d^2)$ (GI. 6.37)

Anpassung der Lagerumgebung

Bei hohen Drehzahlen dürfen nicht nur die Lager betrachtet werden, auch die Anschlussteile der Lagerung müssen eine entsprechend höhere Maß- und Formgenauigkeit aufweisen.

Auch dürfen Unwuchten der rotierenden Bauteile nicht vernachlässigt werden.

Laufruhe

Alle NKE Wälzlager zeichnen sich durch hohe Laufruhe und daher durch ein sehr geringes Laufgeräusch aus.

Für Anwendungen, in denen jedoch besondere Anforderungen an das Laufgeräusch oder die Laufruhe der Lager gestellt werden, wie beispielsweise in Elektromotoren, sind Lager der folgenden Ausführungen besonders geeignet:

Lager für besondere Laufruhe

Bei besonderen Ansprüchen an die Laufruhe einer Lagerung, empfiehlt sich die Verwendung von Lagern einer höheren Präzisionsklasse (**P6**, **P5**...) mit eingeschränkten Toleranzen.

Auch durch verschiedene konstruktive Maßnahmen kann die Laufruhe einer Lagerung deutlich erhöht werden.

Solche Lagerungen laufen meistens unter leichter Vorspannung, um Schwingungen zu dämpfen bzw. die Steifigkeit der Lagerung zu erhöhen.

Bei solchen Anwendungsfällen ist auch besonderes Augenmerk auf eine optimale Auswahl der Lagerluft zu richten.

Als eine sehr wirksame Maßnahme zur Erzielung geräuscharmer Lagerungen ist beispielsweise eine spielfreie Anstellung oder auch eine leichte axiale Vorspannung durch Tellerfedern oder Kugellager-Ausgleichsscheiben (siehe Abb. 6.17).

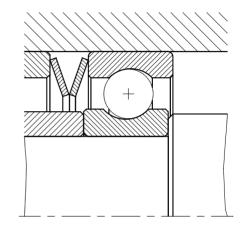


Abb. 6.17

Käfigausführung

Die meisten Wälzlager sind mit einem Käfig ausgestattet. Eine Ausnahme bilden hierbei die so genannten vollrolligen oder vollkugeligen Lagerbauarten, die ohne Käfig gefertigt werden.

Zwar ist der Käfig nicht unmittelbar an der Kraftübertragung in einem Lager beteiligt, er erfüllt aber wichtige Aufgaben wie etwa:

- Halten der Wälzkörper
- Führung der Wälzkörper
- Verminderung der Reibung
- Verhinderung einer Berührung der Wälzkörper untereinander

usw

Weiters beeinflusst der Käfig auch die Drehzahleignung, das Schwingungsverhalten sowie auch die Schmierung im Lager.

Je nach Lagerart, Bauform und Größe sind NKE Wälzlager mit einer als Standard definierten Käfigausführung ausgestattet.

Als Standardkäfige werden verwendet:

Stahlblechkäfige:

Standardausführung u. a. bei Rillenkugellagern und Kegelrollenlagern

Polyamidkäfige:

Durch optimale Formgebung und hervorragende Montierbarkeit. Standardkäfig bei einigen Lagerbauarten, insbesondere bei zweireihigen Schrägkugellagern.

Massivkäfige:

Massivkäfige sind spanabhebend hergestellte Käfige aus metallischen (Messing, Stahl, Aluminium) oder nichtmetallischen Werkstoffen wie etwa Hartgewebe.

Messing-Massivkäfige sind die Standardkäfige bei Großlagern, einigen Pendelrollenlagern sowie bei manchen Zylinderrollenlagern.

Der jeweilige Standardkäfig wurde so gewählt, dass das damit ausgestattete Lager den im allgemeinen Maschinenbau auftretenden Anforderungen voll entspricht.

Bei den Standardkäfigen handelt es sich um erprobte Konstruktionen, die sich in den vielfältigsten Anwendungsfällen bewährt haben.

Unter besonderen Einsatzbedingungen kann eine Verwendung anderer Käfigausführungen ratsam sein

Es sind dies insbesondere Einsatzbedingungen wie:

- Starke Vibrationen
- Stoßartige Beanspruchungen
- Hohe Drehzahlen
- Extreme Betriebstemperaturen
- Chemische Einflüsse
- Besondere Einsatzbedingungen

Es ist zu berücksichtigen, dass die von der jeweiligen Standardausführung abweichenden Käfige zum Teil Sonderausführungen darstellen, die auftragsbezogen gefertigt werden.

Bei diesen Ausführungen ist daher mit größeren Lieferzeiten bzw. einer eingeschränkten Verfügbarkeit zu rechnen.

In diesen Fällen bitten wir um Rücksprache.

Winkeleinstellbarkeit

Bei jeder Lagerung muss mit dem Auftreten von Winkelfehlern zwischen der Welle und dem Gehäuse gerechnet werden.

Diese werden auch bei größter Sorgfalt durch das Zusammentreffen der verschiedenen Fertigungstoleranzen, aber auch durch Wellendurchbiegungen infolge äußerer Belastungen verursacht

In vielen Anwendungsfällen lassen sich die Fluchtungsfehler durch geeignete Bearbeitungsschritte bzw. eine entsprechende Toleranzgebung bei der Gestaltung der Umgebungskonstruktion auf ein für die Lager unproblematisches Ausmaß einschränken.

In Fällen, in denen dies nicht möglich bzw. wirtschaftlich nicht vertretbar ist, wie etwa im Großmaschinenbau oder bei langen Transmissionen, sind Lager vorzusehen, die durch deren Innenkonstruktion einen Ausgleich von Winkelfehlern ermöglichen.

Je nach Innenkonstruktion weisen die einzelnen Lagerarten unterschiedliche Eignung zum Ausgleich von Fluchtungsfehlern auf.

Einen sehr guten Ausgleich von Fluchtungsfehlern ermöglichen beispielsweise Pendelkugellager, Pendelrollenlager und Axial-Rillenkugellager mit kugeliger Gehäusescheibe.

Einreihige Rillenkugellager lassen – jenach Lagerluft – Kippwinkel bis zu etwa 10 Winkelminuten zu, bei einreihigen Zylinderrollenlagern beträgt dieser Wert nur mehr 2' bis 4'.

Einige Lagerarten vertragen überhaupt keine Verkippungen, beispielsweise zweireihige Schrägkugellager, Kegelrollenlager, Nadellager, Axial-Zylinderrollen- und -Kugellager usw.

Bei diesen Lagern führt eine durch Fluchtungsfehler verursachte Schiefstellung zum Auftreten größerer Kräfte im Lager, was zu erhöhten Spannungen führt.

Als Folge davon kann Materialermüdung auftreten, wodurch die Lager unter Umständen vorzeitig ausfallen können.

Detailinformationen zur jeweils maximal zulässigen Schiefstellung jeder Lagerart finden Sie in den entsprechenden produktspezifischen Hinweisen im Tabellenteil.

Steifigkeit

Unter der Steifigkeit eines Wälzlagers versteht man die Größe der unter Belastung entstehenden Verformung, also die Federung eines belasteten Lagers.

Die durch die Belastung entstehenden Verformungen eines Lagers sind so gering, dass sie in den allermeisten Anwendungsfällen vernachlässigt werden kann. Lediglich bei bestimmten Anwendungen wie etwa bei Werkzeugmaschinenspindeln, die sehr steife Lagerungen erfordern, muss auch diese Verformung berücksichtigt werden.

Grundsätzlich sind Lager mit Linienberührung, also Nadel und Rollenlager steifer als Kugellager. Durch eine Anstellung und zum Teil durch zusätzliche Vorspannung der Lagereinheiten lässt sich die Steifigkeit einer Lagerung noch weiter erhöhen. Am häufigsten werden Schrägkugellager (siehe Abb. 6.18) und Kegelrollenlager angestellt und zum Teil mit zusätzlicher Vorspannung montiert.

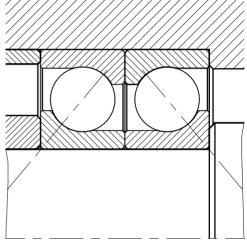


Abb. 6.18

Nähere Informationen dazu finden Sie im Abschnitt "Lagerluft und Vorspannung" ab Seite 134.

Allgemeines

Jede Lagerung muss als komplexes System mehrerer zusammenwirkender Faktoren betrachtet und verstanden werden.

Die wesentlichsten Einflussgrößen sind:

- Bauart und Größe des Lagers
- Auswahl der spezifischen Lagermerkmale
- nach den gegebenen Einsatzbedingungen
- Qualität des Lagers
- fachgerechte Montage, gegebenenfalls
- korrekte Einstellung der Lager
- richtige Gestaltung der Lagerstelle
- korrekte Auswahl der Lagersitze
- ausreichende Maß- und Formgenauigkeit
- von Lagersitzen und der Anschlussteile
- Effizienz der Schmierung
- Wirksamkeit der Abdichtung der Lagerstellen
- ausreichende Wärmeabfuhr

Störungen im Zusammenwirken dieser Parameter oder ein Wegfall von nur einem dieser Faktoren bringt das ganze System aus dem Gleichgewicht, mitunter mit fatalen Folgen für die Funktionsfähigkeit des gesamten Aggregats.

Lageranordnung

Bei der Anordnung einzelner Lager folgt man häufig Erfahrungswerten aus bewährten Mustern bzw. wie firmeninternen Standards bzw. Werknormen

Los- Festlager Anordnung

Grundsätzliche Überlegungen zur Anordnung der einzelnen Lager einer Lagerung müssen die Eignung der einzelnen Lager zur Los- und Festlagerfunktion berücksichtigen.

- Als Festlager wird jenes Lager in einer Lagerung bezeichnet, das die betreffende Achse oder Welle axial führt und somit auch die wirkenden Axialbelastungen aufzunehmen hat.
- Unter Loslager versteht man jene Lagerstellen, die nur rein radiale Belastungen aufnehmen können und den Ausgleich von Längendehnungen der gelagerten Bauteile durch thermische Einflüsse (Betriebstemperaturen) ermöglichen. Dieser Ausgleich kann, je nach Lagerbauform, sowohl innerhalb als auch außerhalb des Lagers stattfinden. Daher ist die Ausbildung einer Lagerstelle als Loslager auch bei der Passungswahl zu berücksichtigen.

Jede Welle oder Achse, auch wenn sie durch mehrere Lager unterstützt wird, besitzt grundsätzlich nur ein Festlager, welches die axiale Führung der Welle übernimmt.

Alle anderen Lager dieser Lagerstelle müssen Loslager sein.

Eine Sonderform stellen hierbei die sogenannten "schwimmenden" Lagerungen, sowie vorgespannte oder angestellte Lagerungen bzw. Lagersätze dar.

Bei diesen ist kein eindeutiges Festlager definiert, die axiale Führung sowie die Aufnahme von Axiallasten wird je nach Lastrichtung von einem der Lager übernommen.

Eignung verschiedener Lagertypen als Fest- oder Loslager

Als Festlager eignen sich alle Lagerbauformen, die sowohl axiale als auch radiale Belastungen aufnehmen können, wie etwa Rillenkugellager, Schrägkugellager (paar- oder satzweise), Kegelrollenlager (paarweise), Pendelrollenlager usw. Auch Axiallager sind geeignete Festlager, nehmen aber meistens keine Radialkräfte auf.

Ideale Loslager sind jene Bauformen, die eine axiale Verschiebung innerhalb des Lagers zulassen, wie beispielsweise Zylinderrollenlager mit glattem Ring (Bauformen N, NU, NN.., RNU, RN..) sowie Nadellager und Nadelkränze.

Alle anderen Lagerbauarten sind grundsätzlich als Loslager verwendbar, allerdings ist ein Längenausgleich zwischen Lager und Gehäuse durch konstruktive Maßnahmen (Passungen) zu ermöglichen.

Für schwimmend angeordnete Lagerungen eignen sich alle Lager, die sowohl radiale als auch - zumindest in einer Richtung - axiale Lasten aufnehmen können.

Beispiele sind Zylinderrollenlager, die in einer Richtung auch axial belastbar sind (Bauformen NJ, NF,...) sowie Rillenkugellager, Schrägkugellager, Kegelrollenlager, Pendelrollenlager usw.

Beispiele für Lageranordnungen

Gerade bei den Lageranordnungen gibt es eine Vielzahl von Möglichkeiten und Konstruktionsvarianten, die je nach Anwendungsfall zum Einsatz kommen können.

Zur Verdeutlichung werden in Abb. 7.1 nur einige wenige Beispiele für mögliche Fest- Loslageranordnungen vorgestellt:

Anm.: "F" bedeutet Festlagerposition "L" bezeichnet die Loslagerseite

Legende zu Abb. 7.1

Abb. 7.1a)

Einfache Lageranordnung mit zwei Rillenkugellagern. Eines davon ist als Festlager, das andere als Loslager mit axialer Verschiebemöglichkeit im Gehäuse ausgebildet.

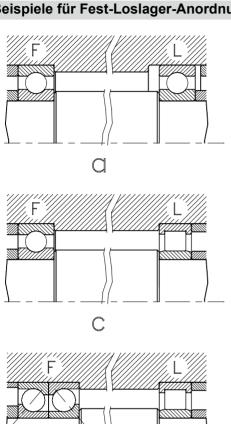
Diese Anordnung wird zumeist bei kleineren Maschinen und Elektromotoren verwendet.

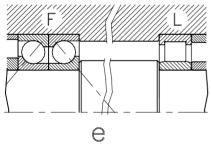
Abb. 7.1b)

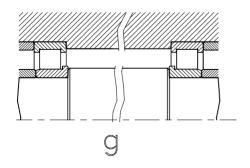
Lagerung mit zwei **Rillenkugellagern**, wie Abb. 7.1a.

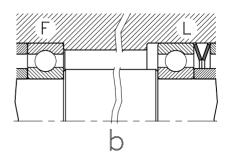
Das Loslager ist mit **Tellerfedern** oder - bei kleineren Lagern mit **Kugellager-Ausgleichsscheiben** axial leicht vorgespannt. Durch diese Maßnahme wird die Lagerung spielfrei, wodurch ein erheblich ruhigerer Lauf möglich wird. Diese Lageranwendung wird häufig für kleinere Elektromotore angewendet.

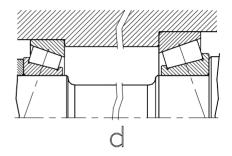
Abb. 7.1c)

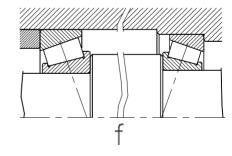

Lagerung mit einem Rillenkugellager als Festlager und einem Zylinderrollenlager der Bauform NU als Loslager.


Das Zylinderrollenlager ermöglicht einen Längenausgleich (eine axiale Verschiebung) innerhalb des Lagers.


Diese Lagerung ist für Anwendungsfälle geeignet, die festen Lagersitze an beiden Lagerstellen erfordern und wird häufig bei mittleren und größeren Elektromotoren bzw. Generatoren verwendet.




Beispiele für Fest-Loslager-Anordnungen



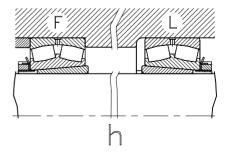


Abb. 7.1

Abb. 7.1d)

Angestellte Lagerung mit zwei Kegelrollenlagern in O-Anordnung. Durch die O-Anordnung der Kegelrollenlager wird die Stützweite (der effektiv wirksame Lagerabstand) vergrößert, wodurch sehr starre Lagerungen möglich sind.

Diese Lageranordnung ermöglicht die Übertragung hoher Belastungen auf kleinem Raum, allerdings ist eine sorgfältige Einstellung der Lager auf die erforderliche Axialluft bzw. Vorspannung erforderlich.

Diese Lageranordnung wird häufig auch mit Schrägkugellagern ausgeführt.

Anwendungsbereiche sind die Lagerung von Ritzelwellen im Getriebebau, aber auch die Radlagerung von Fahrzeugen.

Abb. 7.1e)

Beispiel einer **Lageranordnung** für Anwendungen mit kombinierter Belastung und hoher axialer Führungsgenauigkeit.

Zwei Schrägkugellager in O-Anordnung bilden die Festlagerung, als Loslager wird ein Zylinderrollenlager der Bauform NU verwendet.

Diese Lageranordnung ermöglicht die Aufnahme mittlerer Axialkräfte.

Abb. 7.1f)

Angestellte Lagerung mit zwei Kegelrollenlagern in X-Anordnung. Durch die X-Anordnung wird die Stützweite der Kegelrollenlager kleiner als der nominelle Mittenabstand.

X-Anordnungen ergeben keine so starre Lagerungen wie beispielsweise **O-Anordnungen** (vergleiche Abb. 7.1d), sind dafür aber auch nicht so empfindlich gegenüber Verkippungen und Fluchtungsfehler.

Häufig werden auch Schrägkugellager in X-

Anordnung eingebaut. Auch bei der X-Anordnung ist eine Einstellung der Lager erforderlich. Typische Anwendungsbereiche sind Getriebelagerungen.

Abb. 7.1q)

Schwimmende Anordnung mit zwei **Zylinder- rollenlagern** der Bauform **NJ**.

Bei dieser Lageranordnung wird die axiale Führung der Welle abwechselnd von einem der beiden Lager übernommen. Der Ausgleich von Längenänderungen der Welle kann auch hierbei innerhalb der Lager selbst erfolgen, dadurch sind an beiden Lagern Presspassungen an Innen- und Außenringen möglich.

Diese Anordnung kommt bevorzugt bei Unwuchtmotoren und Kleingetrieben zum Einsatz.

Abb. 7.1h)

Beispiel für eine Lagerung mit zwei **Pendel-rollenlagern.**

Durch die Möglichkeit der Montage von Pendelrollenlagern mit kegeliger Bohrung auf Spannhülsen wird der zur Vorbereitung der Lagerstellen an den Wellensitzen erforderliche Aufwand weitgehend minimiert, die Verwendung gezogener Wellen ist möglich.

Die beiden Pendelrollenlager ermöglichen die Übertragung sehr hoher radialer Kräfte, auch Axiallasten in geringerem Umfang können aufgenommen werden.

Zudem ist diese Lagerung durch die Pendelrollenlager unempfindlich gegen Wellendurchbiegungen.

Das im gezeigten Beispiel als Loslager vorgesehene Pendelrollenlager muss eine axiale Verschiebemöglichkeit im Gehäuse haben, wozu ein Schiebesitz vorzusehen ist.

Typische Anwendungen für solche Lagerungen finden sich im Groß- und Schwermaschinenbau.

Passungswahl

Die Laufringe von Wälzlagern weisen - im Vergleich zur möglichen Tragfähigkeit der Lager - sehr dünne Querschnitte auf

Die Ringe müssen für eine optimale Ausnützung der Tragfähigkeit der Lager daher ausreichend unterstützt werden.

Diese **Unterstützung** sowie die **radiale Befestigung** der Lager werden **kraftschlüssig** durch die Passungen an Wellen- und Gehäusesitzen erreicht.

Die richtige Festlegung der Passungen ist ein entscheidender Faktor für die optimale Funktion einer Lagerung.

Das axiale Spannen eines Lagers alleine ist kein ausreichender Ersatz für eine Passung!

Bei zu losen Passungen treten Relativbewegungen zwischen Ringen und den Anschlussteilen auf. Das kann die Bildung von Passungsrost zufolge haben, was auch Beschädigungen an den Lagersitzen von Welle und Gehäuse verursacht, bis hin zu einem Mitdrehen der Lagerringe.

Zu streng gewählte Passungen hingegen können zum Reißen des Innenringes, aber auch zu einer starken Aufweitung bzw. Einschnürung von Lagerringen führen, was eine starke Verminderung der Lagerluft bis hin zu unbeabsichtigten Verspannungen bewirken kann.

Neben der **Maßgenauigkeit** (Durchmessertoleranzen) ist dabei auch die erforderliche **Formgenauigkeit** der Lagersitze zu definieren.

Die Auswahl der Passung für einen Wellen- oder Gehäusesitz wird durch folgende Parameter bestimmt:

- a) Art und Größe der Belastung
- b) Bauart und Größe des Lagers
- c) Erforderliche Laufgenauigkeit der Lagerung
- d) Werkstoff von Welle und Gehäuse
- e) Montage- und Demontagemöglichkeiten

Bei Passungen werden grundsätzlich zwei Arten unterschieden:

Presspassungen (Festsitze)

ergeben sehr feste Verbindungen, führen allerdings zu Spannungen sowie zu Aufweitungen bzw. Einschnürungen in den Lagerringen und beeinflussen somit wesentlich die im Betrieb verbleibende Lagerluft.

Schiebesitze

ermöglichen eine Verschiebung der Lagerringe relativ zu den Lagersitzen, was bei Loslagern erforderlich ist

Art und Größe der Belastung

Die Art und die Größe der auf ein Lager wirkenden Belastung bestimmen ganz wesentlich die erforderlichen Passungen.

Dabei geht es um die **Richtung** der wirkenden Belastung in Relation zur Bewegung eines Lagerringes.

Je nach Anwendungsfall unterscheidet man drei Fälle, wie eine Belastung auf einen Lagerring wirken kann:

- als Punktlast
- als Umfangslast
- mit unbestimmter Lastrichtung

Punktlast

Punktlast liegt bei unveränderlicher Lastrichtung vor, wenn also entweder die Last oder der Lagerring stillstehen oder wenn beide mit der gleichen Winkelgeschwindigkeit rotieren.

Es wird dabei immer nur ein **Punkt** am Umfang der Laufbahn maximal belastet.

Lagerringe mit Punktlast neigen nicht zum Mitdrehen, daher sind **Schiebesitze** zulässig.

Umfangslast

Bei **Umfangslast** hingegen wird abwechselnd jeder Punkt am Umfang der Laufbahn belastet. Dies ist dann der Fall, wenn entweder der Laufring bei rotierender Belastung stillsteht oder wenn die Last bei drehendem Lagerring stillsteht.

Unter **Umfangslast** neigen die Lagerringe zum "Wandern", d.h. sie haben eine Tendenz zum Mitdrehen.

Um ein Mitdrehen zu verhindern, benötigen daher Ringe mit Umfangslast grundsätzlich festere Passungen als Ringe mit Punktlast.

Unbestimmte Lastrichtung

Diese liegt dann vor, wenn sich wie etwa bei Kurbeltrieben, keiner der oben angeführten Belastungsfälle eindeutig zuordnen lässt.

Zur Verdeutlichung sind in Tabelle 7.1 Beispiele für unterschiedliche Belastungsfälle dargestellt.

Belastungsfall	Inner	nring	Auße	Anwendungs-			
Belastungsfall	Lastfall	Passung	Lastfall	Passung	beispiele		
n	Umfangs- last am Innenring	fester Sitz erforderlich	Punktlast am Außenring	loser Sitz zulässig	Elektromotore Stirnradgetriebe		
 Welle rotiert mit Innenring Lastrichtung unveränderlich Außenring steht still 							
- Gehäuse rotiert mit Außenring - Lastrichtung unveränderlich - Welle mit Innenring steht still	Punkt- last am Innenring	loser Sitz zulässig	Umfangs- last am Außenring	fester Sitz erforderlich	Laufräder Seilrollen Radlager Radsatzlager		
- Welle rotiert mit Innenring - Last rotiert mit Innenring	Punkt- last am Innenring	loser Sitz zulässig	Umfangs- last am Außenring	fester Sitz erforderlich	Schwingsiebe Vibrationsmotore		
- Lastrichtung indifferent	unbestimmt	fester Sitz erforderlich	unbestimmt	fester Sitz erforderlich	Kurbeltriebe		

Tabelle 7.1

Größe der Belastung

Neben der Art der Belastung spielt auch die Größe der Belastung eine wesentliche Rolle bei der Festlegung der Passung.

Je höher die Belastung, desto fester ist die Passung zu wählen. Dies gilt auch beim Auftreten von starken Stößen und Vibrationen.

Nach DIN 5425 Teil 1 wird für Radiallager die Größe der Belastung relativ zur Tragfähigkeit eines Lagers wie folgt angegeben (Tabelle 7.2):

	g in % der gfähigkeit C _r ≤	Einstufung des Lagers als				
	7 %	gering belastet				
7 %	15 %	mittelhoch belastet				
15 %		hoch belastet				

Tabelle 7.2

Dementsprechend sind die Toleranzen für die Passungen aus den in den Tabellen 7.3 & 7.4 zusammengefassten Erfahrungswerten zu wählen.

Größe und Bauart des Lagers

Mit zunehmender Lagergröße werden Presspassungen im Allgemeinen fester gewählt.

Die Passungen von Rollenlagern werden im Allgemeinen fester ausgeführt als bei Kugellagern.

Bei Zylinderrollenlagern, die einen internen Längenausgleich von Wärmedehnungen ermöglichen (Bauformen N, NU, NN, usw.) können, auch wenn sie als Loslager verwendet werden, beide Ringe mit festen Passungen eingebaut werden.

Werkstoff von Welle und Gehäuse

Im Normalfall sind Wellen und Achsen, die als Lagersitze verwendet werden, als Vollwellen ausgeführt.

Die hier angeführten Werte und Empfehlungen hinsichtlich der Passungswahl beziehen sich daher auf Stahl-Vollwellen und Gehäuse aus Stahl, Grauguss bzw. Stahlguss.

In Sonderfällen kommen auch **Hohlwellen** zum Einsatz, die festere Passungen erfordern als vergleichbare Vollwellen.

Bei Leichtmetallgehäusen sind festere Passungen als bei Stahlgehäusen vorzusehen, da sich durch die größere Wärmedehnung bei Betriebstemperatur die Gehäusebohrung stärker ausdehnt als der Außenring des Lagers. Dadurch wird der Gehäusesitz loser

Montage und Demontagemöglichkeiten

Bei der Passungsfestlegung sollte man auch die Erfordernisse der Montage, Einstellung, die Demontagemöglichkeiten sowie eine allfällige Wartung der Lagerstellen nicht außer Acht lassen.

Passungen bei geteilten Gehäusen

Bei geteilten Gehäusen sollten die Toleranzfelder der Gehäusesitze wegen der durch die Teilung möglichen Formfehler und der damit verbundenen Gefahr einer Ovalverspannung der Lagerringe nicht fester als **H** oder **J** gewählt werden.

Wellenpassungen bei Lagern auf Spann- oder Abziehhülse

Bei Lagern, die mit Hilfe von Spann- oder Abziehhülsen befestigt werden, spielt die Laufgenauigkeit in der Regel eine eher untergeordnete Rolle.

Kleinere Lager werden mit Spann- oder Abziehhülsen häufig auf Wellen aus handels- üblichem blankgezogenen Rundmaterial montiert. Bei spanabhebend bearbeiteten Wellen sind folgende Toleranzen für die Maß- und Formgenauigkeit der Lagersitze zulässig:

Toleranzfeld	Formtoleranz
h 7, h8	<u>IT 5</u> 2
h 9	<u>IT 6</u> 2

Tabelle 7.3

Erforderliche Laufgenauigkeit der Lagerung

Die dünnwandigen Lagerringe passen sich der Form von Wellen- und Gehäusesitzen an.

Damit übernehmen zwangsläufig auch die Laufbahnen der Lager die Form der jeweiligen Lagersitze.

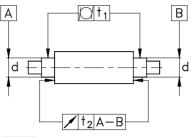
Daher muss auch die **Formgenauigkeit** der Lagersitze an die gewünschte Laufgenauigkeit der Lagerung angeglichen werden.

Die Toleranzen für die Lauf- und Formgenauigkeit der Lagersitze müssen dabei kleiner sein als die Durchmessertoleranzen im jeweiligen Toleranzfeld.

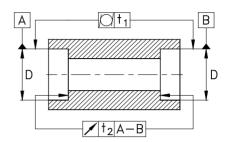
Einige Werte für diese Toleranzen, die sogenannten **ISO-Grundtoleranzen** (IT-Qualitäten) sind in **Tabelle 7.4** enthalten.

Im Regelfall sollten die Wellensitze für Lager der Normaltoleranz (**PN**) der IT-Qualität **5** entsprechen, die Gehäusesitze Qualität IT **6**.

ISO-Grundtoleranzen (IT-Qualitäten)


Nennmaße in [mm], Toleranzwerte in [µm]

>	1	3	6	10	18	30	50	80	120	180	250	315	400	500	630	800	1000	1250
≤	3	6	10	18	30	50	80	120	180	250	315	400	500	630	800	1000	1250	1600
IT 0	0,5	0,6	0,6	0,8	1	1	1,2	1,5	2	3	4	5	6					
IT 1	0,8	1	1	1,2	1,5	1,5	2	2,5	3,5	4,5	6	7	8			1		
IT 2	1,2	1,5	1,5	2	2,5	2,5	3	4	5	7	8	9	10		-	1		
IT 3	2	2,5	2,5	3	4	4	5	6	8	10	12	13	15			ı		
IT 4	3	4	4	5	6	7	8	10	12	14	16	18	20			1		
IT 5	4	5	6	8	9	11	13	15	18	20	23	25	27	29	32	36	42	50
IT 6	6	8	9	11	13	16	19	22	25	29	32	36	40	44	50	56	66	78
IT 7	10	12	15	18	21	25	30	35	40	46	52	57	63	70	80	90	105	125
IT 8	14	18	22	27	33	39	46	54	63	72	81	89	97	110	125	140	165	195
IT 9	25	30	36	43	52	62	74	87	100	115	130	140	155	175	200	230	260	310
IT 10	40	48	58	70	84	100	120	140	160	185	210	230	250	280	320	360	420	500
IT 11	60	75	90	110	130	160	190	220	250	290	320	360	400	440	500	560	660	780
IT 12	100	120	150	180	210	250	300	350	400	460	520	570	630	700	800	900	1050	1250


Tabelle 7.4

Formtoleranzen für Wellen- und Gehäusesitze

†₁ Toleranz der Zylinderform †₂ Planlauftoleranz

Toleranzklasse	Lagersitz	Bearbeitungs-	Zylinderfo	rmtoleranz	Planlauftoleranz
der Lager	an	toleranz	bei Umfangslast t₁	bei Punktlast t₁	t ₂
	Welle	IT 6 (IT5)	$\frac{\text{IT4}}{2} \left(\frac{\text{IT3}}{2} \right)$	$\frac{175}{2} \left(\frac{174}{2} \right)$	IT 4 (IT3)
Normal, P6X	Gehäuse ØD ≤ 150 mm	IT 6 (IT7)	$\frac{IT4}{2} \Big(\frac{IT3}{2} \Big)$	$\tfrac{IT4}{2} \Big(\tfrac{IT5}{2} \Big)$	IT 4 (IT5)
	Gehäuse ØD > 150 mm	IT 7 (IT6)	$\frac{\text{IT5}}{2} \left(\frac{\text{IT4}}{2} \right)$	$\tfrac{IT6}{2} \Big(\tfrac{IT5}{2} \Big)$	IT 5 (IT4)
P6	Welle	IT5	$\frac{\text{IT3}}{2} \left(\frac{\text{IT2}}{2} \right)$	$\frac{\text{IT4}}{2} \binom{\text{IT3}}{2}$	IT3 (IT2)
F 0	Gehäuse	IT6	$\frac{IT4}{2} \left(\frac{IT3}{2} \right)$	$\frac{IT5}{2} \binom{IT4}{2}$	IT4 (IT3)
P5	Welle	IT5	<u>IT2</u> 2	<u>IT3</u> 2	IT2
FU	Gehäuse	IT6	<u>IT3</u> 2	<u>IT4</u> 2	IT3

Tabelle 7.5

Formgenauigkeit der Lagersitze

Die Formgenauigkeit der Lagersitze wird durch die Toleranzwerte der Zylinderform einer Lagerstelle (Rundheit von Bohrung bzw. Wellensitz, Parallelität sowie Geradheit) sowie durch die Rechtwinkeligkeit der Anlageschultern definiert.

Mit steigenden Anforderungen an die Laufruhe einer Lagerung sowie mit zunehmender Präzisionsklasse des Lagers sind auch die Toleranzen für die Zylinderform und die Rechtwinkeligkeit einzuschränken.

In **Tabelle 7.5** sind Richtwerte zur Auswahl der Toleranzen für die Formgenauigkeit \mathbf{t}_1 und die Rechtwinkeligkeit \mathbf{t}_2 in Abhängigkeit von der Toleranzklasse des verwendeten Lagers zusammengefasst.

Die Toleranz der Zylinderform $\mathbf{t_1}$ bezieht sich dabei auf den halben Nenndurchmesser.

Bei einer **Zweipunktmessung** der Gehäusebohrung oder des Wellendurchmessers sind daher diese Toleranzwerte zu verdoppeln, also $2 * t_1$.

Als Faustregel gilt, dass die Toleranzen der Zylinderform \mathbf{t}_1 die Hälfte der Maßtoleranz im allgemeinen nicht überschreiten dürfen.

Oberflächenqualität der Lagersitze

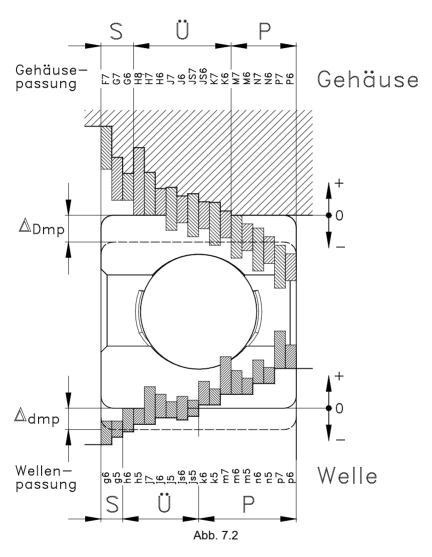
Neben der Maß- und Formgenauigkeit der Lagersitze übt auch die **Oberflächenrauheit** der Passflächen einen Einfluss auf die Funktionsfähigkeit einer Lagerung aus.

Je rauer die Oberfläche einer Passung ist, desto geringer sind die Anteile der effektiv tragenden Passungsoberfläche.

Bei jedem Montage- und Demontagevorgang kommt es zu einer Glättung der Passungsoberflächen

Diese Glättung bewirkt ein "Setzen" der Passung, d.h. einen Verlust an Passungsübermaß. Dadurch unterliegen rauere Lagersitze generell stärkerem Verschleiß. Rauere Lagersitze sind darüber hinaus anfälliger für das Auftreten von Passungsrost als glatte Sitze.

Bei höheren Anforderungen an die Laufgenauigkeit einer Lagerung sind daher auch die Oberflächen der Passungen entsprechend auszuführen.


In **Tabelle 7.6** sind Empfehlungen für die Oberflächenrauheit von Lagersitzen und Anlageschultern für Lagerungen im allgemeinen Maschinenbau angegeben.

	messerdes zes[mm]	von We	Genauigkeit der Durchmessertoleranz von Wellen- und Gehäusesitzen nach IT - Qualität IT 7 IT 6 IT 5										
>	≤	Rz	Ra	Rz	Ra	Rz	Ra						
	80	10	1,6 (N7)	6,3	0,8 (N6)	4	0,4 (N5)						
80	500	16	1,6 (N7)	10	1,6 (N7)	6,3	0,8 (N6)						
500	1250	25	3,2 (N8)	16	1,6 (N7)	10	1,6 (N7)						

Tabelle, 7.6

Wellen- und Gehäusepassungen

Legende:

 Δ_{Dmp} Toleranz des Lageraußendurchmessers

 $\Delta_{\tiny \mathsf{dmp}}$ Toleranz der Lagerbohrung

S Spielpassung

Ü Übergangspassung

P Presspassung

Gestaltung der Lagerstelle

Abb. 7.2 zeigt schematisch das Zusammentreffen der gebräuchlichsten im allgemeinen Maschinenbau verwendeten ISO-Toleranzfelder mit den Toleranzen eines **metrischen Radiallagers** der Normaltoleranz (Toleranzklasse **PN**).

Metrische Lager haben **Minustoleranzen** an Bohrung, Außendurchmesser und Lagerbreite.

Die Toleranzen für Lager in Zollabmessungen unterliegen anderen Richtlinien; dementsprechend sind auch die jeweiligen Wellenund Gehäusepassungen zu wählen!

Je nach den für die Lagersitze gewählten Passungen ergeben sich somit entweder reine **Spielpassungen**, bei denen in jedem Fall eine Verschiebbarkeit des jeweiligen Ringes gegeben ist, **Übergangspassungen**, die je nach den individuellen Ist-Abmaßen der Bauteile leichtes Spiel oder geringfügige Pressung im Lagersitz bewirken bis hin zu reinen **Presspassungen**, die in jedem Fall einem festen Sitz des betreffenden Lagerringes ohne Verschiebemöglichkeit bewirken. Starke Presspassungen führen zu einer Aufweitung der Innenringe bzw. - bei Gehäusepassungen – einer Einschnürung des Lageraußenringes.

In beiden Fällen wird dadurch die verbleibende Lagerluft verringert.

Diese Verminderung muss bei der Festlegung der anwendungsspezifischen Lagermerkmale ggf. durch die Auswahl einer höheren Lagerluftklasse (C3, C4, C5) berücksichtigt werden.

Extrem starke Presspassungen an Wellensitzen können unter bestimmten Umständen auch zu einem Reißen der Lagerringe führen.

Diese Fälle sind daher sorgfältig zu überprüfen.

In den folgenden Tabellen sind Richtwerte für die Auswahl der Passungen für Wellen- und Gehäusesitze zusammengefasst.

Diese Richtwerte berücksichtigen die Lagerbauart, die Lagergröße, sowie die relative Lagerbelastung (siehe dazu auch **Tabelle 7.7**).

Passungen bei Axiallagern

Für jene Bauformen der Axiallager, die keine radialen Belastungen aufnehmen dürfen, (beispielsweise Axial-Rillenkugellager) müssen die Laufscheiben **radial** freigestellt werden.

Dies geschieht zumeist durch eine sehr lose Passung an der jeweils **stillstehenden** Lagerscheibe, während die rotierende Scheibe einen festeren Sitz erhält

Ausnahme bilden dabei die Axial-Zylinderrollenlager sowie Axial-Nadelkränze mit Wellenscheiben, bei denen der Effekt einer radialen Freistellung durch die ebenen Laufscheiben erreicht wird.

Gerade bei den Axiallagern ist auf eine entsprechende Rechtwinkeligkeit der Anlageflächen zu den Lagersitzen zu achten, um eine gleichmäßige Lastverteilung im Lager sicherzustellen.

Die Toleranz der Rechtwinkeligkeit sollte zumindest der Qualität **IT 5** entsprechen, wenn möglich noch genauer.

Für jene Bauformen der Axiallager, die auch kombinierte Belastungen aufnehmen können, wie beispielsweise Axial-Pendelrollenlager, sind die Wellen- und Gehäusesitze analog den Auswahlkriterien für die Passungen bei Radiallagern zu wählen.

Wellenpassungen für Radiallager mit zylindrischer Bohrung

Belastungsfall für den Innenring	Lagerart	_	ohrung nm] ≤	Relative Belastung axiale Verschiebemöglichkeit	ISO-Toleranz- felder
Punktlast	Kugellager Rollenlager	al Durchr	le nesser	Loslager, Innenring verschiebbar	g6
	Nadellager	Baroni	1100001	angestellte Kegelrollenlager angestellte Schrägkugellager	h6, j6
			40	normal belastet	j6 (j5)
		40	100	gering belastet	j6 (j5)
		40	100	normal und hoch belastet	k6 (k5)
	Kugellager	100	200	gering belastet	k6 (k5)
		100	200	normal und hoch belastet	m6 (m5)
		200		normal belastet	m6 (m5)
Umfangslast		200		hoch belastet, Stöße	n6 (n5)
oder			60	gering belastet	j6 (j5)
unbestimmte			00	normal und hoch belastet	k6 (k5)
Lastrichtung				gering belastet	k6 (k5)
	Rollenlager und	60	200	normal belastet	m6 (m5)
	Nadellager			hoch belastet	n6 (n5)
	-	200	500	normal belastet	m6 (n6)
		200	300	hoch belastet, Stöße	p6
		500		normal belastet	n6 (p6)
		500		hoch belastet	p6

Tabelle 7.7

Empfohlene Passungen für die Wellenscheiben von Axiallagern

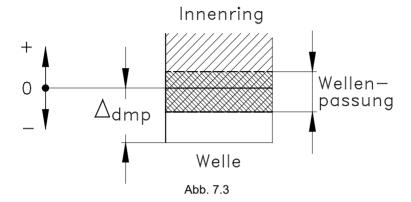
Art der Belastung	Lagerart	Belastungsfall für die Wellenscheibe	_	ohrung d im] ≤	ISO-Toleranz- felder
	Axial-Rillenkugellager, einseitig wirkend		alle Durc	chmesser	j6
	Axial-Rillenkugellager, zweiseitig wirkend		chmesser	k6	
reine Axiallast	Axial-Zylinderrollenlager Axial-Nadelkranz mit Wellenscheibe		alle Durc	chmesser	h6(j6)
	Axial-Zylinderrollenkranz Axial-Nadelkranz mit Laufscheibe oder Axialscheibe		alle Durc	chmesser	h10
	Axial-Zylinderrollenkränze Axial-Nadelkränze		alle Durc	chmesser	h8
kombinierte		Punktlast	alle Durc	hmesser	j6
Belastung	Axial-Pendelrollenlager	Umformologi		200	j6(k6)
		Umfangslast	200		k6(m6)

Tabelle 7.8

Empfohlene Gehäusepassungen für Radiallager

Belastungsfall für den Außenring	Relative Belastung, axiale Verschiebemöglichkeit	Anmerkung	ISO-Toleranz- felder
		bei normaler Laufgenauigkeit	Н8
	Loslager, Außenring leicht verschiebbar	wenn höhere Laufgenauigkeit erforderlich ist	Н7
Punktlast		bei hohen Ansprüchen an die Laufgenauigkeit	Н6
Punkuast	Außenring verschiebbar, bei	bei normaler Laufgenauigkeit	H7, J7
	angestellten Kegelrollenlagern und Schrägkugellagern	bei höheren Ansprüchen an die Laufgenauigkeit	H6, J6
	bei zusätzlicher Wärmezufuhr über	die Welle	G7
		bei normaler Laufgenauigkeit	К7
	gering belastet	bei höheren Ansprüchen an die Laufgenauigkeit	К6
		bei normaler Laufgenauigkeit	M7
Umfangslast oder unbestimmte	normal belastet, fallweise Stöße	bei höheren Ansprüchen an die Laufgenauigkeit	М6
Lastrichtung		bei normaler Laufgenauigkeit	N7
	hoch belastet, Stöße	bei höheren Ansprüchen an die Laufgenauigkeit	N6
	hoch belastet, starke Stöße	bei normaler Laufgenauigkeit	P7
	oder dünnwandige Gehäuse	bei höheren Ansprüchen an die Laufgenauigkeit	P6

Tabelle 7.9


Empfohlene Gehäusepassungen für Axiallager

Art der Belastung	Lagerart	Anmerkung	ISO- Toleranz- felder
	Axial-Rillenkugellager	bei normaler Laufgenauigkeit wenn höhere Laufgenauigkeit erforderlich ist	E8 H6
	Axial-Zylinderrollenlager Axial-Nadelkranz mit Gehäusesche	H7 (K7)	
reine	Axial-Zylinderrollenkranz Axial-Nadelkranz mit Lauf- oder Axi	H11	
Axiallast	Axial-Zylinderrollenkranz Axial-Nadelkranz		H10
	Axial-Pendelrollenlager	bei normaler Belastung	E8
		bei hoher Belastung	G7
kombinierte Belastung, bei Punktbelastung der Gehäusescheibe	Axial-Pendelrollenlager		Н7
kombinierte Belastung, bei Umfangslast an der Gehäusescheibe	Axial-Pendelrollenlager		К7

Tabelle 7.10

Passungstabellen

Auf den folgenden Seiten sind die gängigsten für Wälzlagersitze im allgemeinen Maschinenbau üblichen Wellen- und Gehäusepassungen angeführt.

Um auch eine Abschätzung des Einflusses der jeweiligen Passung auf das Lager zu ermöglichen, sind in den Tabellen neben den Werten der Passungen auch Informationen zu dem sich damit ergebenden Lagersitz enthalten.

In der Kopfzeile sind unter den Zahlenwerten der Nenndurchmesser von Welle bzw. Gehäuse jeweils auch die Toleranzwerte für die Lagerbohrung (Δ_{dmp}) bzw. den Außendurchmesser (Δ_{Dmp}) eines gleich großen Lagers der Toleranzklasse PN (Normaltoleranz) angegeben.

In den Feldern der einzelnen Toleranzen sind in der jeweils linken Feldhälfte die beiden Zahlenwerte für das betreffende Toleranzfeld angegeben, die drei Werte in der rechten Hälfte eines jedes Feldes geben Aufschluss über die wahrscheinlichen Auswirkungen der betreffenden Passung:

Für eine Wellenpassung Ø 75 j5 werden beispielsweise folgende Angaben gemacht:

	-21
+6	-12
-7	7

Toleranz einer Lager-Bohrung (**PN**): $\Delta_{dmp} = 0 / -15 \mu m$

Damit ergeben sich folgende Werte: (siehe dazu auch Abb. 7.3):

a) Das größte Passungsübermaß liegt vor, wenn der jeweils größtzulässige Wellendurchmesser mit dem kleinstzulässigen Bohrungsdurchmesser zusammenfällt.

Im Beispiel $|+6 + (-15)| = 21 \mu m$ (oberer Wert)

b) Das kleinste Passungsübermaß liegt vor, wenn die kleinste Welle mit der größten Bohrung zusammenfällt.

Im o.a. Beispiel $|-7 + 0| = 7 \mu m$ (unterer Wert)

c) Das **wahrscheinliche** Passungsübermaß geht davon aus, dass die Ist-Maße etwa um ein Drittel der Toleranz von der Gutseite entfernt liegen.

Im o.a. Beispiel **12 µm** (mittlerer Wert)

Fettgedruckte negative Zahlen in der rechten Feldhälfte bedeuten Überdeckung!

Nennmaß des Wellendurchmessers in [mm] Toleranzwerte in $[\mu m]$

Nennmaß über der Welle bis	3 6		6 10)	10		18 30		30		50 80		80 120		12 18	
Abweichung	0 -8		0 -8		0 -8		0 -10		0 -12		0 -15		0		0	
$\Delta_{ m dmp}$	<u>-8</u>		<u>-8</u>		<u>-8</u>		-10		-12		-10		-20		-25	
g5	-4 -9	-4 0 9	-5 -11	-3 2 11	-6 -14	- 2 3 14	-7 -16	-3 3 16	-9 -20	- 3 5 20	-10 -23	- 5 4 23	-12 -27	-8 4 27	-14 -32	-11 3 32
g6	-4 -12	- 4 1 12	-5 -14	-3 3 14	-6 -17	-2 4 17	-7 -20	-3 5 20	-9 -25	- 3 6 25	-10 -29	- 5 6 29	-12 -34	-8 6 34	-14 -39	-11 6 39
h5	0 -5	-8 -4 5	0 -6	-8 -3 6	0 -8	-8 -3 8	0 -9	-10 -4 9	0 -11	- 12 - 4 11	0 -13	-15 - 6 13	0 -15	-20 -8 15	0 -18	-25 -11 18
h6	0 -8	- 8 - 3 8	0 -9	- 8 - 2 9	0 -11	-8 -2 11	0 -13	-10 -2 13	0 -16	-12 -3 16	0 -19	-15 - 4 19	0 -22	-20 -6 22	0 -25	-25 - 8 25
j5	+3	-11 -7 2	+4 -2	-12 -7 2	+5 -3	-13 -8 3	+5 -4	-15 -9 4	+6 -5	-18 -10 5	+6 -7	-21 -12 7	+6 -9	-26 -14 9	+7 -11	-32 -18 11
j6	+6 -2	-14 -8 2	+7 -2	-15 -9 2	+8 -3	-16 -10 3	+9 - 4	-19 -11 4	+11 -5	-23 -14 5	+12 -7	-27 -16 7	+13 -9	-33 -19 9	+14 -11	-39 -22 11
js5	+2,5 -2,5	-11 -6 3	+3 -3	-11 -6 3	+4 -4	-12 -6 4	+4,5 -4,5	-15 -9 5	+5,5 -5,5	-18 -10 6	+6,5 -6,5	-22 -13 7	+7,5 -7,5	-28 -16 8	+9 -9	- 34 - 20 9
js6	+4	-12 -7 4	+4,5 -4,5	- 13 - 7 5	+5,5 -5,5	-14 -8 6	+6,5 -6,5	-17 -9 7	+8 -8	-20 - 11 8	+9,5 -9,5	- 25 - 13 10	+11	-31 -17 11	+12,55 -12,5	-38 -21 13

Beispiel: Welle Ø **75 j5** Oberes Abmaß ("**Gutseite**") +6 μm
Unteres Abmaß ("**Ausschussseite**") -7 μm
Lager in Normaltoleranz (**PN**), Abweichung Δ_{dmp} = 0 / -15 μm

Für Welle Ø 75 j5:

Gutseite Ausschussseite +6 -12 -7 7

Überdeckung oder Spiel, wenn die **Gutseiten** zusammenfallen **Wahrscheinliche** Überdeckung oder Passungsspiel Überdeckung oder Spiel, wenn die **Ausschussseiten** zusammenfallen

Fettgedruckte negative Zahlen in der Dreiergruppe der rechten Feldhälfte bedeuten Überdeckung!

Nennmaß des Wellendurchmessers in **[mm]** Toleranzwerte in **[µm]**

Nennmaß über der Welle bis	180 250	250 315	315 400	400 500	500 630	630 800	800 1000	1000 1250
Abweichung	0	0	0	0	0	0	0	0
$\Delta_{ m dmp}$	-30	-34	-40	-45	-50	-75	-100	-125
g5	-15 -35 3	2 -17 1	-18 0	-20 1	-28 -22 -1 -51 51	- 51 -24 -15 -56 56	-26 -29 -62 62	- 97 -28 -41 -70 70
g6	-15 -44 4	5 -17 4	-18 3	-20 3	-28 -22 4 -66 66	-24 -9 -74 74	- 74 -26 - 24 -82 82	- 97 -28 - 33 -94 94
h5	0 -1 -20 2	0 -16	0 -18		0 - 23 -29 29	0 -39 -32 32	0 - 55 -36 36	0 -69 -42 42
h6	0 -1 -29 2	0 -13	0 -15		0 -18 -44 44	- 75 0 - 33 -50 50	-100 0 -48 -56 56	0 - 61 -66 66
j5	+7 -2 -13 1	0 +7 -23	+7 -25					
j6	+16 -2 -13 1	6 +16 -29	+18 -33	+20 -37	+22 -40 -22 22	+25 - 58 -25 25	+28 - 76 -28 28	-1 58 +33 - 94 -33 33
js5	+10 -2 -10 1	3 +11,5 -27	+12,5 -32	+13,5 -35	-65 +14,5 -14,5 15	+16 - 55 -16 16	+18 - 73 -18 18	+21 - 90 -21 21
js6	+14,5 -14,5 1	5 +16 -29	+18 -33	+20 -37	+22 -40 -22 22	+25 -58 -25 25	+28 - 76 -28 28	+33 - 94 -33 33

Fettgedruckte negative Zahlen in der Dreiergruppe der rechten Feldhälfte bedeuten Überdeckung!

Nennmaß des Wellendurchmessers in [mm] Toleranzwerte in [µm]

Nennmaß über der Welle bis	3		6 10		10		18		30		50		80 120		120 180	
110.10	6		0		18		30		50		80	-			0	
Abweichung	0		-		0 -8		0		0		0		0		-	_
Δ_{dmp}	-8		-8		-8		-10		-12		-15		-20		-25	
k5	+6 +1	-14 -9 -1	+7 +1	-15 -10 -1	+9 +1	-17 -12 -1	+11 +2	-21 -15 -2	+13 +2	-25 -17 -2	+15 +2	-30 -21 -2	+18 +3	-38 -26 -3	+21 +3	-46 -32 -3
k6		17 11 -1	+10	-18 -12 -1	+12	-20 -14 -1	+15 +2	-25 -17 -2	+18 +2	-30 -21 -2	+21 +2	-36 -25 -2	+25	-45 -31 -3	+28 +3	-53 -36 -3
m5		17 13 -4	+12 +6	-20 -15 -6	+15 +7	-23 -18 -7	+17 +8	-27 -21 -8	+20 +9	-32 -24 -9	+24 +11	-39 -30 -11	+28 +13	-48 -36 -13	+33 +15	-58 -44 -15
m6		20 15 -4	+15	-23 -17 -6	+18	-26 -20 -7	+21	-31 -23 -8	+25 +9	-37 -27 -9	+30 +11	-45 -34 -11	+35 +13	-55 -42 -13	+40 +15	-65 -48 -15
n5			+16 +10	-24 -19 -10	+20 +12	-28 -23 -12	+24 +15	-34 -28 -15	+28 +17	-40 -32 -17	+33 +20	-48 -39 -20	+38 +23	-58 -46 -23	+45 +27	-70 -56 -27
n6			+19 +10	-27 -21 -10	+23 +12	-31 -25 -12	+28 +15	-38 -30 -15	+33 +17	-45 -36 -17	+39 +20	-54 -43 -20	+45 +23	-65 -51 -23	+52 +27	-77 -60 -27
р6	+20 -		+24 +15	-32 -26 -15	+29 +18	-37 -31 -18	+35 +22	-45 -37 -22	+42 +26	-54 -45 -26	+51 +32	-66 -55 -32	+59 +37	-79 -65 -37	+68 +43	-93 -76 -43
р7	+24 -	-	+30 +15	-38 -30 -15	+36 +18	-44 -35 -18	+43 +22	-53 -43 -22	+51 +26	-63 -51 -26	+62 +32	-77 -62 -32	+72 +37	-92 -73 -37	+83 +43	-108 -87 -43

Beispiel: Welle Ø **100 m5** Oberes Abmaß ("**Gutseite**") +28 μm

Unteres Abmaß ("**Ausschussseite**") +13 μm

Lager in Normaltoleranz (**PN**), Abweichung Δdmp = 0 / -20 μm

Für Welle Ø 100 m5:

Gutseite +28 -36
Ausschussseite -13 13

Überdeckung oder Spiel, wenn die **Gutseiten** zusammenfallen **Wahrscheinliche** Überdeckung oder Passungsspiel Überdeckung oder Spiel, wenn die **Ausschussseiten** zusammenfallen

Fettgedruckte negative Zahlen in der Dreiergruppe der rechten Feldhälfte bedeuten Überdeckung!

Nennmaß des Wellendurchmessers in **[mm]** Toleranzwerte in **[µm]**

Nennmaß über der Welle bis	180 250	25 31		31 40	-	40 50		50 63	-	630 800		80 100	-	100	
Abweichung	0	0		0		0		0		0		0		0	
$\Delta_{ m dmp}$	-30	-3	4	-40	0	-4	5	-50	0	-75		-100		-12	5
k5		.54 .37 +27 -4 +4	-62 -43 -4	+29 +4	-69 -47 -4	+32 +5	-77 -53 -5	+29	-79 -53 0	+32	-107 -71 0	+36	-136 -91 0	+42 0	-167 -111 0
k6		.63 .43 +36 .4 +4	-71 -49 -4	+40	-80 -55 -4	+45 +5	-90 -62 -5	+44	-94 -62 0	+50	-125 -83 0	+56 0	-156 -104 0	+66 0	-191 -127 0
m5	+37 -	67 50 +43 17 +20	-78 -59 -20	+46 +21	-86 -64 -21	+50 +23	-95 -71 -23	+55 +26	-105 -78 -26	+62 +30	-137 -101 -30	+70 +34	-170 -125 -34	+82 +40	-207 -151 -40
m6	+46 -	.76 .56 +52 .17 +20	-87 -65 -20	+57 +21	-97 -72 -21	+63 +23	-108 -80 -23	+70 +26	-120 -88 -26	+80 +30	-155 -113 -30	+90 +34	-190 -138 -34	+106 +40	-231 -167 -40
n5	+51 -	.81 .64 +57 .31 +34	-92 -73 -34	+62 +37	-102 -80 -37	+67 +40	-112 -88 -40	+73 +44	-123 -96 -44	+82 +50	-157 -121 -50	+92 +56	-192 -147 -56	+108 +66	-233 -177 -66
n6	+60 -	90 +66 31 +34	-101 -79 -34	+73 +37	-113 -88 -37	+80 +40	-125 -97 -40	+88 +44	-138 -106 -44	+100 +50	-175 -133 -50	+112 +56	-212 -160 -56	+132 +66	-257 -193 -66
р6	+79 -	09 89 +88 50 +56	-123 -101 -56	+98 +62	-138 -113 -62	+108 +68	-153 -125 -68	+122 +78	-172 -140 -78	+138 +88	-213 -171 -88	+156 +100	-256 -204 -100	+186 +120	-311 -247 -120
р7	+96 -1	26 01 +108 -50 +56	-143 -114 -56	+119 +62	-159 -127 -62	+131 +68	-176 -139 -68	+148 +78	-198 -158 -78	+168 +88	-243 -199 -88	+190 +100	-290 -227 -100	+225 +120	-350 -273 -120

Fettgedruckte negative Zahlen in der Dreiergruppe der rechten Feldhälfte bedeuten Überdeckung!

Nennmaß der Gehäusebohrung in **[mm]** Toleranzwerte in **[µm]**

Nennmaß der über Gehäusepassung bis	6 10		10 18		18 30		30 50		50 80		80 120		120 150		15 18	
Abweichung Δ _{Dmp}	0 -8		0 -8		0 -9				0 -13		0 -15		0 -18		0 -2	
F7	+28 +13	13 21 36	+34 +16	16 25 42	+41 +20	20 30 50	+50 +25	25 37 61	+60 +30	30 44 73	+71 +36	36 53 86	+83 +43	43 62 101	+83 +43	43 64 108
G6	+14	5 11 22	+17 +6	6 12 25	+20	7 14 29	+25 +9	9 18 36	+29 +10	10 21 42	+34 +12	12 24 49	+39 +14	14 28 57	+39 +14	14 31 64
G7	+20	5 13 28	+24 +6	6 15 32	+28 +7	7 17 37	+34 +9	9 21 45	+40 +10	10 24 53	+47 +12	12 29 62	+54 +14	14 33 72	+54 +14	14 36 79
Н6	+9	0 6 17	+11	0 6 19	+13	0 7 22	+16 0	0 9 27	+19 0	0 11 32	+22	0 12 37	+25	0 14 43	+25 0	0 17 50
Н7	+15	0 8 23	+18 0	0 9 26	+21	0 10 30	+25	0 12 36	+30	0 14 43	+35	0 17 50	+40	0 19 58	+40	0 22 65
Н8	+22	0 10 30	+27 0	0 12 35	+33	0 14 42	+39	0 17 50	+46 0	0 20 59	+54 0	0 23 69	+63	0 27 81	+63 0	0 29 88
J6	+5	-4 2 13	+6 -5	-5 1 14	+8 -5	-5 2 17	+10 -6	- 6 3 21	+13 -6	- 6 5 26	+16 -6	- 6 6 31	+18 -7	- 7 7 36	+18 -7	-7 10 43
J7	+8	- 7 1 16	+10	-8 1 18	+12	-9 1 21	+14	-11 1 25	+18 -12	- 12 2 31	+22	-13 4 37	+26 -14	-14 5 44	+26 -14	-14 8 51
JS6	+4,5 -4,5	-4,5 2 12,5	+5,5 -5,5	-5,5 1 13,5	+6,5 -6,5	-6,5 0 15,5	+8 -8	- 8 1 19	+9,5 -9,5	-9,5 0 22,5	+11 -11	-11 1 26	+12,5 -12,5	- 12,5 1 30,5	+12,5 -12,5	-12,5 3 37,5

Beispiel: Gehäuse Ø 120 H6 Oberes Abmaß ("Ausschussseite")

+22 µm

Unteres Abmaß ("Gutseite")

0 µm

Lager in Normaltoleranz (**PN**), Toleranz des Außen \varnothing Abweichung $\Delta_{Dmp} = 0 / -15 \mu m$

Gehäuse Ø 120 H6:

Ausschussseite Gutseite

	0
+22	12
0	37
	•

Überdeckung oder Spiel, wenn die **Gutseiten** zusammenfallen **Wahrscheinliche** Überdeckung oder Passungsspiel Überdeckung oder Spiel, wenn die **Ausschussseiten** zusammenfallen

Fettgedruckte negative Zahlen in der Dreiergruppe der rechten Feldhälfte bedeuten Überdeckung!

Nennmaß der Gehäusebohrung in **[mm]** Toleranzwerte in **[µm]**

Nennmaß der über Gehäusepassung bis	180 250	250 310	310 400	400 500	500 630	630 800	800 1000	1000 1250	1250 1600
Abweichung Δ_{Dmp}	0 -30	0 -35	0 -40	0 -45	0 -50	0 -75	0 -100	0 -125	0 -160
F7	+96 75 +50 126	56 +108 85	62 6 +119 94	68 +131 104	76 +146 116	80 +160 132	86 +176 149	98 +203 175	
G6	+44 35 +15 74	+49 39	+54 43	+60 48	+66 54	+74 66 +24 149	26 +82 78 +26 182	+94 93 +28 219	
G 7	+61 40 +15 91		+75 50	+83 56	+92 62 +22 142	+104 76 +24 179	26 +116 89 +26 216	28 +133 105 +28 258	
Н6	+29 20 0 59	+32 22	+36 25	+40 28 0 85	+44 32 0 94	+50 42 0 125	+56 52 0 156	+66 64 0 191	+78 79 0 238
Н7	+46 25 76	+52 29	+57 32	+63 36 0 108	+70 40 0 120	+80 52 0 155	+90 63 0 190	+105 77 0 230	+125 95 0 285
Н8	+29 20 0 59	+32 22	+36 25	+40 28 0 85		+50 42 0 125	+56 52 0 156	+66 64 0 191	+78 79 0 238
J6	+22 13 -7 52		+29 18						
J7	+30 9 -16 60	+36 13	+39 14	+43 16 -20 88					
JS6	+14,5 5 -14,5 44,5	+16 7	+18 6	+20 8	+22 10 -22 72	+25 17 -25 100	+28 24 -28 128	+33 31 -33 158	+39 40 -39 199

Nennmaß der Gehäusebohrung in **[mm]** Toleranzwerte in **[µm]**

Nennmaß der über Gehäusepassung bis	6 10		10 18		18 30		30 50		50 80		80		120 150		150 180	
Abweichung Δ_{Dmp}	0		0 -8		0 -9		0		0 -13		0 -15	5	0 -18		0 -25	5
JS7	+7,5	- 7,5 1 5,5	+9	-9 0 17	+10,5 -10,5	-10,5 - 1 19,5	+12,5 -12,5	-12,5 -1 23,5	+15 -15	-15 -1 28	+17,5 -17,5	-17,5 -1 32,5	+20 -20	-20 1 38	+20 -20	-20 1 45
K6	+2	-7 -1 10	+2 -9	-9 -3 10	+2 -11	- 11 - 4 11	+3 -13	-13 -4 14	+4 -15	-15 -4 17	+4 -18	-18 -6 19	+4	-21 -7 22	+4 -21	-21 -4 29
K 7	+5 -10	-10 -2 13	+6 -12	-12 -3 14	+6 -15	-15 -5 15	+7 -18	-18 -6 18	+9 -21	- 21 - 7 22	+10 -25	-25 -8 25	+12 -28	- 28 - 9 30	+12 -28	-28 -6 37
M6	-3 -12	-12 -6 5	-4 -15	-15 -9 4	-4 -17	-17 -10 5	-4 -20	-20 -11 7	-5 -24	-24 -13 8	-6 -28	-28 -16 9	-8 -33	-33 -19 10	-8 -33	-33 -16 17
M7	0 -15	-15 -7 8	0 -18	-18 -9 8	0 -21	-21 - 11 9	0 -25	- 25 - 13 11	0 -30	-30 -16 13	0 -35	-35 -18 15	0 -40	-40 -21 18	0 -40	-40 -18 25
N6		-16 -10 1	-9 -20	-20 -14 -1	-11 -24	-24 -17 -2	-12 -28	-28 -19 -1	-14 -33	-33 -22 -1	-16 -38	-38 -26 -1	-20 -45	-45 -31 -2	-20 -45	-45 -28 5
N7		-19 -11 4	-5 -23	-23 - 14 3	-7 -28	-28 -18 2	-8 -33	- 33 - 21 3	-9 -39	-39 -25 4	-10 -45	-45 -28 5	-12 -52	- 52 - 33 6	-12 -52	-52 -30 13
P6		-21 -15 -4	-15 -26	-26 -20 -7	-18 -31	-31 -24 -9	-21 -37	-37 -28 -10	-26 -45	-45 -34 -13	-30 -52	-52 -40 -15	-36 -61	-61 -47 -18	-36 -61	-61 -44 -11
P7		-24 -16 -1	-11 -29	-29 -20 -3	-14 -35	-35 -25 -5	-17 -42	-42 -30 -6	-21 -51	-51 -37 -8	-24 -59	-59 -42 -9	-28 -68	-68 -49 -10	-28 -68	-68 -46 -3

Beispiel: Gehäuse \varnothing 160 M6 Oberes Abmaß ("Ausschussseite")

- 8 µm

Unteres Abmaß ("Gutseite")

-33 µm

Lager in Normaltoleranz (**PN**), Toleranz des Außen \varnothing Abweichung $\Delta_{Dmp} = 0 / -25 \mu m$

Gehäuse Ø 160 M6:

Ausschussseite Gutseite

-		
		-33
	-8	-16
	-33	17

Überdeckung oder Spiel, wenn die **Gutseiten** zusammenfallen **Wahrscheinliche** Überdeckung oder Passungsspiel Überdeckung oder Spiel, wenn die **Ausschussseiten** zusammenfallen

Fettgedruckte negative Zahlen in der Dreiergruppe der rechten Feldhälfte bedeuten Überdeckung!

Nennmaß der Gehäusebohrung in **[mm]** Toleranzwerte in **[µm]**

Nennmaß der über Gehäusepassung bis	180 250	250 310	310 400	40 50	-	50 63	-	63 80		80 10	-	100 129		12: 16:	
Abweichung	0	0	0	C		0		0		C		0		0	
Δ_{Dmp}	-30	-35	-40	-4	5	-50) [-7	5	-10	00	-12	25	-16	30
JS7	+23 2 -23 53	+26	3 +28,5	3 +31,5 68,5 -31,5	-31,5 4 76,5	+35 -35	- 35 5 85	+40 -40	-40 12 115	+45 -45	- 45 18 145	+52 -52	-52 24 177	+62 -62	- 62 32 222
K6	+5 -4 -24 35	+5	27 -5 +7 -0 -29	- 29 - 4 +8 47 -32	-32 -4 53	0 -44	-44 -12 50	0 -50	-50 -8 75	0 -56	-56 -4 100	0 -66	- 66 - 2 125	0 -78	-78 1 160
K 7	+13 -8 -33 43	+16	36 -7 +17 51 -40	-40 -8 +18 57 -45	-45 -9 63	0 -70	- 70 - 30 50	0 -80	- 80 - 28 75	0 -90	- 90 - 27 100	0 -105	-105 -28 125	0 -125	-125 -30 160
М6	-8 -17 -37 22	-9 -1		-46 -21 -10 30 -50	-50 -22 35	-26 -70	-70 -38 24	-30 -80	- 80 - 38 45	-34 -90	- 90 - 38 66	-40 -106	-106 - 45 85	-48 -126	-126 -47 112
M7	0 -46 -46 30	0 -2		- 57 0 0 40 -63	-63 -27 45	-26 -96	-96 -56 24	-30 -110	-110 -58 45	-34 -124	- 124 - 61 66	-40 -145	-145 - 68 85	-48 -173	-173 -78 112
N6	- 51 -22 -31 -51 8	-25 - 3		- 62 - 37 -27 14 -67	-67 -39 18	-44 -88	-88 -56 6	-50 -100	-100 -58 25	-56 -112	-112 -60 44	-66 -132	-132 -67 59	-78 -156	-156 - 77 82
N7	-14 -35 -60 16	-14		- 73 - 41 -17 24 -80	-80 -44 28	-44 -114	-114 -74 6	-50 -130	-130 -78 25	-56 -146	-146 -83 44	-66 -171	-171 - 94 59	-78 -203	-203 -108 82
P6	-41 -50 -70 -11	-47 - 5	7 -51	-87 -62 -55 -11 -95	-95 -67 -10	-78 -122	-122 -90 -28	-88 -138	-138 -96 -13	-100 -156	-156 -104 0	-120 -186	-186 -121 5	-140 -218	-218 -139 20
P 7	-33 - 54 -79 - 3	-36		-98 -66 -45 -1 -108	-108 -72 0	-78 -148	-148 -108 -28	-88 -168		-100 -190	-190 -127 0	-120 -225	-225 -148 5	-	-265 -159 20

Ausführung der Laufbahnen bei Direktlagerungen

In verschiedenen Anwendungsfällen kann es zweckmäßig sein, anstatt kompletter Lager nur Ringe mit Wälzkörpersätzen zu verwenden. Beispiele dafür sind etwa Nadellager ohne Innenring (RNA) Zylinderrollenlager ohne Innenring (Bauform RNU) bzw. ohne Außenring (Bauform RN), Nadelkränze u.s.w., aber auch vollrollige bzw. vollnadelige Direktlagerungen.

Der Vorteil ist dabei, dass man zum einen sehr platzsparende Lagerungen erzielen kann, zum anderen kann man Wellen dicker und damit steifer ausführen, wenn der Lagerinnenring entfällt.

Da bei den Direktlagerungen die Wälzkörper direkt auf den Gegenteilen laufen, müssen diese die Funktion der fehlenden Lagerringe übernehmen. Dazu müssen sie eine den Anforderungen der Lagerung entsprechende Maß- und Formgenauigkeit aufweisen.

Auch die entsprechende Oberflächenhärte ist von entscheidender Bedeutung.

Die als Laufbahnen ausgeführten Oberflächen der Gegenteile müssen für eine optimale Nutzung der Tragfähigkeit des Lagers eine **Härte** von **58 bis 64 HRC** aufweisen.

Auch die zur axialen Führung des Lagers erforderlichen Schultern und Bunde müssen diese Härte aufweisen.

Geeignete Werkstoffe für Direktlagerungen sind somit härtbare Stahlsorten (Beispiele dafür siehe **Tabelle 7.11**).

Nach den Erfordernissen der jeweiligen Anwendung kann daher geeigneter durchhärtender Stahl, Einsatz- oder Vergütungsstahl mit großer Kernzähigkeit gewählt werden.

Bei den Vergütungsstählen ist eine partielle Härtung nur der Laufflächen mittels Flammoder Induktionshärteverfahren möglich, wobei allerdings eine **Mindest-Einhärtetiefe** zu beachten ist.

Die minimale Einhärtetiefe hängt von den jeweiligen Einsatzbedingungen ab.

Als Faustregel kann von einer erforderlichen Mindest-Einhärtetiefe von 10% bis 20% des Wälzkörperdurchmessers des betreffenden Lagers bzw. des verwendeten Wälzkörpers ausgegangen werden.

Stahlsorte	DIN - Werkstoffnummer	Anmerkung
100Cr6	1.3505	durchhärtender Wälzlagerstahl
100CrMn6	1.3520	durchhärtender Wälzlagerstahl
100CrMo73	1.3536	durchhärtender Wälzlagerstahl
17MnCr5	1.3521	Einsatzstahl
19MnCr5	1.3523	Einsatzstahl
16CrNiMo6	1.3531	Einsatzstahl
42CrMo4-V	1.7225	Vergütungsstahl
43CrMo4	1.3563	Vergütungsstahl
48CrMo4	1.3565	Vergütungsstahl

Tabelle 7.11

Die Formgenauigkeit der Laufflächen ist gleichfalls ausschlaggebend. Die zulässige Abweichung von der Rundheit sollte bei normalen Ansprüchen an die Laufruhe der Lagerung etwa 1/5 (20%) der jeweiligen Durchmessertoleranz des Wellen- oder Gehäusedurchmessers nicht überschreiten, die Abweichung von der Zylinderform darf nicht mehr als die Hälfte dieses Wertes betragen.

Mit steigenden Anforderungen an die Laufruhe sowie mit zunehmender Genauigkeit des Lagers sind auch die Toleranzen für die Zylinderform und die Rechtwinkeligkeit einzuschränken.

Durchmessertoleranzen bei Direktlagerungen

Bei der Festlegung der Durchmessertoleranzen von Direktlagerungen muss auch die sich damit ergebende **Lagerluft** berücksichtigt werden.

Diese wird bei den zerlegbaren Lagerbauarten (Nadellager, Zylinderrollenlager) üblicherweise durch den Laufbahndurchmesser des losen Lagerringes bestimmt.

Die Toleranz der Laufbahndurchmesser ist so gewählt, dass diese in Kombination mit der Toleranz des **Hüllkreisdurchmessers** (ein gedachter, vom Wälzkörpersatz des Lagers umschriebener Durchmesser) des gewählten Lagers einen bestimmten Bereich für die Lagerluft ergibt.

Auf die Einhaltung der für eine vorgesehene Lagerluft erforderlichen Toleranzen muss daher besonders geachtet werden.

Die Werte der erforderlichen Lagerluft sowie die Hüllkreisdurchmesser der Lager sind in den produktspezifischen Seiten im Tabellenteil enthalten.

Axiale Befestigung der Lager

Neben der durch die **Passungen** an Welle bzw. im Gehäuse erfolgten **radialen** Befestigung der Lager ist auch eine ausreichende **axiale** Fixierung erforderlich.

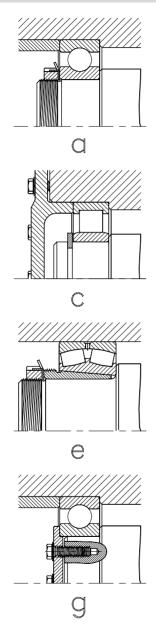
Obwohl speziell bei Presssitzen die Passungen an Lagerbohrung und Außendurchmesser auch axial eine gewisse Haltekraft auswirken, reichen sie alleine nicht für eine zuverlässige axiale Fixierung der Lager unter allen Betriebsbedingungen aus.

Die axiale Fixierung von Wälzlagern erfolgt daher im Allgemeinen **formschlüssig** durch Wellenmuttern, Gehäusedeckel, Absätze, Wellenbunde, Sprengringe u.s.w.

Je nach der Funktion eines Lagers als Los- oder Festlager müssen auch dessen Anschlussteile bzw. die axiale Befestigung eines Lagers ausgelegt sein.

Bei **Loslagern** treten in der Regel bis auf die durch thermische Dehnungen verursachten Verschiebungen kaum größere axiale Kräfte auf. Der zur axialen Fixierung der Lager erforderliche konstruktive Aufwand hält sich somit in Grenzen; einfache Maßnahmen wie Sicherungsringe o. ä. reichen in der Regel aus.

Bei selbsthaltenden Lagern, beispielsweise bei Rillenkugellagern, wird im allgemeinen nur der Lagerring, der die festere Passung aufweist, (meistens der Innenring) axial fixiert, der andere Lagerring wird durch die Wälzkörper gehalten.


Festlager übertragen neben den radialen Belastungen auch die wirkenden Axialkräfte.

Da diese Axialkräfte üblicherweise in beiden Richtungen wirken, müssen auch die Befestigungselemente sowie die Anschlussteile entsprechend ausgelegt sein.

Bei angestellten oder schwimmend angeordneten Lagerungen hingegen übernimmt wechselweise eines der Lager auch die axialen Kräfte. Die Welle wird somit wechselweise durch eines der Lager geführt; eine vollständige axiale Fixierung beider Lagerringe ist daher nur in je einer Richtung erforderlich.

Beispiele für die axiale Fixierung von Wälzlagern

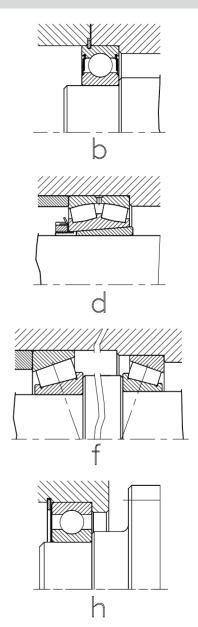


Abb. 7.4

Abb. 7.4a)

Rillenkugellager als Festlager, die axiale Fixierung erfolgt im Gehäuse durch eine Anlageschulter, an der Welle durch einen Wellenbund und eine Nutmutter mit Sicherungsblech.

Abb. 7.4b)

Axiale Fixierung eines Rillenkugellagers mit Ringnut und Nutring im Gehäuse. Einfache und preisgünstige Lösung durch die Einheit von Lager und Sicherungsring, zudem rasche Montage möglich.

Bei Sicherungsringen ist jedoch stets Axialspiel durch den Breitenunterschied von Sicherungsring zu Ringnut vorhanden.

Die axiale Befestigung mit Nutringen eignet sich nur für kleine Axialkräfte.

Abb. 7.4c)

Axiale Befestigung durch genormte Wellensicherungsringe ermöglicht eine rasche und einfache Montage, auch bei Großserienanwendungen.

Abb. 7.4d)

Befestigung eines Pendelrollenlagers mit kegeliger Bohrung auf glatter Welle. Durch die Verwendung von Spannhülsen verringert sich der konstruktive Aufwand zur Lagerbefestigung erheblich.

Dadurch ist auch die Verwendung gedrehter Wellen mit größeren Toleranzen bzw. von gezogenem Rundmaterial möglich.

Ohne Anlageschultern ist die maximal zulässige Axialbelastung des Lagers aber begrenzt, da diese von der Reibung zwischen Hülsenbohrung und Welle abhängt.

Bei höheren Axiallasten sind daher auch bei der Verwendung von Lagern auf Spannhülsen Anlageschultern vorzusehen.

Abb. 7.4e)

Befestigung eines Pendelrollenlagers mit kegeliger Bohrung auf einer Abziehhülse.

Auch durch diese Maßnahme vereinfacht sich die Gestaltung der Lagersitze, größere Durchmessertoleranzen sind dadurch zulässig. Wie in Abb. 7.4e gezeigt, muss der Lagerinnenring dabei gegen eine Anlagefläche abgestützt werden, beispielsweise wie dargestellt gegen einen Wellenbund.

Sollte aus Festigkeitsgründen ein Radius am Wellenabsatz erforderlich sein, der größer ist als die Kantenverrundung des Lagers, muss ein Abstandsring zwischen Wellenschulter und Lagerplanfläche eingebaut werden (siehe auch Abb. 7.5).

In jedem Fall ist die Abziehhülse gegen axiale Verschiebung zu sichern (Wellenmutter, Haltescheibe).

Abb. 7.4f)

Angestellte Lagerung mit zwei **Kegelrollenlagern** in X-Anordnung. Auftretende Axialkräfte werden wechselweise von einem der beiden Lager übernommen, daher ist eine axiale Befestigung jedes Lagers in nur einer Richtung zulässig.

Bei dieser Lageranordnung ist zu beachten, dass die Sicherungselemente neben einer axialen Fixierung der beiden Lager auch eine Einstellung der Lagereinheit zulassen müssen.

Abb. 7.4g)

Rillenkugellager als **Festlager**, die axiale Fixierung im Gehäuse erfolgt durch eine Anlageschulter, an der Welle durch einen Wellenbund sowie eine an der Wellenstirnseite angeschraubte **Haltescheibe**.

Fertigungstechnisch sehr aufwendige Lösung.

Abb. 7.4h)

Schwimmende Anordnung von Rillenkugellagern. Die axiale Fixierung im Gehäuse erfolgt in einer Richtung durch eine Anlageschulter, in die andere Richtung sind die Lager durch genormte Bohrungssicherungsringe fixiert.

Diese Anordnung eignet sich für Anwendungen ohne besondere Anforderungen an die Genauigkeit der axialen Führung.

Anschlussmaße von Wellen- und Gehäuseschultern

Die Durchmesser der Anschlussteile wie Wellenbunde, Gehäuseschultern, Distanzringe u.s.w. sind nach den für die jeweilige Lagerart und bauform in den Produkttabellen angegebenen Richtlinien zu wählen.

Dadurch wird eine ausreichende axiale Unterstützung der Ringe sichergestellt, wodurch die volle axiale Tragfähigkeit des Lagers genutzt werden kann. Die Empfehlungen berücksichtigen aber auch bauartspezifische Besonderheiten, wie etwa die bei Kegelrollenlagern zum Teil über die Planfläche vorstehenden Käfige.

Die Lagerringe dürfen axial nur mit deren Planflächen an den Anschlussteilen anliegen. In keinem Fall dürfen dabei die Kantenverrundungen der Lagerringe die Hohlkehlenradien der Wellenschultern berühren (siehe Abb. 7.5).

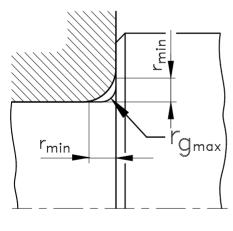
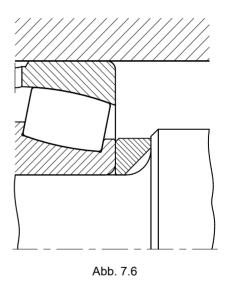



Abb. 7.5

wobei:

r_{min} = kleinste Kantenverrundung am Lagerring (siehe Produkttabellen)

r_{gmax} = größtzulässiger Hohlkehlenradius an der Welle bzw. im Gehäuse. Wenn aus Festigkeitsgründen, beispielsweise zur Verminderung der Kerbwirkung bei hochbelasteten Getriebewellen, die Rundungsradien der Wellenabsätze größer dimensioniert werden müssen als die Kantenabstände des gewählten Lagers sind, muss ein entsprechend geformter Abstandsring zwischen Wellenschulter und Lagerplanfläche eingebaut werden (siehe Abb. 7.6). Der Durchmesser des Abstandsringes ist so zu wählen, dass eine ausreichende Anlagefläche für das Lager gewährleistet ist. Die in den Produkttabellen angegebenen Empfehlungen für die Anschlussmaße geben dazu entsprechende Informationen.

Auch **Freistiche** sind zur Verminderung der Kerbwirkung an Wellenübergängen geeignet.

Auch hierbei ist darauf zu achten, dass die Ringe ausschließlich mit deren Planflächen anliegen und die Radien der Kantenverrundung freigestellt sind (siehe Abb. 7.7).

Dies wird bei Verwendung der in Tabelle 7.12 empfohlenen Werte gewährleistet.

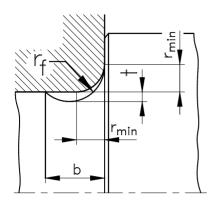


Abb. 7.7

wobei:

r_{min} = Mindest-Kantenabstand am Lagerring (siehe Produkttabellen)

r_f = größtzulässiger Hohlkehlradius am Freistich von Welle bzw. Gehäuse.

b = Freistichbreite

t = Freistichtiefe

Mindest- Kantenabstand	Freistiche [mm]							
r _{min} [mm]	b	t	r _f					
1	2	0,2	1,3					
1,1	2,4	0,3	1,5					
1,5	3,2	0,4	2					
2	4	0,5	2,5					
2,1	4	0,5	2,5					
3	4,7	0,5	3					
4	5,9	0,5	4					
5	7,4	0,6	5					
6	8,6	0,6	6					
7,5	10	0,6	7					

Tabelle 7.12

Konstruktive Maßnahmen zur Lagerüberwachung und -demontage

Je nach Einbausituation und Anwendungsfall werden Wälzlager mehr oder weniger regelmäßig ein- und ausgebaut.

Soweit zweckmäßig oder wirtschaftlich sinnvoll, sollte daher bereits bei der Konstruktion der Anschlussteile auf die Erfordernisse einer Lagermontage und Demontage sowie, falls notwendig, auch auf erforderliche Vorkehrungen zur Überwachung der Lager eingegangen werden.

Durch relativ einfache konstruktive Maßnahmen, wie etwa durch mit Gewinden versehene Abdrückbohrungen in den Gehäuseschultern, Montagegewinden an Wellen, Ausnehmungen zum Ansetzen von Abziehern, Demontagebohrungen bzw. -nuten u.s.w. lassen sich Einund Ausbau von Lagern erheblich vereinfachen. Dadurch kann die Wartungsfreundlichkeit des gesamten Aggregates erheblich verbessert werden.

Bei umfangreicheren Anlagen oder bei Aggregaten, die Schlüsselfunktionen ausüben, werden häufig besonders wichtige Lagerstellen überwacht.

Bei einer solchen Lagerüberwachung wird die Veränderung bestimmter Messwerte, die zur Beurteilung des aktuellen Zustandes eines Lagers herangezogen werden können, während der Betriebsdauer beobachtet.

Zur Beurteilung des Lagerzustandes geeignete Werte sind die Betriebstemperatur, Schwinggeschwindigkeit und -beschleunigung, Laufgeräusch u.s.w. Die Lagerüberwachung kann – je nach Wichtigkeit der Anlage – entweder permanent durch fest montierte Sensoren mit zentraler Datenüberwachung und -auswertung erfolgen, oder im einfachsten Fall auch durch eine manuelle Kontrolle der Betriebstemperatur der Lagerstellen.

In allen Fällen sind die Messstellen möglichst nahe an den Lagern anzubringen, was durch geeignete Bohrungen, Anschlussgewinde u.s.w. erheblich vereinfacht wird.

Abdichtung der Lagerstellen

Allgemeines

Wälzlager werden mit Toleranzen von wenigen µm gefertigt. Sie weisen feinstbearbeiteten Laufflächen auf, die Oberflächenrauheit beträgt nur wenige Zehntel µm.

Wälzlager sind daher sehr empfindlich gegen Beschädigungen, wie sie durch Fremdpartikel und Verunreinigungen im Lager entstehen können.

Eine wirksame Abdichtung der Lagerstellen ist somit eine der wichtigsten Voraussetzungen für eine zufriedenstellende Funktion einer Wälzlagerung.

Arten von Dichtungen

Gerade bei der Abdichtung von Lagerstellen gibt es eine Vielzahl möglicher konstruktiver Lösungen, wobei für eine optimale Lösung natürlich die jeweiligen praktischen Erfahrungen mit den speziellen Problemen des jeweiligen Anwendungsfalles einfließen müssen.

Zur Abdichtung von Lagerstellen sind aufgrund der Drehbewegung im allgemeinen dynamische Dichtungen, also Dichtelemente, die zwischen zwei sich relativ zueinander bewegenden Bauteilen angeordnet sind, erforderlich.

Im Wesentlichen lassen sich zwei Arten von dynamischen Dichtungen unterscheiden, die je nach Anwendung gewählt, manchmal auch miteinander kombiniert werden:

- berührungsfreie Dichtungen
- berührende Dichtungen

Berührungsfreie Dichtungen

Die Funktionsweise von berührungsfreien Dichtungen basiert auf der Dichtwirkung enger Spalte zwischen den rotierenden Bauteilen, der im einfachsten Fall gerade ausgeführt wird, bis hin zu komplizierter geformten Lamellenund Labyrinthdichtungen. Da diese Dichtungen keine berührenden Teile haben, sind sie einfach aufgebaut, funktionieren verschleißfrei, erzeugen keine zusätzliche Wärme und sind daher auch für hohe und höchste Drehzahlen geeignet.

Selbstverständlich muss ein Ausgleich eventuell auftretender Schiefstellungen bzw. Fluchtungsfehler zwischen Welle und Gehäuse auch mit den Dichtungen möglich sein. Besonderes Augenmerk ist darauf bei Lagerstellen mit selbsteinstellenden Lagern (Pendelkugellager oder Pendelrollenlager) zu richten.

Eine wesentlich verbesserte Dichtwirkung kann durch eine Fettfüllung der Labyrinthdichtungen erzielt werden.

Dadurch wird ein Eindringen selbst feiner Staubpartikel zuverlässig vermieden.

Bei Bedarf lässt sich eine Steigerung der Dichtwirkung durch die Kombination von berührungsfreien Dichtungen mit Lagern mit Dicht- oder Deckscheiben (Nachsetzzeichen -Z, -2Z, -RS2, -2RS2, -RS, -2RSR, -2RSR, -2LFS . . .) erreichen.

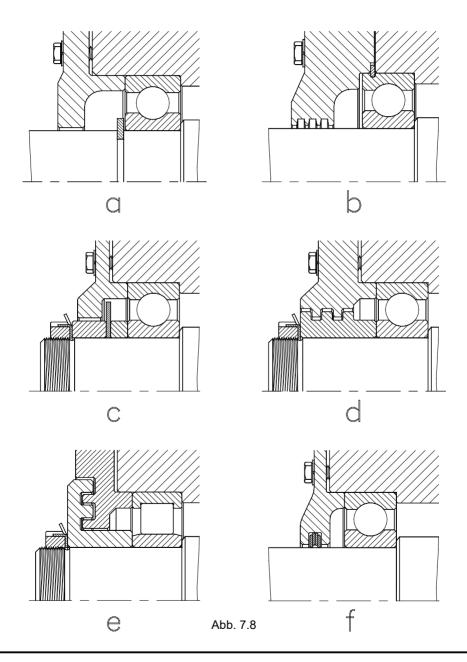

In Abb. 7.8 sind einige Beispiele für Varianten von berührungsfreien Abdichtungen dargestellt:

Abb. 7.8a)

Einfachste Form einer **Spaltdichtung**. Geeignet für trockenen, weitgehend staubfreiem Betrieb und Fettschmierung.

Beispiele für berührungsfreie Abdichtungen von Lagerstellen

Abb. 7.8b)

Spaltdichtung mit zusätzlichen Dichtrillen. Durch diese Dichtrillen wird das Eindringen von Verunreinigungen erschwert, die Wirksamkeit der Abdichtung wird wesentlich erhöht. Bei Fettschmierung empfiehlt es sich, die Dichtrillen mit Fett zu füllen.

Bei Ölschmierung können solche Dichtrillen auch schraubenförmig am jeweils rotierenden Bauteil angebracht werden, um Lecköl wieder zurückzufördern.

Abb. 7.8c)

Einfache **Spaltdichtung** mit zusätzlicher **Schleuderscheibe**. Diese rotiert mit dem umlaufenden Bauteil und verhindert ein Eindringen größerer Verunreinigungen.

Abb. 7.8d)

Beispiel für eine radial geteilte Labyrinthdichtung. Das fettgefüllte Labyrinth verhindert zuverlässig eine Verunreinigung der Lagerstelle.

Gut geeignet für Anwendungen mit Fettschmierung, gute Dichtwirkung gegen gröbere Verunreinigungen, mit Einschränkungen auch gegen Spritzwasser. Zur Erhaltung einer guten Dichtwirkung sollte die Fettfüllung des Labyrinthes öfters erneuert werden.

Abb. 7.8e)

Labyrinthdichtung, axial montiert. Ansonsten wie Abb. 7.8d.

Abb. 7.8f)

Lamellendichtung. Lamellenringe sind einbaufertige Federstahlringe welche, satzweise angeordnet, gute Dichtwirkung zeigen.

Die Ringe spannen jeweils gegen ein Bauteil und bilden eine preiswerte und effiziente Lamellendichtung.

Zur Verbesserung der Dichtwirkung sind die Freiräume zwischen den Lamellenringen mit Fett zu füllen.

Berührende Abdichtungen

Bei **berührenden Dichtungen** wird die Dichtwirkung durch ein elastisches Bauteil, das unter Vorspannung an einer Dichtfläche anliegt, erzielt.

Diese Berührung ermöglicht eine, gegenüber den berührungsfreien Dichtungen, wesentlich effizientere Abdichtung einer Lagerstelle. Gleichzeitig erzeugt jedoch das Schleifen der Dichtung an der Dichtfläche Reibung und damit zusätzliche Wärme.

Alle berührenden Dichtungen unterliegen einer gewissen Abnützung (Verschleiß) sowie - je nach Werkstoff und Bauart - bestimmten Einschränkungen hinsichtlich der maximal zulässigen Drehzahlen und Betriebstemperaturen.

Es sind die Angaben des jeweiligen Herstellers der Dichtelemente zu beachten.

Abb. 7.9 zeigt einige Beispiele für berührende Dichtungen:

Abb. 7.9a)

Filzdichtung. Filze stellen einfache, aber wirksame Dichtungen für untergeordnete Anwendungsfälle dar.

Verwendet werden technische Filze in Form von Filzringen oder Filzstreifen, die in dafür vorgesehene Gehäusenuten eingelegt werden. Filzdichtungen sind vor dem Einbau mit warmem Öl zu tränken.

Sie bieten einen guten Schutz für fettgeschmierte Lagerstellen, selbst bei mäßiger Staubbelastung.

Für eine optimale Dichtwirkung sollte die Gegenfläche geschliffen sein und einen **Ra**-Wert unter **3,2** µm aufweisen.

Filzdichtungen eignen sich gut für geringere Drehzahlen (Umfangsgeschwindigkeiten ≤ 4 m/s), bei größeren Umfangsgeschwindigkeiten bildet sich ein Dichtspalt, die Filzdichtungen wirken dann wie Spaltdichtungen.

Filzdichtungen können für Schiefstellungen bis etwa 0,5° verwendet werden.

Beispiele für berührende Dichtungen

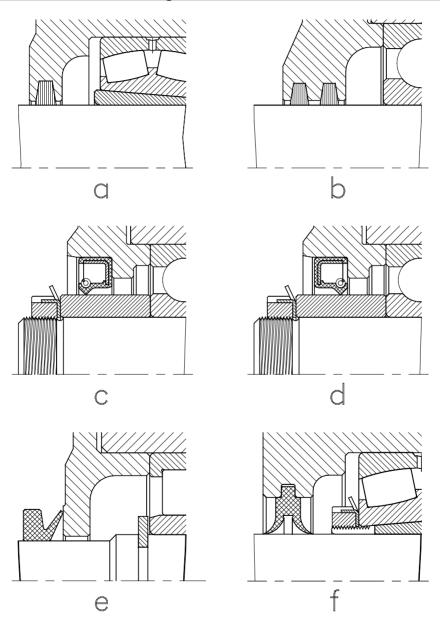


Abb. 7.9

Abb. 7.9b)

Doppelte Filzdichtung. Bei stärkerer Verschmutzung oder größerer Staubbelastung kann die Wirksamkeit der Dichtung auch durch zwei hintereinander angeordnete Filzdichtungen verbessert werden.

Abb. 7.9c und Abb. 7.9d)

Radial-Wellendichtringe sind als Maschinenelemente in einer Vielzahl konstruktiver Ausführungen und Materialien erhältlich.

Bei den meisten Ausführungen wird die radial wirkende Dichtlippe durch eine radiale Zugfeder an die Gegenfläche gepresst.

Je nach erforderlicher Dichtwirkung sind die Wellendichtringe einzubauen. Mit nach Außen gerichteter Dichtlippe (Abb. **7.9c**) wird die Lagerstelle gegen ein Eindringen von Verunreinigungen geschützt.

Soll hingegen ein Austreten von Öl oder Schmierstoff aus der Lagerstelle verhindert werden, sind die Wellendichtringe mit deren Dichtlippen nach innen, wie in Abb. **7.9d** gezeigt, einzubauen. Für Anwendungsfälle, in denen beide Eigenschaften erforderlich sind, kann man entweder zwei einfache Wellendichtringe so einbauen, dass deren Dichtlippen jeweils nach Außen liegen, oder auf die zweilippigen Sonder-Dichtringe zurückgreifen.

Radial-Wellendichtringe eignen sich je nach Ausführung und Werkstoff für Umfangsgeschwindigkeiten bis etwa 15 m/s. Wellendichtringe werden auch in Sonderausführungen gefertigt, beispielsweise für korrosive Medien, Anwendungen bei extremen Temperaturen oder auch für sehr hohe Drehzahlen. Für eine entsprechende Dichtwirkung müssen die Gegenlaufflächen in der Regel drallfrei geschliffen sein, gemäß den Vorgaben der jeweiligen Dichtungshersteller.

Abb. 7.9e)

V-Ringe werden auf der Welle montiert und dichten mit einer langen, dünnen Dichtlippe gegen eine Gegenfläche am Gehäuse oder eine eigene Dichtscheibe.

V-Ringdichtungen zeichnen sich durch einfache Montage sowie gute Dichtwirkung auch unter schwierigen Betriebsbedingungen aus.

Sie lassen, je nach Wellendurchmesser, größere Schiefstellungen zwischen Welle und Gehäuse zu.

	rchmesser im]	maximal zulässige Schiefstellung
>	VI	Schleistellung
	50	≤ 1,5°
50	150	≤1°

Tabelle 7.13

V-Ringe eignen sich ohne besondere Vorkehrungen für Umfangsgeschwindigkeiten bis zu etwa 12 m/s, wobei die Ringe aber ab einer Geschwindigkeiten von 7 m/s axial fixiert werden müssen, beispielsweise durch Stellringe auf der Welle.

Bei Umfangsgeschwindigkeiten über 12 m/s muss ein Abheben der V-Ringe durch die auftretenden Fliehkräfte verhindert werden.

Bei diesen Drehzahlen müssen V-Ringe auch radial durch Stützringe gehalten werden, die eine Spaltbildung zwischen Dichtring und Welle verhindern.

Für besondere Anwendungsfälle werden V-Ringe aus Sonderwerkstoffen, wie Fluorpolymer (**FPM**), angeboten.

Abb. 7.9f)

Geteilte Gehäuse werden häufig mit den in Abb. **7.9f** gezeigten Zweilippendichtungen aus Polyurethan montiert.

Die Zweilippendichtungen sind radial geteilt, wodurch sich die Montage stark vereinfacht.

Beim Einbau ist der Freiraum zwischen den Dichtlippen mit Fett zu füllen.

Zweilippendichtungen werden hauptsächlich zur Abdichtung fettgeschmierter Stehlagergehäuse verwendet.

Sie lassen in Abhängigkeit vom Wellendurchmesser, auch größere Schiefstellungen zu:

	rchmesser im]	maximal zulässige Schiefstellung
>	≤	Schleistellung
	100	≤ 1°
100		≤0.5°

Tabelle 7.14

Für optimale Abdichtung sollten die Gegenflächen geschliffen sein und einen Ra-Wert unter 3,2 µm aufweisen.

Zweilippendichtungen eignen sich für Umfangsgeschwindigkeiten bis etwa 8 m/s.

Aus Platzgründen ist es nicht möglich, hier auf alle Arten und Varianten von Dichtungen näher einzugehen.

Dichtungen sind Maschinenelemente, die in vielen Ausführungen ab Lager angeboten werden. Für sehr viele Sonderanwendungen sind unterschiedliche Spezialdichtungen verfügbar.

Beispiele weiterer Dichtungsarten sind u.a.:

- Stahlblechdichtungen ("NILOS"-Ringe)
- Gleitringdichtungen
- Blech Lamellendichtungen
- Handelsübliche Labyrinthdichtungen
- O-Ringdichtungen

u.s.w.

Kombination verschiedener Dichtungsbauformen

In der Praxis werden bei Bedarf verschiedene Dichtungsvarianten kombiniert.

Je nach Anforderung werden dabei häufig berührungsfreie Dichtungen mit berührenden Dichtungen ergänzt.

Diese mit Dicht- oder Deckscheiben ausgestatteten Lager (Nachsetzzeichen -Z, -ZZ, -RS2, -2RS2, -RS, -2RS, -RSR, -2RSR, -2LFS...) ermöglichen wartungsfreie, abgedichtete Lagerungen bei einem Minimum an Platzbedarf, da die Dichtungen in den Lagern selbst integriert sind (siehe Abb. 7.10).

Die Abdichtung von Lagerstellen kann dadurch bei hoher Effizienz relativ einfach gehalten werden.

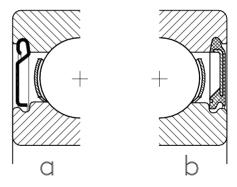
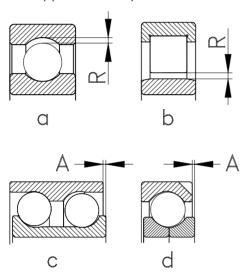


Abb. 7.10

- 7.10a) Rillenkugellager mit Z-Deckscheibe Die Deckscheibe aus Stahlblech bildet eine berührungsfreie Spaltdichtung.
- 7.10b) berührende Dichtung der Bauform RS2 bei Rillenkugellagern.


Bei dieser Variante läuft die Dichtlippe radial auf der dafür geschliffenen Innenringschulter.

Allgemeines

Unter Lagerluft versteht man jenes Maß, um das sich ein Lagerring gegenüber dem jeweils anderen von einer Endlage zur anderen verschieben lässt.

Je nach Lagerart spricht man dabei von radialer Lagerluft (Radialluft) oder axialer Lagerluft (Axialluft) (siehe Abb. 8.1).

- 8.1a) Radialluft "R" von Rillenkugellagern.
- 8.1b) **Radialluft** "R" bei Zylinderrollenlagern der Bauform **NU**.

Abb. 8.1

Bei zerlegbaren Zylinderrollenlagern wird die Radialluft immer durch den losen Ring bestimmt.

- 8.1c) **Axiale Lagerluft** "A" am Beispiel eines zweireihigen Schrägkugellagers.
- 8.1d) Axialluft "A" bei Vierpunktlagern.

Nominelle Lagerluft und Betriebslagerluft

Grundsätzlich ist zwischen der nominellen Lagerluft eines Lagers und der Betriebslagerluft zu unterscheiden.

Nominelle Lagerluft

Die **nominelle Lagerluft** ist die Lagerluft eines fabrikneuen, nicht eingebauten Lagers im Anlieferzustand, ohne äußere Belastung.

Für die Radialluft von Wälzlagern sind in **DIN 620** Werte festgelegt.

Die darin definierten Werte für die Normalluft (Luftklasse "CN", auch "C0") so bemessen wurde, dass die Lager bei Verwendung "normaler" Passungen sowie unter "normalen" Betriebsbedingungen eine ausreichende Betriebslagerluft erhalten.

Als "normale" Passungen und Betriebsbedingungen gelten:

Logovort	Passungen an					
Lagerart	Welle	Gehäuse				
Kugellager	h5, j5, k5	H6, J6, J7				
Rollenlager	k5, m5	H7, M7				
Nadellager	k5, m5	H7, M7				

Tabelle 8.1

"Normale" Betriebsbedingungen:

- auftretende Temperaturdifferenzen zwischen Innen- und Außenring ≤10° C
- normale Anforderungen an Laufruhe und Führungsgenauigkeit der Welle
- normale Belastung
- keine starken Vibrationen oder stoßartige Belastung am Lager

Wenn die im jeweiligen Anwendungsfall herrschenden Betriebsbedingungen von den vorgenannten Annahmen abweichen, beispielsweise, wenn festere Passungen erforderlich sind, kann eine Verwendung von Lagern mit größerer Lagerluft erforderlich werden.

Für diese Fälle werden die Lager in unterschiedlichen Luftklassen gefertigt:

Lagerluftklassen:

C1 Lagerluft kleiner als bei C2

C2 Lagerluft kleiner als bei CN

CN (C0)Lagerluft "Normal".

Diese Lagerluft stellt den Standard dar. Daher wird das Nachsetzzeichen **CN** in der Lagerbezeichnung nicht eigens angegeben. Früher wurde die Normalluft mit "**C0**" bezeichnet.

C3 Lagerluft größer als bei CN
C4 Lagerluft größer als bei C3
C5 Lagerluft größer als bei C4

Sonder-Lagerluft:

Für Anwendungsfälle, die mit den definierten Luftklassen nicht oder nicht optimal abgedeckt werden, können auftragsbezogen auch eigene Luftwerte vereinbart werden.

Die Werte der Sonderlagerluft werden üblicherweise zur Unterscheidung von Lagern der Standardluftklassen angegeben, soweit sie nicht ohnehin Inhalt einer Sonderausführung oder Bestandteil der Eigenschaften eines Sonderlagers sind.

Beispiele:

R80&150 Spezielle Radialluft.

Luft zwischen 80 und 150 µm

A70&110 Spezielle Axialluft

zwischen 70 und 110 µm

Falls erforderlich, kann auch der Bereich einer Lagerluftklasse eingeschränkt werden.

Diese Einschränkung wird durch einen dem Symbol der Lagerluftklasse folgenden Buchstaben **H**, **M** oder **L** angezeigt.

Beispiele:

C2L Lagerluft auf die untere Hälfte der Lagerluftklasse C2 eingeschränkt.

C3M Die halbe Lagerluft die sich in der Mitte der Lagerluftklasse C3 befindet.

C4H Lagerluft auf die obere Hälfte der Lagerluftklasse C4 eingeschränkt.

Ausführliche Tabellen mit den Werten der jeweiligen Luftklassen sind auf den produktspezifischen Seiten der betreffenden Lagerart im Tabellenteil enthalten.

Betriebslagerluft

Im Gegensatz zur **nominellen Lagerluft** wird die jeweilige Betriebslagerluft von der Anwendung selbst beeinflusst.

Unter dem Begriff "Betriebslagerluft" versteht man das Betriebsspiel eines eingebauten, belasteten Lagers bei Betriebstemperatur.

Durch feste Wellenpassungen können Innenringe aufgeweitet, bei Presssitzen in Gehäusen die Außenringe eingeschnürt werden. Auch Temperaturunterschiede zwischen Welle (Innenring) und Gehäuse (Außenring) können eine Verringerung der ursprünglich vorhandenen Lagerluft bewirken.

Wenn also erwartet werden kann, dass die in der Praxis auftretenden Einsatzbedingungen von den zur Festlegung der Normalluft **CN** vorausgesetzten Annahmen abweichen, müssen diese Werte einer genaueren Überprüfung unterzogen werden.

Einfluss der Passungen

Wälzlager werden durch Passungen fixiert. Je nach Art und Größe der Belastung werden dabei Schiebesitze oder mehr oder weniger feste Presssitze verwendet.

Werte für die im allgemeinen Maschinenbau gängigsten Lagerpassungen sind im Abschnitt "Gestaltung der Lagerstelle" angeführt. Die Tabellen enthalten auch wertvolle Informationen zum sich damit ergebenden Lagersitz.

Für jede Toleranz werden in der linken Feldhälfte die beiden Zahlenwerte angegeben, in der rechten Hälfte geben drei Werte Aufschluss über die wahrscheinliche Auswirkung der Passung auf das Lager.

So werden beispielsweise für eine Wellenpassung Ø75 j5 folgende Angaben gemacht:

	-21
+6	-12
-7	7

Fettgedruckte negative Zahlen in der rechten Feldhälfte bedeuten Überdeckung (Pressung).

Die Toleranz des Bohrungsdurchmessers für ein Lager der Normaltoleranz (**PN**) beträgt:

$$\Delta_{dmp} = 0 / -15 \mu m$$

Damit ergeben sich folgende Werte:

a) Größtes Passungsübermaß

Das größte Passungsübermaß entsteht, wenn der größtzulässige Wellendurchmesser mit dem kleinsten zulässigen Bohrungsdurchmesser zusammenfällt

Im o.a. Beispiel beträgt das größte Passungsübermaß:

(Eine fettgedruckte negative Zahl in der rechten Feldhälfte bedeutet Überdeckung).

 b) Das kleinstmögliche Passungsübermaß entsteht durch das Zusammentreffen der kleinsten Welle mit der größten Bohrung.

Im o.a. Beispiel beträgt das kleinste zulässige Passungsübermaß:

 $|-7 + 0| = 7 \mu m$ Spiel (unterer Wert)

c) Das wahrscheinliche Passungsübermaß geht davon aus, dass die Ist-Maße etwa um ein Drittel der Toleranz von der Gutseite entfernt liegen.

Im o.a. Beispiel beträgt das wahrscheinliche **Passungsübermaß 12** µm (mittlerer Wert).

Verminderung der Radialluft durch Presspassungen

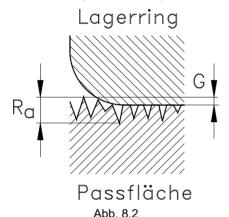
Anhand der Tabellenwerte lässt sich die zu erwartende Radialluftverminderung durch Passungen wie folgt abschätzen:

$$\Delta C = \Delta C_1 + \Delta C_E$$
 (Gl.8.1)

wobei

ΔC= Gesamte Lagerluftveränderung durch Presssitze

ΔC_I= Aufweitung des Innenringes Näherungsweise kann ΔC_Imit ca. 80% des wahrscheinlichen Passungsübermaßes am Wellensitz angenommen werden.


 ΔC_E = Einschnürung des Außenringes ΔC_E kann überschlägig mit ca. 75% des wahrscheinlichen Passungsübermaßes im Gehäuse angesetzt werden.

Glättung der Passflächen

Lagersitze haben üblicherweise geschliffene oder fein gedrehte Oberflächen.

Bei der Montage eines Lagers kommt es zu einer Glättung der Oberflächenrauheiten von Wellenoder Gehäusesitz (siehe Abb. 8.2).

wobei:

R_a = Oberflächenrauheit vor der Montage

G = Glättung der Rauheitsspitzen bei der Montage

Die zu erwartende Glättung beträgt etwa 40 % des $R_{\rm a}$ -Wertes der entsprechenden Oberfläche.

Bei relativ rauen Oberflächen kann dieser Effekt auch die Verminderung des Passungsübermaßes bewirken. Passungen mit großer Oberflächenrauheiten sind zudem anfälliger für das Entstehen von Passungsrost.

Hingegen ist die Glättung an den Oberflächen gehärteter und geschliffener Lagerteile vernachlässigbar gering.

Empfehlungen für die Oberflächenqualität von Lagersitzen sind im Abschnitt "Gestaltung der Lagerstelle" zusammengefasst.

Radialluftverringerung durch Temperaturdifferenzen

Zusätzlich zur Verminderung der Lagerluft durch feste Passungen tritt in vielen Fällen noch eine weitere Verringerung durch Temperaturdifferenzen zwischen Innenring (Welle) und Außenring (Lagergehäuse) auf.

Üblicherweise liegt die Betriebstemperatur am Innenring um etwa 5 -10 °C höher als am Außenring. Dieser Unterschied liegt hauptsächlich darin begründet, dass die Wärmeabfuhr am Außenring aufgrund der größeren Oberfläche des Gehäuses effizienter ist als über die Welle (siehe Abb. 8.3).

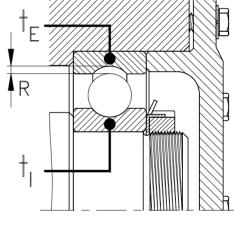


Abb. 8.3

wobei:

t_E= Betriebstemperatur am Außenring

R= Betriebslagerluft

t_i = Betriebstemperatur am Innenring

Bei Verwendung von Stahlwellen mit Stahl- bzw. Graugussgehäusen mit annähernd gleichen Wärmedehnungskoeffizienten sowie Temperaturunterschieden zwischen Welle und Gehäuse von weniger als 10°C kann dieser Effekt weitgehend vernachlässigt werden.

Lagerluft und Vorspannung

Bei größeren Temperaturdifferenzen sollten die Auswirkungen nach folgenden Formeln überschlägig kontrolliert werden:

Bei der Verwendung von Gehäusen aus **Stahl bzw. Stahl- oder Grauguss** gilt näherungsweise Gleichung 8.2:

$$\Delta \ C \ t \ = \ 1000 \ \ ^{\star} \ \ \alpha \ \ ^{\star} \ \frac{d \ + \ D}{2} \quad \ ^{\star} \quad \Delta t$$

(GI.8.2)

wobei:

ΔC_t= Verminderung der Radialluft durch die Temperaturdifferenz [μm]

 α = linearer Ausdehnungskoeffizient für Stahl (für Stahl beträgt α 12 * 10⁻⁶ K⁻¹)

d = Lagerbohrung [mm]

D = Außendurchmesser des Lagers [mm]

Δt = Differenz zwischen der Betriebstemperatur von Innen- und Außenring [°C]

Bei Gehäusen aus Leichtmetall ist aufgrund der stark unterschiedlichen Wärmedehnungseigenschaften des Werkstoffes besondere Vorsicht geboten.

Bei diesen Gehäusen führt jede Temperaturanderung auch ohne große Temperaturunterschiede zwischen Welle und Gehäuse zu Veränderungen der Passungen.

Werkstoff	Wärmedehnungskoeffizient α [10 ⁻⁶ K ⁻¹]
Stahl	12
Leichtmetall	22

Tabelle 8.2

Bei jeder Abweichung der tatsächlichen Betriebstemperatur von der Bezugstemperatur

(20°C) ändert sich der Durchmesser des Gehäusesitzes stärker als der Durchmesser des stählernen Lageraußenringes.

Bei tiefen Temperaturen verringert sich also der Durchmesser des Gehäusesitzes stärker, die Pressung nimmt zu und der Außenring wird stärker eingeschnürt. Aus demselben Grund wird bei höheren Temperaturen der Gehäusesitz loser, die Lagerluft nimmt zu.

Überprüft sollte dies näherungsweise nach folgender Gleichung werden:

$$\Delta$$
 C t = 1000 * $\Delta\alpha$ * D * Δt (GI.8.3)

wobei:

ΔC_t= Verminderung der Radialluft durch die Temperaturdifferenz [μm]

 $\begin{array}{lll} \Delta\alpha = & 10 * 10^{\text{-6}} \text{ K}^{\text{-1}} \\ & \text{Differenz der linearen} \\ & \text{Ausdehnungskoeffizienten für Stahl} \\ & (\alpha \ 12 * 10^{\text{-6}} \ \text{K}^{\text{-1}}) \ \text{und Leichtmetall} \\ & (\alpha \ 22 * 10^{\text{-6}} \ \text{K}^{\text{-1}}) \end{array}$

D = Außendurchmesser des Lagers [mm]

Δt = Abweichung der Betriebstemperatur vonder Bezugstemperatur (20°C) [°C]

Bei einer Betriebstemperatur > 20°C wird der Gehäusesitz lose, die Lagerluft wird größer. Δt ist somit positiv (+).

Bei Betriebstemperaturen unter 20°C wird der Gehäusesitz fester, die Lagerluft verringert. Δt wird daher negativ (-).

Dieser Effekt wird z.B. durch Kühlung des Gehäuses oder Wärmezufuhr über die Welle noch entsprechend verstärkt.

Zusätzliche Wärme an der Welle bewirkt eine Ausdehnung der Innenringlaufbahn und somit eine weitere Verringerung der Lagerluft.

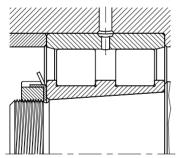
Lagerluft von Lagern mit kegeliger Bohrung

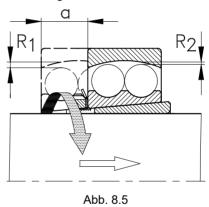
Einige Lagerbauarten werden serienmäßig sowohl mit zylindrischer als auch mit kegeliger Bohrung gefertigt.

Beispiele dafür sind Pendelkugellager und Pendelrollenlager, aber auch Rillenkugellager und hochgenaue Zylinderrollenlager für Werkzeugmaschinenspindeln.

Montiert werden Lager mit kegeliger Bohrung in den meisten Fällen mit Hilfe von Spann- und Abziehhülsen.

Direkt auf kegelige Wellensitze werden beispielsweise häufig zweireihige Zylinderrollenlager der Reihe NN 30 montiert. Bei diesen hochpräzisen Spindellagern wird die kegelige Bohrung auch zur genauen Einstellung des Lagerspieles verwendet (siehe Abb. 8.4).




Abb. 8.4

Bei Lagern mit **kegeliger Bohrung** ist die Lagerluft - bei gleicher Luftklasse - größer als bei gleichartigen Lager mit zylindrischer Bohrung.

Dies liegt darin begründet, dass bei der Montage der Ringe auf kegelige Wellensitze durch die dabei stattfindende axiale Verschiebung eine Aufweitung des Innenringes stattfindet.

Die Lagerluft wird dadurch deutlich verringert. Im Extremfall kann es zu einer unbeabsichtigten radialen Verspannung der Lager kommen, die vorzeitige Lagerausfälle verursachen kann. Die Größe der Aufweitung des Innenringes hängt von der Lagergröße, der axialen Verschiebung beim Einbau und auch vom **Kegelwinkel ab**. Dieser beträgt üblicherweise **1:12** (Nachsetzzeichen "K"), d.h. auf 12 mm Messlänge beträgt die Steigung 1 mm. Einige Lagerarten mit geringerem Querschnitt haben einen flacheren Kegelwinkel, 1:30. Dieser wird durch das Nachsetzzeichen **K30** identifiziert.

Um eine unbeabsichtigte Verspannung der Lager beim Einbau zu vermeiden, muss auf die nach der Montage verbleibende Lagerluft (\mathbf{R}_2 in Abb. 8.5) besonders geachtet werden.

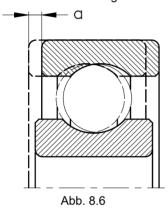
wobei:

R₁= Radialluft vor der Montage

R₂= nach dem Einbau verbleibende Radialluft

a = axialer Verschiebeweg

Da ein einfacher linearer Zusammenhang zwischen Kegelwinkel, Verschiebeweg und Radialluftverminderung gegeben ist, sind Werte dafür in den produktspezifischen Tabellenseiten angegeben.


In jedem Fall muss sich das montierte Lager noch leicht drehen bzw. ausschwenken lassen.

Zusammenhang von axialer und radialer Lagerluft

Bei verschiedenen Lagerbauarten besteht ein Zusammenhang zwischen der radialen und der axialen Lagerluft.

Bei einreihigen Rillenkugellagern etwa (siehe Abb. 8.6) kann die Axialluft a in Abhängigkeit von Innenkonstruktion, Druckwinkel und Radialluft ein Vielfaches der Radialluft betragen.

In der überwiegenden Anzahl der Anwendungsfälle spielt die Axialluft bei Radiallagern keine oder nur eine untergeordnete Rolle.

In manchen Anwendungen ist aber selbst bei Radiallagern eine gewisse axiale Führungsgenauigkeit erforderlich oder aus Gründen des Laufgeräusches wünschenswert.

Diese kann durch ein Auswählen geeigneter Lager, beispielsweise von Schrägkugellagern, durch die Verwendung einstellbarer Lageranordnung oder aber auch durch eine Vorspannung der Lagerungen erreicht werden.

Bei kleineren und mittelgroßen Elektromotoren bzw. Generatoren, die häufig mit Rillenkugellagern gelagert sind, wird das Axialspiel auch oft durch Tellerfedern oder Kugellager-Ausgleichsscheiben eliminiert. Die Tabelle 8.3 enthält **ungefähre Richtwerte** für den Zusammenhang zwischen radialer Lagerluft und dem Axialspiel bei Radiallagern:

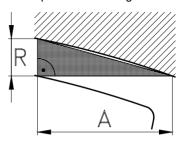


Abb. 8.7

Lagerart	Luftverhältnis A / R
Rillenkugellager *) Normalluft Lagerluft C3 Lagerluft C4	≈ 9 ÷ 15 ≈ 7 ÷ 10 ≈ 6 ÷ 9
Schrägkugellager, einreihig paarweise angeordnet, Druckwinkel 40° (70B, 72B, 73B)	1,2
Schrägkugellager, zweireihig **) 32, 33 (Druckwinkel 35°) 32B, 33B (Druckwinkel 25°)	1,4 2
Vierpunktlager Druckwinkel 35°	1,4
Pendelkugellager	2,3 * Y ₀
Pendelrollenlager	2,3 * Y ₀
Kegelrollenlager einreihig gepaart	4,6 * Y ₀ 2,3 * Y ₀

Tabelle 8.3

Anmerkungen:

- *) Stark von der jeweiligen Lagerreihe und Innenkonstruktion abhängig, daher nur grobe Richtwerte möglich.
- **) Bei zweireihigen Schrägkugellagern wird grundsätzlich die Axialluft angegeben.
- Y₀ statischer Axialfaktor aus den Produkttabellen.

Vorspannen von Lagern

In der Mehrzahl aller Anwendungsfälle werden Wälzlager so ausgewählt und montiert, dass sie unter Betriebsbedingungen ein – wenn auch sehr kleines – Spiel aufweisen.

Wenn ein solches Betriebsspiel nicht erwünscht ist, wie beispielsweise bei der Lagerung von Werkzeugmaschinenspindeln oder bei Radlagern von Lastkraftwagen kann die Lagerung auch mit einem negativen Betriebsspiel, also mit Vorspannung eingebaut werden.

Die Lagerarten, die am häufigsten mit Vorspannung eingebaut werden, sind Schrägkugellager und Kegelrollenlager. Aber auch andere Lagerarten wie Rillenkugellager und sogar Zylinderrollenlager können vorgespannt montiert werden. Je nach Bauform wird ein Lager radial oder axial vorgespannt.

Durch eine Vorspannung lassen sich folgende Effekte erzielen:

- Erhöhung der Steifigkeit der Lagerung
- Verbesserung der Führungsgenauigkeit
- Verminderung des Laufgeräusches
- Verminderung von Schwingungen und Vibrationen im Betrieb
- Optimale Nutzung der Tragfähigkeit der Lager
- Kompensation von Wärmedehnungen
- Verhinderung von Gleitreibung im Lager

Erhöhung der Steifigkeit

Wie jedes andere Maschinenteil, federn auch Wälzlager unter Belastung ein. In Abhängigkeit von dessen Innenkonstruktion weist jede Lagerart eine andere Steifigkeit, d.h. unterschiedliche Einfederungscharakteristika, auf.

Bei Wälzlagern versteht man unter Steifigkeit den Zusammenhang zwischen der elastischen Verformung im Lager und der dazu erforderlichen Kraft. Angegeben wird die Steifheit in [N / µm].

Da die Steifigkeit von Lagern nicht linear verläuft, weisen Wälzlager in vorgespanntem Zustand bei gleich hoher Belastung eine geringere Einfederung auf als in unbelastetem Zustand.

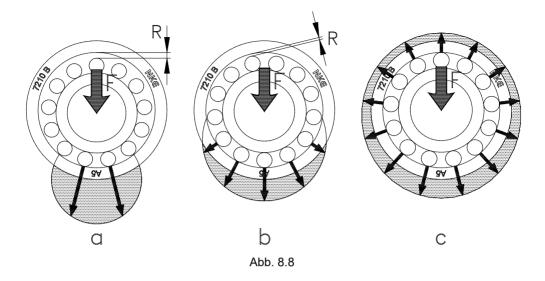
Durch die Vorspannung wird dies vorweggenommen, daher ist die Einfederung vorgespannter Lager unter Last geringer als die der Lager in unbelastetem Zustand.

Natürlich muss auch die Umgebungskonstruktion der Lagerung entsprechend starr ausgebildet sein.

Verbesserung der Führungsgenauigkeit

Durch den Wegfall des Lagerspieles sowohl in radialer als auch in axialer Richtung sowie die Erhöhung der Steifheit der Lagerung wird auch die Genauigkeit der Führung der gelagerten Welle positiv beeinflusst.

Dies kommt besonders bei Anwendungen wie Werkzeugmaschinenspindeln und Getriebewellen, aber auch bei Radlagerungen zum Tragen.


Laufgeräusch und Schwingungsverhalten

Ein weiterer positiver Effekt bei Vorspannung ist ein geringeres Laufgeräusch, da die Lagerluft entfällt.

Dadurch wird die Führung der Welle im Lager genauer, Vibrationen können somit in vielen Fällen verringert oder auch ganz vermieden werden.

Weiters wird durch eine Vorspannung das Schwingungsverhalten der gesamten Lagerung beeinflusst.

Nutzung der vollen Tragfähigkeit der Lager

In einem Wälzlager werden die Kräfte über die Wälzkörper übertragen.

Je mehr Wälzkörper an der Übertragung der Kräfte beteiligt sind, desto geringer ist die im Wälzkontakt auftretende Flächenpressung.

Da sowohl die statische Tragfähigkeit als auch die dynamische Lagerlebensdauer wesentlich von der spezifischen Werkstoffbelastung abhängen, besteht ein direkter Zusammenhang zwischen der auf das Lager wirkenden Belastung und der Anzahl der an der Kraftübertragung beteiligten Wälzkörper.

In Abb. 8.8 ist die Wirkungsweise der Vorspannung anhand einer konstanten Belastung "F" schematisch dargestellt:

Abb. 8.8a:

Das Lager in **Abb. 8.8a** weist eine große Lagerluft "**R**" auf, daher sind nur wenige Wälzkörper an der Kraftübertragung beteiligt.

Die Lastzone (dunkel dargestellt) ist daher relativ klein, die spezifische Belastung pro Wälzkörper ist somit relativ groß.

Abb. 8.8b:

Lager mit Betriebslagerluft **Null** oder **sehr geringem** Betriebsspiel. Unter rein radialer Belastung erstreckt sich die dunkel markierte Lastzone in etwa über den halben Umfang, es sind ungefähr die Hälfte der Wälzkörper an der Kraftübertragung beteiligt.

Bei gleicher äußerer Belastung ist daher die spezifische Belastung pro Wälzkörper wesentlich geringer als in Beispiel 8.8a.

Abb. 8.8c:

Lager mit **negativer Betriebslagerluft** (Vorspannung). Durch die Vorspannung sind alle Wälzkörper am Umfang an der Kraftübertragung beteiligt.

Die spezifische Belastung pro Wälzkörper ist geringer als in den erstgenannten Fällen.

Vermeidung von Schlupf und Gleitreibung

Wälzlager brauchen für eine optimale Funktion auch eine gewisse Mindestbelastung, die ein Abwälzen der Wälzkörper auf den Laufbahnen sicherstellt.

Wird diese Mindestbelastung nicht erreicht, tritt im Lager verstärkt Gleitreibung auf, die auch zu vorzeitigen Lagerausfällen führen kann.

Besonders bei Rollenlagern, insbesondere aber bei den Axial-Rillenkugellagern und den Axial-Zylinderrollenlagern ist besonders auf eine Einhaltung dieser Mindestbelastung zu achten.

Auch bestimmte Betriebsbedingungen wie Kurvenfahrten, stoßartige Belastungen, Vibrationen usw. können zu einem verstärkten Auftreten von Gleitreibung im Lager führen.

In vielen Anwendungsfällen wird die erforderliche Mindestbelastung ohnehin schon durch das Eigengewicht der gelagerten Welle mit den rotierenden Anbauteilen erreicht, in den meisten Fällen durch die äußere Belastung.

Sollte die erforderliche Mindestbelastung dadurch aber nicht erreicht werden, kann diese in vielen Fällen durch eine **Vorspannung** der Lagerung erzielt werden.

Eine solche Vorspannung kann auch durch die Verwendung von Federn (Spiral- oder Tellerfedern) erreicht werden.

Höhe der Vorspannkraft

Bei der Festlegung der Höhe der Vorspannung ist besondere Sorgfalt geboten. Es sind dabei Einflussgrößen wie die erforderliche Steifigkeit der Lagerung, gewünschte Lebensdauer, charakteristische Eigenschaften der jeweils gewählten Lagerbauart sowie alle relevanten Betriebsparameter zu beachten.

Auch auf äußere Einflussgrößen wie Belastung, Stöße und Betriebstemperatur ist besonders zu achten, weshalb unbedingt praktische Erfahrungen mit gleichartigen oder ähnlichen Lageranordnungen berücksichtigt werden sollen.

Da sich viele Einflüsse nicht immer ausreichend genau abschätzen lassen, empfiehlt sich bei Neukonstruktionen eine ausreichende Erprobung der Vorspannung in Versuchen oder bei Probeläufen unter Einsatzbedingungen.

Vorspannung zur Verminderung des Laufgeräusches

Die Läufer kleiner bis mittelgroßer Elektromotoren bzw. Generatoren sind häufig in Rillenkugellagern gelagert.

Um mögliche Lagerschäden durch Stillstandsschwingungen zu vermeiden, das vorhandene Axialspiel zu kompensieren oder auch zur Verringerung des Laufgeräusches werden diese Lagerungen oft durch Tellerfedern oder Kugellager-Ausgleichsscheiben (siehe Abb. 8.9) leicht vorgespannt bzw. spielfrei gemacht.

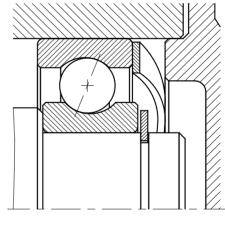


Abb. 8.9

Auch bei der Lagerung schnelllaufender Schleifspindeln wird oftmals eine Vorspannung mittels Federn angewendet, um spielfreie Lagerungen zu erzielen.

Lagerluft und Vorspannung

Die Höhe der dazu erforderlichen Vorspannkraft ist in Abhängigkeit von der Lagergröße zu wählen.

Dabei gelten folgende Empfehlungen: zur Eliminierung des **Lagerspiels**:

$$F[N] \approx 5 * d[mm]$$

zur Verminderung des Laufgeräusches:

$$F[N] \approx 5 \div 10^* d[mm]$$

Zur Verhinderung von Lagerschäden durch **Stillstandsschwingungen**:

$$F[N] \approx 15 \div 20^{*} d[mm]$$

wobei:

F = Federkraft [N] d = Lagerbohrung [mm]

Zur Sicherstellung der Mindestbelastung:

Die Federkraft ist gemäß den für jede Lagerart im Tabellenteil genannten Empfehlungen zur Mindestlagerbelastung festzulegen.

Bestimmung der Vorspannkraft

Bei einer angestellten oder vorgespannten Lageranordnung wie in Abb. 8.10 dargestellt, teilt sich bei zentrisch wirkender, rein radialer Belastung die äußere Last auf beide Lager auf. Bei Lagern mit einem Druckwinkel $\neq 0^{\circ}$, wie etwa bei Schrägkugellagern und Kegelrollenlagern verursacht jede äußere Radialbelastung eine innere Axialkraft.

Ein Auftreten zusätzlicher äußerer Axialbelastungen (Fa), wie sie beispielsweise bei Radlagern in Kurvenfahrt wirken, bewirkt, sofern diese größer sind als die induzierten inneren Axialkräfte, eine Entlastung des äußeren Lagers (Lager B) und eine stärkere Belastung des innen gelegenen Lagers A.

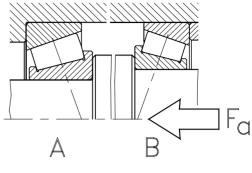


Abb. 8.10

In extremen Fällen kann dadurch das Lager **B** komplett entlastet werden, während das Gegenlager (**A**) überlastet wird.

Die Höhe der aufzubringenden Vorspannkraft ist daher so zu wählen, dass zum einen eine dauernde Entlastung eines der beiden Lager im Betrieb zuverlässig vermieden wird, andererseits darf die Vorspannkraft keine Überlastung der Lagerung bewirken.

Auch zur Erhöhung der Steifigkeit einer Lagerung eignet sich die Vorspannung.

Dabei sollte im Allgemeinen die Höhe der aufgebrachten Vorspannkräfte höchstens die Hälfte der äußeren Lagerbelastung erreichen, da höher gewählte Vorspannkräfte bereits den gegenteiligen Effekt bewirken würden.

Allgemeines

Eines der für eine zufrieden stellende Funktion einer Lagerung wichtigsten Elemente ist der verwendete Schmierstoff.

Dieser trennt die metallischen Oberflächen, verringert die Reibung, konserviert metallische Lagerteile und dient auch als zusätzlicher Schutz gegen ein Eindringen von Verunreinigungen in das Lager.

Daher übt gerade die Schmierung eine Schlüsselfunktion im Lager aus. Ein Versagen der Schmierung zieht normalerweise einen sofortigen Ausfall der Lagerung nach sich.

Arten der Schmierung

Im Wesentlichen kommen drei unterschiedliche Schmierverfahren zum Einsatz:

Fettschmierung

Der überwiegende Anteil aller Wälzlager, etwa 90%, wird mit Fett geschmiert.

Vorteile der Fettschmierung sind:

- sehr einfache Anwendung
- wartungsarm
- zusätzliche Dichtwirkung des Fettes
- Lager mit Dicht- oder Deckscheiben vorbefettet und einbaufertig erhältlich
- einfache Abdichtung der Lagerstellen
- Vielzahl unterschiedlicher Schmierfette verfügbar
- "lebensdauergeschmierte" Lagerungen möglich

Ölschmierung

Öl wird dann zur Schmierung von Wälzlagern verwendet, wenn entweder im betreffenden Aggregat ohnehin aus anderen Gründen bereits Ölschmierung vorhanden ist, wie etwa in Getrieben, oder wenn besondere Betriebsbedingungen, wie sehr hohe Drehzahlen oder Belastungen vorliegen, die eine Abfuhr der Reibungswärme aus den Lagerstellen erfordern oder eine punktgenaue Schmierung

an neuralgischen Stellen des Lagers, wie beispielsweise Führungsflächen, erforderlich machen.

Vorteile bei einer Ölschmierung sind die Wärmeabfuhr sowie die Spülwirkung bei Ölumlaufschmierung. Nachteilig ist der relativ große Aufwand für eine effiziente Abdichtung der Lagerstellen.

Feststoff- und Trockenschmierung

In Anwendungen, in denen aus verschiedenen Gründen eine Öl- oder Fettschmierung der Lager nicht verwendet werden kann, kommen auch andere Materialien, die zur Trennung der Oberflächen im Lager geeignet sind, zum Einsatz. Einige Beispiele dafür sind:

Graphit

- als Pulver oder gepresst als Käfigwerkstoff

Molybdändisulfid (MoS₂)

- in Pulverform

Polytetraflouräthylen (PTFE)

- in Pulverform

Metallische Überzüge

Verwendet werden zumeist galvanisch aufgebrachte, sehr dünne Schichten, beispielsweise aus Gold oder Silber. Verwendung in Röntgenanlagen, unter Vakuum und bei Sonderanwendungen in Luft- und Raumfahrt.

Gleitlacke

In Form von Pasten oder Dispersionen, d.h. ein pulverförmiger Festschmierstoff wird in ein geeignetes Lösungs- bzw. Trägermedium eingerührt. Nach dem Auftragen verdampft das Trägermedium, die Schmierstoffpartikel bleiben an den Lageroberflächen haften.

Oberflächenbehandlungen

Werden zumeist als Korrosionsschutz oder zusätzlich zur Schmierung bei Lagern in extrem verschleißgefährdeten Anwendungen eingesetzt. Verwendet werden beispielsweise brünierte oder phosphatierte Oberflächen.

Wahl des Schmierverfahrens

Die Festlegung der Schmierung sollte in einem relativ frühen Konstruktionsstadium durchgeführt werden, da dies auch die Auslegung der Anschlussteile mit beeinflusst.

Welches Schmierverfahren für eine spezifischen Anwendung eingesetzt werden soll, hängt von den jeweiligen Betriebsbedingungen ab.

Abgesehen von den eingangs genannten Entscheidungskriterien für Fett, Öl- oder Feststoffschmierung ist auch die zu erwartende Betriebsdrehzahl zu beachten.

In den Produkttabellen der jeweiligen Lagerart sind Referenz- und Grenzdrehzahlen für Ölschmierung angegeben.

Drehzahleignung der Schmierung

Abgesehen von der Drehzahleignung der Lager spielt auch die Eignung der jeweiligen Schmierung für eine bestimmte Drehzahl eine wesentliche Rolle.

Eine wesentliche Kenngröße für die Eignung eines Schmierstoffes bzw. eines Schmierverfahrens ist der **Drehzahlkennwert**

$$n * d_m \left[\frac{mm}{min} \right]$$
 (Gl. 9.1)

wobei:

n Betriebsdrehzahl des Lagers [min⁻¹]

d_m Mittlerer Lagerdurchmesser [mm] Dieser kann wie folgt angenommen werden:

$$d_{m} = \frac{d + D}{2} [mm]$$
 (GI. 9.2)

d Lagerbohrung [mm]

D Außendurchmesser des Lagers [mm]

Beispiele für n * d_m-Werte:

Schmierverfahren	n * d _m							
Fettschmierung								
Standard - Wälzlagerfette	≤ 500.000							
Sonderfette	≤ 1.000.000							
Ölschmierung								
Ölbadschmierung	≤ 500.000							
Ölumlaufschmierung	≤ 750.000							
Spritzölschmierung	≤ 800.000							
Ölnebelschmierung *)	≤ 1.500.000							
Minimalschmierung *)	≤ 3.000.000							

Tabelle 9.1

*) Bei Drehzahlkennwerten > 1.000.000 spielen in jedem Fall praktische Erfahrungen eine wichtige Rolle. Gegebenenfalls müssen auch Sondereinrichtungen wie eine zusätzliche Ölkühlung usw. vorgesehen werden.

Die in Tabelle 9.1 genannten Werte sind als Richtgrößen zu verstehen.

Genaue Drehzahlkennwerte für bestimmte Schmierstoffe sind beim jeweiligen Schmierstoffhersteller zu erfragen.

Aufgaben des Schmierstoffes

Unabhängig vom jeweils verwendeten Schmierstoff sowie der Art der Schmierung erfüllen die Schmierstoffe in jeder Lagerung folgende Aufgaben:

- Trennung der metallischen Oberflächen
- Verminderung der Reibung sowohl im Wälzkontakt als auch in den Zonen mit Gleitreibung

- Verschleißminderung
- Konservierung der Stahlteile des Lagers
- Verhinderung des Eindringens von Verunreinigungen in den Schmierspalt
- bei Ölschmierung Wärmeabfuhr
- Abfuhr von Abriebpartikeln aus dem Lager

Wichtige Kenngrößen von Schmierstoffen

- Viskosität

Mit **Viskosität** bezeichnet man die Fließfähigkeit einer Flüssigkeit. Sie ist eine der wichtigsten Kenngrößen von Ölen. Bei **Fetten** wird die Viskosität des jeweiligen **Grundöles** angegeben.

Grundsätzlich unterscheidet man zwischen der als Kenngröße angegebenen **Bezugsviskosität** eines Schmierstoffes und der sich unter Einsatzbedingungen bei Betriebstemperatur des Lagers ergebenden **Betriebsviskosität**.

Da die Viskosität von Schmierstoffen sehr stark temperaturabhängig ist, wird die Bezugsviskosität bei einer definierten Prüftemperatur angegeben. In den meisten Fällen wird die Bezugsviskosität bei 40°C angegeben

(" ν_{40} "), fallweise findet man auch Angaben bei anderen Bezugstemperaturen (ν_{50} , ν_{100}).

- Konsistenz

Die Konsistenzklasse bezeichnet die Steifigkeit eines Fettes. Eingeteilt werden Schmierfette nach NLGI-Klassen.

Sehr weiche Fette, beispielsweise für hohe Drehzahlen, weisen niedrige NLGI-Klassen auf, steife Fette hohe NLGI-Klassen.

Zur Lagerschmierung werden vorwiegend Fette der NLGI-Klassen 2 und 3, seltener der Klassen 0 und 1 eingesetzt.

Trennung der metallischen Oberflächen

Die wichtigste Eigenschaft der Schmierstoffe ist, für eine möglichst vollständige Trennung der metallischen Oberflächen im Lager zu sorgen.

Das nach **DIN ISO 281** genormte Verfahren zur Lebensdauerberechnung setzt eine **ausreichende Trennung** der metallischen Oberfläche der Lagerteile voraus (siehe Abb. 9.1).

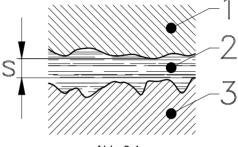


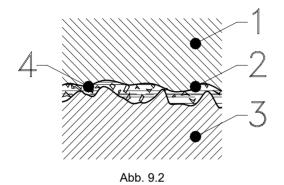
Abb. 9.1

Dies wird dann erreicht, wenn der sich im Wälzkontakt zwischen Laufbahnen (3) und Wälzkörpern (1) aufbauende Schmierfilm (2) dick genug ist, um die Oberflächen vollständig zu trennen.

Dazu muss der Schmierfilm eine Dicke (s) aufweisen, die größer ist als die Summe der Oberflächenraubeiten der Laufbahnen

Die Dicke eines sich aufbauenden Schmierfilmes hängt hauptsächlich von der unter Betriebsbedingungen vorhandenen Schmierstoffviskosität (**Betriebsviskosität**) und der Drehzahl ab.

Außerdem dürfen keine Verunreinigungen oder Fremdpartikel, die größer sind als die Schmier-filmdicke s, im Schmierstoff vorhanden sein.


Sind diese Voraussetzungen erfüllt, spricht man von "Hydrodynamischer Schmierung".

Diese wird in der Praxis aber nicht immer erreichbar sein.

Schmierung von Wälzlagern

In vielen Anwendungsfällen liegt sogenannte "Grenzschmierung" vor, bei der eine vollständige Trennung der metallischen Lageroberflächen nicht immer gewährleistet ist (siehe Abb. 9.2).

Dabei führen geringe Drehzahlen, hohe Temperaturen, Schmierstoffe mit zu geringer Betriebsviskosität, Verunreinigungen im Schmierspalt oder auch gealterte Schmierstoffe zu einer zu geringen Schmierfilmdicke, so dass ein Berühren der Oberflächen möglich wird (siehe Abb. 9.2).

Auswahl der Schmierstoffviskosität

Die im Betrieb vorhandene Schmierstoffviskosität wird durch folgende Faktoren bestimmt:

- Ausgangsviskosität des Schmierstoffes
- Lagergröße
- Betriebstemperatur
- Drehzahl

Eine einfache, zumeist aber durchaus ausreichende Abschätzung der für einen bestimmten Anwendungsfall erforderlichen Schmier/ stoffviskosität lässt sich nach der bereits im Abschnitt "Auswahl und Dimensionierung von Wälzlagern" ausführlich dargelegten Vorgangsweise unter Zuhilfenahme der dort dargestellten Diagramme durchführen.

Folgende Einzelschritte sind dazu erforderlich:

- 1) Berechnung des mittleren Lagerdurchmessers d_m
- 2) Abschätzung der erforderlichen Betriebsviskosität v_1
- Ermittlung der tatsächlich vorhandenen Betriebsviskosität v
- 4) Bildung des Verhältnisses von erforderlicher zu vorhandener Betriebsviskosität κ

Es besteht ein enger Zusammenhang zwischen dem Schmierzustand in einer Lagerung und der zu erwartenden Lagerlebensdauer.

Dieser Zusammenhang wird in der erweiterten Lebensdauerberechnung durch die Berücksichtigung entsprechender Lebensdauerfaktoren berücksichtigt.

Siehe dazu auch das entsprechende Fallbeispiel im Abschnitt "Auswahl und Dimensionierung von Wälzlagern" auf Seite 70.

Additivierung von Schmierstoffen

Zur Verbesserung spezieller Schmierstoffeigenschaften werden in vielen Fällen besondere chemische Verbindungen, sogenannte **Additive**, zugegeben.

Die wichtigsten Additive sind Antioxydantien, welche die Alterungsbeständigkeit von Schmierstoffen erhöhen, **EP**-Zusätze für Hochbelastbare Schmierstoffe (**EP** = Extreme **P**ressure), Zusätze für eine bessere Benetzung usw.

Gerade bei Anwendungsfällen mit Grenzschmierung, bei denen eine ausreichende Schmierfilmausbildung nicht immer gewährleistet ist, gewinnt eine ausreichende Additivierung des Schmierstoffes an Bedeutung. Bei stark additivierten Schmierstoffen ist die Verträglichkeit der Additive mit den Dichtungswerkstoffen gesondert abzuklären.

Schmierfette

Schmierfette bestehen aus dem durch einen Verdicker gehaltenen Grundöl, sowie, je nach Fettsorte, verschiedenen Additiven.

Grundöl

das **Grundöl** bestimmt im Wesentlichen die Schmiereigenschaften eines Fettes. Zumeist werden mineralölbasische Grundöle verwendet, aber auch synthetische Öle kommen zum Einsatz.

Bei der Festlegung der erforderlichen Betriebsviskosität wird bei Fettschmierung die Viskosität des Grundöles bestimmt.

Verdicker

Der Verdicker in einem Fett hat die Aufgabe, das Grundöl zu halten. Als Dickungsmittel werden überwiegend Metallseifen wie Lithiumseife, Kalzium- oder Natriumseife, aber auch Bentonite, Polyharnstoffe und andere Substanzen eingesetzt. Es gibt auch gemischtverseifte Fette, bei denen der Verdicker aus zwei unterschiedlichen Seifen besteht (beispielsweise Natrium / Kalzium oder Lithium / Kalzium usw.) oder auch Komplexseifenfette, bei denen das Dickungsmittel aus einer Metallseife und einem Metallsalz besteht.

Je nach verwendetem Dickungsmittel spricht man auch von lithiumverseiften, gemischtverseiften, Fetten, usw.

Der Verdicker bestimmt maßgeblich die Konsistenz (Steifigkeit) des Fettes, dessen mechanische und chemischen Eigenschaften, den Temperaturbereich, in dem das Fett verwendet werden kann, sowie die Beständigkeit des Schmierfettes gegenüber Feuchtigkeit.

Konsistenzklassen

Die **Konsistenz** von Fetten wird durch die Eindringtiefe ("Penetration") eines genormten

Prüfkegels in eine nach festgelegten Kriterien aufbereiteten Fettprobe durchgeführt.

Je nach deren Steifigkeit dringt der Prüfkörper bei weichen Fetten tiefer ein, bei steiferen Fetten weniger tief.

Die so gewonnenen Werte der "Walkpenetration" werden in 0,1 mm angegeben und in definierten Konsistenzklassen zusammengefasst:

NLGI - Klasse Konsistenzklasse	Walkpenetration [1/10 mm]
000	445 ÷ 475
00	400 ÷ 430
0	355 ÷ 385
1	310 ÷ 340
2	265 ÷ 295
3	220 ÷ 250
4	175 ÷ 205
5	130 ÷ 160
6	85 ÷ 115

Tabelle 9.2

Je nach Lagergröße und individuellen Einsatzbedingungen kommen weichere oder steifere Fette zum Finsatz

Weiche Fette sind besser geeignet bei Kleinund Miniaturlagern, hohen Drehzahlen, tiefen Temperaturen, bei Zentralschmieranlagen usw., während sich steifere Fette besser für die Verwendung bei höheren Temperaturen und größeren Lagern eignen, sowie eine bessere Dichtwirkung gegen ein Eindringen von Staub und anderen Verunreinigungen in die Lagerstelle aufweisen.

In der folgenden Tabelle 9.3 sind einige Kenndaten der gebräuchlichsten Wälzlagerfette zusammengefasst.

Art des Verdickers	Grundöl	Tempera	turbereich ≤	Anmerkungen
Lithiumseife	Mineralöl	-30°C	+120°C	Standard-Wälzlagerfett
	Esteröl	-60°C	+130°C	Tieftemperaturfett / Hochgeschwindigkeitsfett
	Silikonöl	-40°C	+170°C	Hoch- und Tieftemperaturfett
Natriumseife	Mineralöl	-30°C	+100°C	nicht wasserbeständig
Bentonite	Mineralöl	-20°C	+150°C	Hochtemperaturfett für geringe Drehzahlen
Polyharnstoff	Mineralöl	-20°C	+150°C	Hochtemperaturfett für hohe Drehzahlen
Kalziumseife	Mineralöl	-20°C	+60°C	sehr gute Wasserbeständigkeit
Kalziumkomplexseife	Mineralöl	-30°C	+150°C	Hochtemperaturfett, auch bei höherer Belastung
Natriumkomplexseife	Mineralöl	-20°C	+130°C	auch bei höherer Belastung
Aluminiumseife	Mineralöl	-20°C	+70°C	gute Wasserbeständigkeit
Aluminiumkomplexseife	Mineralöl	-40°C	+150°C	Hochtemperaturfett für hohe Drehzahlen, auch bei höherer Belastung
Bariumkomplexseife	Mineralöl	-20°C	+150°C	Hochtemperaturfett für hohe Drehzahlen, auch bei höherer Belastung
	Esteröl	-60°C	+130°C	Tieftemperaturfett für hohe Drehzahlen; gute Dampfbeständigkeit

Tabelle 9.3

Lithiumseifenfette

sind die derzeit gebräuchlichsten Standard-Wälzlagerfette; sie werden standardmäßig auch bei abgedeckten bzw. abgedichteten Lagern verwendet.

Kalziumseifenfette

zeichnen sich durch sehr gute Wasserbeständigkeit aus, haben jedoch einen eingeschränkten Temperaturbereich.

Kalziumkomplexseifenfette

ebenfalls sehr gute Wasserbeständigkeit, gute thermische Beständigkeit.

Kalziumkomplexseifenfette neigen bei rascher Abkühlung aber zum Verhärten.

Natriumseifenfette

weisen guten Schutz gegen Korrosion auf, da sie eine begrenzte Menge Wasser binden können. Dadurch wird das Fett allerdings dünnflüssiger.

Polyharnstofffette

sehr gute Temperaturbeständigkeit, für mittelhohe Belastungen.

PTFE-Fette

Sonderschmierstoff für extreme Betriebstemperaturen, sehr gute Beständigkeit gegen chemische Einflüsse.

Mischbarkeit von Fetten

Grundsätzlich ist das Mischen unterschiedlicher Fettsorten zu vermeiden.

Auch bei einer Mischung von Fetten mit an sich gleichen oder einander sehr ähnlichen Eigenschaften kann es durch eine Unverträglichkeit oder Reaktion zwischen einzelnen Bestandteilen der Schmierstoffe zu unabsehbaren Folgen kommen.

Lediglich Schmierfette mit gleichen Verdickern und gleichem oder ähnlichen Grundölen können gemischt werden. Sollte dennoch ein Fettwechsel erforderlich werden, sind die Reste des alten Schmierstoffes möglichst vollständig zu entfernen, wobei auch die noch in den Lagergehäusen bzw. Schmierkanälen befindlichen Schmierstoffreste entfernt werden müssen.

Es sollte in der Übergangszeit verstärktes Augenmerk auf den Schmierungszustand der Lagerung gelegt werden. Eventuell sind für eine gewisse Übergangszeit die ursprünglich vorgesehenen Nachschmierintervalle zu verkürzen.

Fettmenge

Die in einem Lager tatsächlich unmittelbar zur Schmierung benötigte Fettmenge ist extrem gering. Der Großteil des Fettes wird in der Einlaufphase durch die umlaufenden Wälzkörper zur Seite gedrängt und bildet so ein Schmierstoffreservoir, aus dem bei Bedarf frisches Öl in den Wälzkontakt nachfließt. Somit stellt sich selbsttätig die richtige Schmierstoffmenge ein.

Die Verdrängung des Fettes in der Einlaufphase erzeugt Wärme, die sich u.a. in einer in dieser Phase üblicherweise etwas erhöhten Betriebstemperatur äußert.

In Extremfällen, wenn beispielsweise eine Verdrängung des Schmierstoffes aus dem Lager nicht möglich ist, kann das auch zu Lagerausfällen durch Heißlauf führen.

Die zur Schmierung einer Lagerstelle erforderliche Fettmenge richtet sich in erster Linie nach der Drehzahl der Lager.

Die Freiräume der Lager selbst sind in jedem Fall vollständig mit Fett zu füllen.

Die Fettfüllung der Gehäusefreiräume sollte nach den in Tabelle 9.4 angegebenen Empfehlungen durchgeführt werden:

Drehzahlverhältnis *) Fettfüllmenge **						
>	≤	[%]				
-	20	80 ÷ 90				
20	75	30÷ 50				
75	-	25				

Tabelle 9.4

- in % der in den Produkttabellen angegebenen Richtwerte für die Drehzahl bei Fettschmierung
- **) in % des Freiraumes im Lagergehäuse

Unter besonderen Umständen, wie etwa bei den unter sehr geringen Drehzahlen laufenden Seilscheiben, wird zur Vermeidung von Kondenswasserbildung der Gehäusefreiraum komplett mit Fett befüllt

Fettgebrauchsdauer und Nachschmierintervalle

Schmierstoffe unterliegen infolge der ständigen Überrollungen einer permanenten mechanischen Beanspruchung.

Gerade bei höheren Betriebstemperaturen finden Oxydationsprozesse statt. Wasser, Verunreinigungen, sowie verschiedene Umgebungseinflüsse bewirken darüber hinaus eine chemische Alterung des Fettes.

Daher ist auch die Gebrauchsdauer eines Schmierstoffes begrenzt.

Schmierung von Wälzlagern

Bei "lebensdauergeschmierten" Lagern, also bei Lagern mit einer beidseitigen Abdeckung durch Dicht- oder Deckscheiben, geht man davon aus, dass die Gebrauchsdauer des Schmierstoffes der beabsichtigten Lagerlebensdauer entspricht oder diese übertrifft.

Bei der Wartung und Instandhaltung von Lagerungen ist es zur Erhaltung der Betriebssicherheit unbedingt erforderlich, die **Gebrauchs-dauer des** Schmierstoffes realistisch einzuschätzen um rechtzeitig Nachschmieren zu können. Die Dauer der Gebrauchsfähigkeit eines Fettes hängt von den herrschenden Betriebsbedingungen, insbesondere von der Betriebstemperatur ab.

Eine überschlägige Abschätzung der **Schmier-stoffgebrauchsdauer** ist nach Gleichung 9.3 möglich.

$$t_n = \frac{a * 10^6}{n * \sqrt{d}} - b * d [h]$$
 (GI. 9.3)

wobei:

a,b Lagerspezifische Beiwerte (Tabelle 9.5)
 n Betriebsdrehzahl des Lagers [min⁻¹]
 d Lagerbohrung [mm]
 t_n Schmierstoffgebrauchsdauer [h]

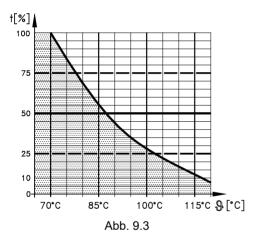
Aus Gründen der Betriebssicherheit sollten die **Nachschmierintervalle** bei neuen Anlagen, für die noch keine Erfahrungswerte vorliegen, zu Beginn mit etwa 50 ÷ 60 % der nach Gl. 9.3 ermittelten **Schmierstoffgebrauchsdauer** angesetzt werden.

Die Dauer der Nachschmierintervalle kann bei Bedarf schrittweise ausgedehnt werden, wobei allerdings in dieser Phase eine sehr sorgfältige Beobachtung der Schmiersituation und eine genaue Überwachung der Lagerstelle anzuraten ist.

Lagerart	Beiv	wert
Lagerreihe	а	b
Rillenkugellager 160, 60, 62 63 64	75 65 55	18 18 18
Schrägkugellager 72 B 73 B 32 33	65 55 55 55	18 18 18 18
Vierpunktlager QJ 2 QJ 3 Pendelkugellager 12, 22 13, 23	65 55 75 65	18 18 18 18
Zylinderrollenlager N.10, N.2, N.2 E N. 3, N. 3 E N. 4	75 65 55	18 18 18
Kegelrollenlager 302, 320, 322, 303, 313 323,	20 18 15	7 7 7
Pendelrollenlager 222 223	20 15	7 7

Tabelle 9.5

Einflüsse auf die Dauer der Nachschmierintervalle


Die nach Gl. 9.3 ermittelten Schmierintervalle sind beim Vorliegen besonderer Einsatzbedingungen noch weiter zu verringern.

Die errechneten Werte gelten für Dauertemperaturen ≤70°C. Über 70°C unterliegen mineralölbasische Schmierstoffe einer stark beschleunigten Alterung.

Bei dauernden Betriebstemperaturen über 70°C muss von einer **Halbierung** der nach Gleichung 9.3 ermittelten **Nachschmierintervalle** pro Zunahme der dauernd herrschenden Betriebstemperatur um 15°C ausgegangen werden

Der Verlauf dieser Reduzierung ist in Abb. 9.3 grafisch dargestellt:

wobei:

- t Nachschmierintervall [%]
- Dauernd wirkende Betriebstemperatur [°C]

Übt das Fett neben der eigentlichen Schmierung auch noch eine Dichtfunktion gegen das Eindringen von Verunreinigungen aus, sind die Nachschmierintervalle noch kürzer anzusetzen. Das Gleiche gilt bei Anwesenheit von Feuchtigkeit, Staubbelastung, Chemikalien, Schwingungen u.s.w.

Auch bei drehendem Außenring sollten die Schmierfristen verkürzt werden.

Bei geringen Drehzahlen und moderaten Betriebstemperaturen können hingegen die Nachschmierfristen ausgedehnt werden.

In jedem Fall sind auch bereits gewonnene praktische Erfahrungen mit Nachschmierfristen unter den gegebenen Einsatzbedingungen zu berücksichtigen.

Weitere Hinweise zu spezifischen Eigenschaften, möglichen Unverträglichkeiten und auch zur Schmierstoffgebrauchsdauer können selbstverständlich auch von den technischen Beratungsdiensten der Schmierstoffhersteller erfragt werden.

Nachschmiermengen

Tabelle 9.6

Die bei einer Nachschmierung der Lagerstelle zugeführte Frischfettmenge muss so bemessen sein, dass der alte, verbrauchte Schmierstoff zuverlässig und vollständig durch frisches Schmierfett ersetzt wird.

Die zur **Nachschmierung** erforderliche Fettmenge kann nach der folgenden Formel abgeschätzt werden:

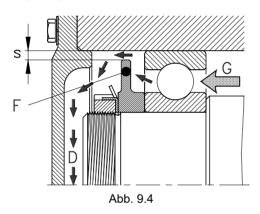
$$m = \frac{D * B}{1000} * i$$
 (GI. 9.4)

wobei:

m	Nachschmierfettmenge	[g]
D	Außendurchmesser des Lagers	[mm]
В	Lagerbreite	[mm]
i	Faktor für Nachschmierhäufigkei	t aus

Nachschmierhäufigkeit	i
wöchentlich	2
monatlich	3
jährlich	4

Tabelle 9.6



Fettführung

Ein leichtes Abfließen des alten Schmierfettes ist durch konstruktive Maßnahmen, wie beispielsweise Fettaustrittsbohrungen oder Gehäusefreiräume, die den verbrauchten Schmierstoff aufnehmen, sicherzustellen.

Beim Nachschmieren muss auch gewährleistet sein, dass eine Überschmierung der Lager vermieden wird.

Eine einfache und wirksame Möglichkeit zur Vermeidung einer Überschmierung sind **Fettmengenregler** (siehe Abb. 9.4).

- s Spalt zwischen Fettmengenregler und Gehäusebohrung
- F Fettmengenregler
- G Frischfettzufuhr
- D Abfluss des verdrängten Altfettes

Fettmengenregler sind neben den Lagern angeordnete Scheiben (**F**), deren Außendurchmesser je nach Lagergröße so dimensioniert ist, dass zur Gehäusebohrung ein Spalt (**s**) von etwa 1 bis 3 mm verbleibt.

Die Zuführung von Frischfett (**G**) muss von der dem Fettmengenregler gegenüberliegenden Lagerseite aus erfolgen.

Beim Nachschmieren wird durch das Einpressen des Frischfettes (**G**) ein Überdruck im Gehäuse aufgebaut, der eine Verdrängung des verbrauchten Schmierstoffes (**D**) bewirkt. Durch den Fettmengenregler wird, solange der Überdruck im Gehäuse besteht, Fett aus dem Gehäuse gefördert.

Die Zuführung des Frischfettes wird bei verschiedenen Lagerarten, wie etwa bei Pendelrollenlagern (Abb. 9.5), Lauf- und Stützrollen oder bei zweireihigen Kegelrollenlagern durch Schmiernuten und Bohrungen erleichtert, die teilweise, wie bei den Pendelrollenlagern, bereits zum Serienstandard gehören.

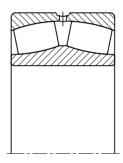


Abb. 9.5

Schmierbohrungen, Schmierkanäle und -nuten sind so zu dimensionieren, dass sich beim Nachschmieren kein zu großer Rückstau aufbauen kann.

Die Zuführung des neuen Schmierstoffes sollte so nahe als möglich zu den Lagern erfolgen.

Wenn die Gehäusefreiräume unterschiedlich groß sind, sollte eine Schmierstoffzuführung immer vom kleineren in den größeren Freiraum erfolgen.

Durch die Anbringung von Schmiernippeln lässt sich eine Verunreinigung der Schmierkanäle, beispielsweise durch Staub, vermeiden.

Ölschmierung

Im Vergleich mit fettgeschmierten Lagerungen ist der erforderliche konstruktive Aufwand bei Ölschmierung durchwegs höher.

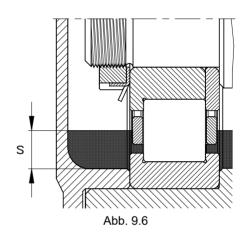
Zur Schmierung von Wälzlagern werden hauptsächlich legierte und unlegierte Mineralöle verwendet und synthetische Öle zum Einsatz.

Die Bestimmung der zur Lagerschmierung erforderlichen Ölviskosität ist nach der bereits im Abschnitt "Auswahl und Dimensionierung von Wälzlagern" dargestellten Methode durchzuführen.

In der Praxis wird aber die vorhandene Ölviskosität häufig durch andere Überlegungen mitbestimmt, beispielsweise bei Lagern in Getrieben.

Schmierverfahren

Je nach Anforderungen und Einsatzfall werden bei einer Ölschmierung folgende Verfahren angewandt:


Ölbad- oder Ölsumpfschmierung

Es ist dies die einfachste Methode einer Ölschmierung, da keine zusätzlichen Fördereinrichtungen wie Pumpen u.s.w. erforderlich sind. Typische Anwendungsbereiche der Ölbadschmierung sind Zahnradgetriebe, bei denen das Öl primär zur Schmierung der Zahnräder eingesetzt wird.

Bei der Ölbadschmierung steht das Lager direkt im Öl (siehe Abb. 9.6).

Bei umlaufendem Lager wird Öl von den Wälzkörpern und vom Käfig mitgenommen und verteilt sich dadurch auf alle zu schmierenden Flächen. Allerdings erzeugt die stetige Verdrängung des Öles auch zusätzliche Reibung.

Daher sollte bei Drehzahlen von mehr als 40% der angegebenen Richtdrehzahl der Ölstand (s) nicht höher sein als der halbe Durchmesser des untersten Wälzkörpers (siehe Abb. 9.6).

Ölumlaufschmierung

Bei diesem Verfahren wird das zur Schmierung der Lagerstellen verwendete ÖI in einem Sammelbehälter gesammelt und durch Pumpen oder Schleuderringe zu den Lagerstellen geleitet. Dieses Verfahren eignet sich sehr gut zur Wärmeabfuhr aus den Lagerstellen. Die sich im Umlauf befindliche Ölmenge ist den Anforderungen der Wärmeabfuhr anzupassen. Fallweise kann auch eine zusätzliche Ölkühlung erforderlich werden.

Der Ölsammelbehälter sollte in jedem Fall ausreichend dimensioniert werden, um ein Setzen von Abriebpartikeln und Oxydationsteilchen zu ermöglichen.

Vor der Rückführung des Öles in den Schmierkreislauf sollte das Öl gefiltert werden.

Schmierung von Wälzlagern

Asymmetrische Lager, beispielsweise Schrägkugellager und Kegelrollenlager, weisen eine Pumpwirkung auf, die zur Unterstützung der Ölzirkulation ebenfalls herangezogen werden kann.

Bei einer Ölumlaufschmierung ist auf eine ausreichende Dimensionierung der Ölablaufbohrungen sowie der Ölrückleitungen zu achten, da es ansonsten zu einem Ölstau kommen kann.

Spritzölschmierung

Dabei wird das beispielsweise durch das Eintauchen von Zahnrädern in einen Ölsumpf verspritzte bzw. zerstäubte Öl zur Schmierung der Lager verwendet.

Bei einfachen Getrieben werden fallweise auch Spritzringe verwendet, die lose auf einer Welle mitlaufen und für eine Verteilung des Öles im Lagergehäuse sorgen.

Es ist allerdings darauf zu achten, dass die Schmierung der Lagerstellen unter allen Betriebsbedingungen sichergestellt ist. Gegebenenfalls sind Ölsammeltaschen oder ähnliche Einrichtungen vorzusehen.

Einspritzschmierung

Dieses Schmierverfahren eignet sich insbesondere für schnelllaufende Lager.

Bei der Einspritzschmierung wird ein Ölstrahl zielgerichtet durch Düsen in den Spalt zwischen Käfig und Außen- bzw. Innenring gerichtet.

Der Druck des Ölstrahls muss stark genug sein, um die durch das rotierende Lager erzeugten Verwirbelungen zu durchschlagen. Dies wird dann erreicht, wenn die Einspritzgeschwindigkeit > 15 m/s ist.

Die Düsendurchmesser sollten > 1 mm sein. Bei größeren Lagern sind auch mehrere Einspritzdüsen am Umfang anzubringen.

Aufgrund der bei der Einspritzschmierung verwendeten relativ großen Ölmengen sind auch die Ölrücklaufbohrungen hinreichend groß zu wählen. Durch die zielgenaue Schmierung sowie die großen Ölmengen weist diese Schmiermethode eine sehr gute Kühlwirkung auf.

Ölnebelschmierung

Dieses Schmierverfahren eignet sich ebenfalls für sehr schnell laufende Lager, setzt allerdings ein Druckluftsystem voraus.

Bei der Ölnebelschmierung wird das Schmieröl in einer Zerstäubereinheit zu einem feinen Ölnebel zerstäubt und dann der Lagerstelle zugeführt.

Durch den als Trägermedium für die Öltröpfchen dienenden Luftstrom wird auch eine Kühlung der Lagerstelle erzielt.

Ölmenge, Ölwechselfristen

Für die in einem Aggregat erforderliche Ölmenge sowie die Verwendungsdauer des Schmieröls gibt es keine allgemein anwendbare Berechnungsformel. Da diese Größen von einer Vielzahl verschiedener Parameter beeinflusst werden, können sie nur durch eine praktische Erprobung genau festgelegt werden.

Bei Neukonstruktionen sollten die mit ähnlich gestalteten Aggregaten gewonnenen Erkenntnisse als Ausgangswerte für die Erprobung bzw. zur Festlegung der jeweils optimalen Ölmengen zugrunde gelegt werden, da sich auch bereits kleine Unterschiede in Konstruktion, Wärmeabfuhr und Strömungsverhältnissen von einer Anlage zur nächsten in beträchtlichen Unterschieden in Verwendungsdauer und benötigter Menge des Öls niederschlagen können.

Allgemeines

NKE Wälzlager sind hochpräzise Maschinenelemente, die auf modernsten Anlagen mit Toleranzen von wenigen μm (1 μm = 0,001 mm) produziert werden.

Umfangreiche Qualitätssicherungsmaßnahmen, sowie laufende Kontrollen der Produktqualität gewährleisten die Erfüllung höchster Ansprüche an Betriebssicherheit, Laufgenauigkeit und Lebensdauer.

Um die volle Funktionsfähigkeit der Lagerung sicherzustellen, müssen auch die Handhabung und der Einbau von Wälzlagern mit besonderer Sorgfalt, unter Beachtung einiger grundsätzlichen Regeln, erfolgen.

Aufbewahrung von Lagern

Alle NKE Wälzlager werden ausreichend konserviert und gut verpackt geliefert.

Das werksseitig aufgebrachte Korrosionsschutzmittel gewährleistet bei sachgerechter Lagerung in Originalverpackung eine einwandfreie Funktion der Lager auch bei einer Aufbewahrung über einen längeren Zeitraum.

Grundsätzlich müssen die Lager in deren Originalverpackung aufbewahrt werden und sind erst unmittelbar vor dem Einbau auszupacken.

Die **Aufbewahrung** der Lager sollte in sauberer Umgebung bei **Raumtemperatur**, also bei 15°C - 25°C erfolgen. Die relative Luftfeuchtigkeit im Lagerraum sollte 60 % nicht überschreiten.

Die Wälzlager dürfen in **keinem** Fall in unmittelbarer Nähe von Wasser, spanabhebenden oder stauberzeugenden Maschinen und Anlagen sowie korrosiver Medien aufbewahrt werden. Sie sollten weiters keinen andauernden Vibrationen bzw. Schwingungen ausgesetzt werden, da dadurch Beschädigungen an den Laufflächen hervorgerufen werden können.

Auch in verpacktem Zustand dürfen die Lager keinen extremen Temperaturschwankungen oder direkter Sonneneinstrahlung ausgesetzt werden, da dadurch die Gefahr von Kondenswasserbildung in den Verpackungen besteht.

Alle Lager, vor allem Lager mit größeren Durchmessern, sind **liegend** aufzubewahren.

Bei größeren Lagern kann es bereits durch deren Eigengewicht zu bleibenden Verformungen der Lagerringe kommen.

Eine ungeschützte Aufbewahrung von Lagern direkt am Boden ist ebenfalls zu vermeiden.

Auch bei der **Handhabung** der Lager ist eine gewisse Sorgfalt anzuwenden. Stöße, Fallenlassen oder ein Werfen der Lager ist tunlichst zu vermeiden!

Wenn Originalverpackungen sichtbare Verletzungen oder Transportbeschädigungen aufweisen sollten, ist das Lager in jedem Falle auf dessen Funktionstüchtigkeit hin zu untersuchen.

Lagerfähigkeit

Bei bestimmten Lagerarten, insbesondere bei den bereits werksseitig mit Fett gefüllten Lager mit Dicht- oder Deckscheiben (Nachsetzzeichen -2RS2, -2RS, -2RSR, -2Z, -2LFS,...) muss bei längerer Aufbewahrung mit einer Veränderung des Fettes gerechnet werden. Es kann dabei zu einem Verfestigen des Fettes, aber auch zu einem Ausbluten des Grundöles kommen, wodurch die Lagerfähigkeit dieser Lager begrenzt ist. Bei bereits erhärteter Fettfüllungen ist bis zum Weichwerden des Fettes bei Betriebstemperatur mit erhöhter Anlaufreibung zu rechnen.

Die Lagerfähigkeit der Lager ist je nach verwendeter Fettsorte, sowie den vorhandenen Lagerungsbedingungen, unterschiedlich.

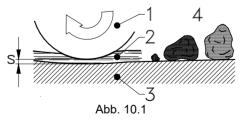
Nur die Beachtung aller angeführten Punkte garantiert, dass das Lager bei Bedarf auch in gutem Zustand für einen sofortigen Verbau zur Verfügung steht.

Voraussetzungen zum Lagereinbau

Ein fachgerechter Lagereinbau ist eine der Grundvoraussetzungen für eine zufrieden stellende Funktion der Lagerung.

Eine Beschädigung des Lagers beim Einbau kann fatale Folgen sowie große finanzielle Verluste verursachen, wovon der eigentliche Wert des Lagers in keiner Relation zur Höhe des Gesamtaufwandes steht.

Sauberkeit


Beim Umgang mit Wälzlagern ist die größtmögliche Sauberkeit eine unabdingbare Grundvoraussetzung.

Die Laufflächen der Lagerringe und der Wälzkörper werden auf Oberflächenrauheiten von wenigen **Zehntel µm** [1/10 µm = 0,0001 mm] gefinisht.

Diese extrem glatten Oberflächen sind sehr empfindlich gegen Beschädigungen.

Lager übertragen große Kräfte über sehr kleine Kontaktzonen (siehe Abb. 10.1).

Zwischen den Wälzkörpern (1) und Laufringen (3) befindet sich der Schmierfilm (2), in dem sich durch die hohen Kräfte ein immenser Druck aufbaut. Dieser Druck verursacht eine lokale Einfederung durch eine elastische Verformung des gehärteten Lagerstahls.

Die **Dicke** des sich im Lager aufbauenden **Schmierfilmes** (\mathbf{s}) hängt von den jeweiligen Betriebsbedingungen ab, bewegt sich aber üblicherweise im Bereich einiger **zehntel** $\mu \mathbf{m}$ bis hin zu einem $\mu \mathbf{m}$.

Normaler **Staub** aus der Umgebung (**4**), der mit freiem Auge noch gar nicht erkennbar ist, weist dagegen schon Korngrößen bis etwa 10 µm auf. Sehr feine Sand- und Staubkörner sind also weitaus größer als die Schmierfilmdicke, von anderen Verunreinigungen ganz abgesehen.

All diese Verunreinigungen bleiben gerade auf eingefetteten oder eingeölten Oberflächen, wie den Lagerteilen haften und können so in das Lager gelangen.

Beim Drehen werden diese Verunreinigungen durch die Wälzkörper überrollt und beschädigen so die Oberfläche der Laufbahnen.

Insbesondere bei Partikeln mit Korngrößen über der Schmierfilmdicke treten sehr hohe Spannungen auf, die zu vorzeitiger Materialermüdung im Lagerwerkstoff führen können und somit die Lagerlebensdauer drastisch verkürzen können.

Im Extremfall können also die Lager schon vor einem Einbau durch feine Späne, Schleifstaub, Sand oder andere Verunreinigungen so stark verschmutzt werden, dass deren Laufbahnen bei Inbetriebnahme geschädigt werden.

Der Lagereinbau sollte im Idealfall in einer Werkstätte in sauberer und trockener Umgebung durch qualifiziertes Fachpersonal unter Zuhilfenahme geeigneter Werkzeuge und Hilfsmittel erfolgen.

Der Einbauort darf dabei aus o.a. Gründen nicht in unmittelbarer Nähe spanabhebender und/oder stauberzeugender Maschinen (Trennscheiben, Fräs, Bohr- und Schleifmaschinen o. ä.) liegen.

Können diese Anforderungen nicht oder nur mit unvertretbar großem Aufwand erfüllt werden, wie beispielsweise bei Reparaturen, sind vor Ort entsprechende Voraussetzungen zu schaffen.

Vorbereitungen

Vor dem Beginn der Montage sollte der Einbau sorgfältig vorbereitet werden.

Es muss dabei zwischen einem Serienverbau von Lagern und Reparaturen unterschieden werden.

Während bei einer **Serienmontage** die erforderlichen Einzelschritte zumeist durch den Montageablauf bis ins Detail vorgegeben sind und im Regelfall auch die entsprechenden Werkzeuge und Hilfsmittel vorhanden sind, können sich bei Reparaturen die Voraussetzungen von Fall zu Fall deutlich unterscheiden.

Bei einem Serieneinbau finden überdies fabrikneue Teile oder Baugruppen Verwendung, während bei **Reparaturen** auch mit Verschleißerscheinungen gerechnet werden muss.

Die im Folgenden zusammengefassten Ratschläge und Empfehlungen sind daher lediglich als Richtlinie zu verstehen, die an den jeweiligen Einzelfall individuell angepasst werden muss.

- Vor Beginn der Montage sollte man sich gründlich mit den Einzelheiten der jeweiligen Lagerung vertraut machen.
- Ein intensives Studium der vorhandenen Unterlagen wie Zeichnungen, Wartungspläne, Handbücher und Maschinenbeschreibungen ist zu empfehlen.
- Alle Teile der Lagerung (Wellen, Abstandsringe, Gehäuseteile, Deckel, Flansche usw.) sowie die Umgebung des Einbauortes müssen absolut sauber, frei von Staub und Spänen und trocken sein. Alle Schmierbohrungen oder Ölkanäle sind gründlich von eventuell noch anhaftenden Verunreinigungen und Bearbeitungsrückständen, wie Späne, Gusssandreste, Lacksplitter, alter Schmierstoff, Produktionsrückständen, Staub usw. zu säubern.

- Bei Reparaturen freigelegte Maschinenteile oder Hohlräume zum Schutz gegen Verunreinigungen abdecken! Bestens dazu geeignet ist ein Abkleben oder Einwickeln der Teile mit Kunststofffolie oder sauberen, nicht fasernde Tüchern. Auch bei längeren Unterbrechungen, Arbeitspausen usw. ist die Einbaustelle abzudecken!
- Zum Reinigen sollte Putzpapier oder geeignete, fusselfreie Tücher verwendet werden.
- Keine Putzwolle verwenden!
- Lagersitze an Wellen und Gehäusen, Dichtflächen und Dichtungen, sowie alle an das Lager anschließende Bauteile vor der Montage auf deren Brauchbarkeit und auf eventuelle Beschädigungen, wie Verschleißstellen, eingelaufene Dichtflächen, verschlissenen Lagersitze, Grate und Kratzer untersuchen.
- Bei Reparaturen kann auch eine Überprüfung der Form- und Maßgenauigkeit der Lagersitze erforderlich sein.
- Eine Überprüfung der Fluchtung der Lagerstellen kann gerade bei einer Montage größerer Maschinen oder Anlagen erforderlich sein. Dadurch können Verspannungen bzw. übermäßige Schiefstellungen vermieden werden.
- Schleifende Dichtungen wie Radialwellendichtringe ("Simmerringe") sind Verschleißteile und daher bei Reparaturen grundsätzlich auszuwechseln
- Zur Verhinderung von Passungsrost können Lagersitze, insbesondere bei losen Passungen, leicht eingeölt oder mit einem geeigneten Mittel dünn eingesprüht werden.
- Die Lager selbst erst unmittelbar vor dem Einbau aus ihren Verpackungen entnehmen, um Verunreinigungen zu vermeiden!

Wahl des Einbauverfahrens

Beim Einbau werden die Lager auf mehr oder weniger starke Passungen montiert.

Ob ein Wälzlager in kaltem oder in warmen Zustand montiert wird, hängt wesentlich von Lagerart, Größe und den jeweiligen Passungsverhältnissen ab.

Bei einer Serienmontage sind darüber hinaus auch wirtschaftliche Überlegungen mit zu berücksichtigen.

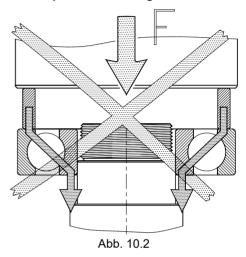
In der Mehrzahl aller Einbaufälle weist der Innenring eines Lagers eine festere Passung auf als der Außenring.

Daher werden die **Außenringe** von Wälzlagern durchwegs in kaltem Zustand in die Gehäusebohrungen eingesetzt bzw. wo erforderlich eingepresst. Üblich ist dabei eine Montage der Außenringe mit mechanischen oder hydraulischen Pressen.

Bei sehr festen Gehäusepassungen kann ein Einbau fallweise auch durch eine Erwärmung der Gehäuse, sofern erleichtert werden.

Beim Einbau der Innenringe auf die Wellensitze bieten sich wesentlich mehr Möglichkeiten an:

Durchwegs in **kaltem Zustand** werden kleinere Lager verbaut, aber auch mittelgroße Lager mit Schiebesitzen oder Übergangspassungen.


Warm montiert werden hingegen größere Lager bzw. Lager auf sehr festen Lagersitzen.

Große Pendelrollenlager werden häufig mit Spann- oder Abziehhülsen montiert. Oft wird das **Hydraulikverfahren** bei Ein- oder Ausbau verwendet.

Unter **Großlagern** versteht man NKE Wälzlager mit Bohrungsdurchmessern über 500 mm.

Neben der schon erwähnten Sauberkeit sind beim Einbau von Wälzlagern noch folgende Grundregeln zu beachten:

1) In keinem Fall die Montagekräfte über den Wälzkörpersatz eines Lagers führen!

Werden, wie in Abb. 10.2 dargestellt, die Montagekräfte über die Wälzkörper eines Lagers eingeleitet, kann es zu lokalen Überlastungen des Lagerwerkstoffes und zu plastischen Deformationen an den Laufbahnen kommen.

Obwohl man diese Beschädigungen mit freiem Auge meistens nicht erkennen kann, führen sie sehr rasch zu vorzeitigen Lagerausfällen.

Niemals mit hartem Werkzeug (Hammer, Splinttreiber, etc.) direkt auf Lagerringe schlagen.

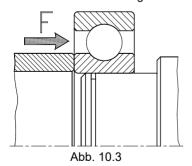
Dadurch können Teile der gehärteten Lagerringe ausbrechen.

Zur Montage sind vorzugsweise rückschlagfreie Hämmer zu verwenden. Weichmetall- bzw. Kunststoffhämmer sind ungeeignet, da Partikel des Kopfes ausbrechen und so in das Lager gelangen können.

Montage von Lagern in kaltem Zustand

Kleine Lager und Lager mittlerer Größe können bei nicht allzu festen Passungen in kaltem Zustand eingebaut werden. Die Lager werden dabei durch Hammerschläge oder durch Aufpressen auf ihren Sitz geschoben.

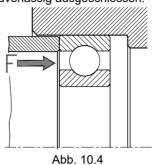
Grundsätzlich wird das Lager immer zuerst auf den festeren Sitz montiert.

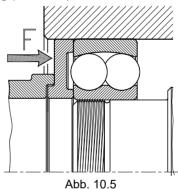

Schlaghülsen und Schlagbüchsen

Für die Montage kleinerer und mittelgroßer Lager haben sich **Schlaghülsen** und **Schlagbüchsen** bewährt

Dies sind Ringe aus schlagfestem Kunststoff und dazu passende rohrförmige Aluminiumhülsen, die auf die genormten Lagergrößen hin abgestimmt sind

Schlagbüchsen ermöglichen einen raschen und einfachen Lagereinbau, auch bei Serienmontagen.


Gut bewährt haben sich auch komplette Sätze aus aufeinander abgestimmten Schlaghülsen und Schlagbüchsen, die gerade bei häufigem Einbau verschiedener Lagergrößen, wie beispielsweise beim Reparieren von Elektromotoren, einen universell einsetzbaren Werkzeugsatz darstellen.


In Abb. 10.3 ist das Auftreiben eines Kugellagers bei **fester Wellenpassung** mit Hilfe einer Schlaghülse dargestellt.

Durch die Verwendung einer passenden Schlaghülse wird die Montagekraft ausschließlich über den Innenring übertragen.

Eine Beschädigung von Lager oder Welle wird dadurch zuverlässig ausgeschlossen.

Einpressen eines Lagers bei **fester Gehäusepassung** (Abb. 10.4)

Werden Lager gleichzeitig auf die Welle und im Gehäuse montiert, sind beim Einbau beide Lagerringe ausreichend zu unterstützen (siehe Abb. 10.5).

Achtung:

Bei einigen Lagerarten stehen Wälzkörper oder Käfig über die Lagerplanfläche vor.

Darauf muss bei der Gestaltung der Montagehilfsmittel besonders geachtet werden!

Einpressen von Lagern

Der Einbau von kleineren und mittelgroßen Wälzlagern lässt sich durch den Einsatz mechanischer oder hydraulischer Pressen auch unter den Bedingungen einer Serienmontage schnell und einfach bewerkstelligen.

Die Lagersitze an Welle und Gehäuse sollten zum Einpressen leicht eingeölt werden. Auch hier gilt, dass eine Übertragung der Montagekräfte über die Wälzkörper unbedingt vermieden werden muss. Daher empfiehlt sich auch beim Einpressen die Verwendung geeigneter Montagehülsen bzw. passender Scheiben.

Gerade beim Einpressen von Lagern ist die Vermeidung des Verkantens der Lagerringe wichtig (siehe Abb. 10.6).

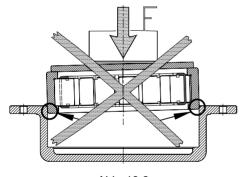
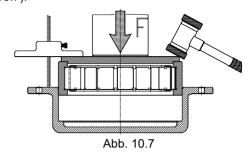



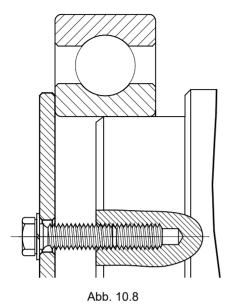
Abb. 10.6

Bei einem Verkanten der Ringe kann es an den markierten Stellen zu Beschädigungen an den Lagersitzen kommen.

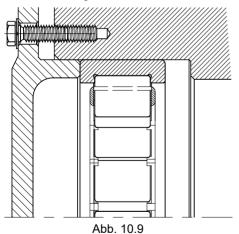
Auch ein Ausbrechen von Werkstoffteilchen aus den Lagersitzen kann nicht ausgeschlossen werden. Dabei können sich zum einen Grate bilden, zum anderen können solche Partikel in die Lager gelangen und dort Schäden verursachen.

Da auch schon bei relativ losen Passungen ein Verkanten möglich ist, müssen die Lager vor dem Einpressen sorgfältig angesetzt werden (Abb. 10.7).

Beim Einsatz hydraulischer Pressen empfiehlt sich die Einstellung einer Druckbegrenzung, um im Falle eines Verkantens eine Beschädigung des Lagers oder der Bauteile zu vermeiden.


Da gerade das Wiederauspressen verkanteter Lagerringe einen Serienablauf empfindlich stört, zahlt sich dabei erhöhte Sorgfalt in jedem Fall aus

Vereinfachung des Lagereinbaus durch konstruktive Maßnahmen


Der Einbau von Lagern kann in vielen Fällen durch geeignete konstruktive Vorkehrungen wesentlich vereinfacht werden.

Dazu gehören beispielsweise Gewindebohrungen an Wellen und Gehäusen, die zur Montage herangezogen werden können.

Ein einfaches Beispiel dafür sind Gewindebohrungen an Wellenstirnflächen, die wie in Abb. 10.8 dargestellt, zum Aufziehen eines Lagers auf den Wellensitz mitgenutzt werden können.

Auch Ansätze und Befestigungsgewinde von Deckeln und Gehäusen lassen sich zum Einbau von Außenringen verwenden (Abb. 10.9).

Einführen der Welle bei nicht selbsthaltenden Lagern

Bei zerlegbaren Lagerbauformen können Außen- und Innenringe separat montiert werden, beispielsweise bei Nadellagern, Kegelrollenlagern, Zylinderrollenlagern usw.

Dies bringt u.a. auch bei einer Serienmontage wesentliche Vorteile. So können beispielsweise bei Elektromotoren oder Getrieben die Innenringe bereits auf der entsprechenden Welle oder auf dem Läufer montiert werden, während die jeweiligen Außenringe unabhängig davon in den zugehörigen Gehäusen verbauf werden

Beim Einführen der fertig montierten Welle in das Gehäuse muss darauf geachtet werden, dass die Schiefstellungen zwischen den Lagerringen zu vermeiden sind (siehe Abb. 10.10).

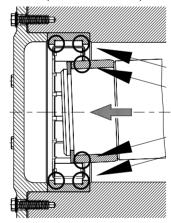


Abb. 10.10

Solche Schiefstellungen können an den in Abb. 10.10 markierten Bereichen zu Kratzern, Schürfmarken und plastischen Verformungen führen.

Ein Lager mit solchen, oft mit freiem Auge nicht oder nur schwer feststellbaren Schäden an Laufbahnen oder Führungsborden fällt in der Regel relativ rasch durch vorzeitige Materialermüdung aus.

Handling, Einbau und Ausbau von Wälzlagern

Solche Beschädigungen können durch gerades Ansetzten der Welle, sowie ein Drehen beim Einbau leicht vermieden werden (siehe Abb. 10.11).

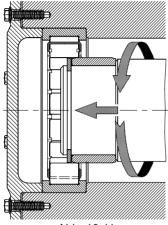
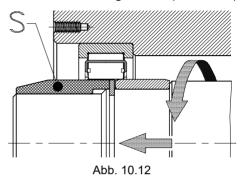


Abb. 10.11

Rollendurchhang bei Zylinderrollenlagern

Beim Einbau von Zylinderrollenlagern ist weiters auch der **Rollendurchhang** zu beachten.


Die Rollen eines Zylinderrollenlagers haben im Käfig ein gewisses Spiel, das sogenannte Taschenspiel. Je nach Käfigbauart kann dieses Spiel größer oder kleiner sein.

Solange sich nun der Innenring im Lager befindet, werden die Rollen in radialer Richtung zwischen den Laufbahnen gehalten, das Taschenspiel kommt in keiner Weise zum Tragen. Wird der Innenring aber herausgenommen und der Außenring mit dem Rollensatz separat in ein Gehäuse eingebaut, hängen die oberen Rollen in den Käfigtaschen durch.

Beim Einführen der Welle muss daher darauf geachtet werden, dass die Welle nicht gegen die Planflächen der durchhängenden Rollen stößt, da dies Beschädigungen an den Führungsborden sowie den Lagerlaufbahnen zur Folge haben würde.

Weites kann sich dieser Rollendurchhang auch bei einem Serienverbau von Zylinderrollenlagern störend auswirken

Eine einfache und wirksame Lösung dieses Problems bieten **Montagehülsen** (Abb. 10.12).

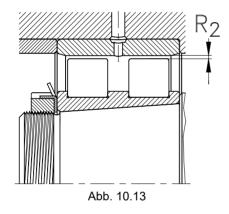
Es handelt sich hierbei, wie in Abb. 10.12 gezeigt, um einfache, der jeweiligen Einbausituation angepasste Hilfsmittel aus **Kunststoff** oder **Karton** (**S**), die eine Beschädigung der Rollen vermeiden und eine einfache und rasche Zentrierung der Welle gewährleisten.

Einbau von Lagern mit Füllnuten

Bei verschiedenen Lagerarten, wie etwa bei zweireihigen Schrägkugellagern oder "Max-Type"-Rillenkugellagern gibt es Bauformen, die auf einer Seite mit Füllnuten zum Einbringen möglichst vieler Kugeln versehen sind.

Es sind die meist vollrollige bzw. vollkugelige oder mit Stahlblechkäfig versehene Lagerbauformen.

Beim Einbau ist darauf zu achten, dass die größere wirkende Axialbelastung durch die Lagerseite aufgenommen wird, die keine Füllnuten aufweist.



Montage von Lagern mit kegeliger Bohrung

Mehrere Lagerarten, in der Hauptsache aber Pendelkugellager und Pendelrollenlager, werden häufig mit kegeliger Bohrung eingesetzt.

Montiert werden diese Lager zumeist mittels Spann- oder Abziehhülsen auf blankgezogenen oder gedrehten Wellen.

Bei Lagern (siehe Abb. 10.13), die üblicherweise direkt auf kegelige Wellensitze montiert werden, wird dieses Verfahren auch zur genauen Einstellung der erforderlichen **Betriebslagerluft** (\mathbb{R}_2) verwendet.

Bei der Montage von Lagern mit kegeliger Bohrung findet durch die axiale Verschiebung des Innenringes auf dem Kegel der Gegenfläche eine deutliche Aufweitung des Innenringes statt (siehe Abb. 10.14).

Durch diese Aufweitung wird die ursprünglich vorhandene Lagerluft deutlich verringert, in extremen Fällen kann es daher beim Einbau zu einer unbeabsichtigten, radialen Verspannung der Lager kommen.

Daher weisen Lager mit kegeliger Bohrung bei gleicher Luftklasse größere Luftwerte auf als gleichartige Lager mit zylindrischer Bohrung.

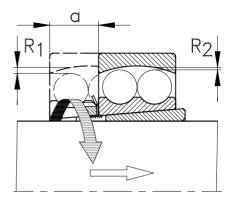


Abb. 10.14

wobei:

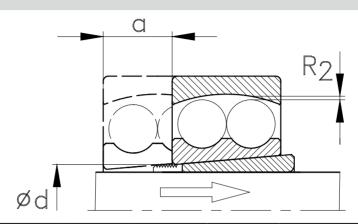
R₁ = Radialluft vor der Montage

R₂ = Nach dem Einbau verbleibende Radialluft

a = axialer Verschiebeweg

Die Größe der Aufweitung des Innenringes hängt von der Lagergröße, der axialen Verschiebung beim Einbau (a) sowie vom Kegelwinkel ab.

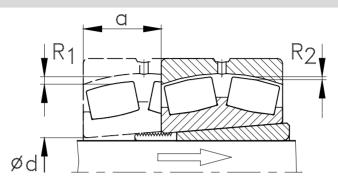
Der Standardkegel (Nachsetzzeichen "K") beträgt 1:12, d.h. auf 12 mm Messlänge beträgt die Steigung 1 mm.


Einige Lagerarten mit niedrigerer Querschnittshöhe haben einen flacheren Kegelwinkel, nämlich 1:30. Dieser wird durch das Nachsetzzeichen K30 identifiziert.

Um eine Verspannung der Lager beim Einbau zu vermeiden, muss auf die nach der Montage verbleibende Lagerluft (**R**₂) geachtet werden.

Da zwischen Kegelwinkel, dem Verschiebeweg und der daraus resultierenden Radialluftverminderung ein Zusammenhang besteht, sind Empfehlungen für Werte der nach dem Einbau verbleibenden Lagerluft R2 in den auf den nächsten Seiten folgenden Tabellen 10.1 (für Pendelkugellager) bzw. Tabelle 10.2 (Pendelrollenlager) angeführt.

Montage von Pendelkugellagern mit kegeliger Bohrung



5.1	Ax	ialer Verschi	Mittlere Endluft R ₂ [mr				
Bohrung Ød [mm]		bei Lagern	bei Lagern der Luftklasse				
ջ ն [ուույ	12K	22K	13K	23K	CN (Normal)	C3	
20	0,22	-	0,23	-	0,010	0,020	
25	0,22	0,22	0,23	0,23	0,010	0,020	
30	0,22	0,22	0,23	0,23	0,010	0,020	
35	0,30	0,30	0,30	0,30	0,010	0,020	
40	0,30	0,30	0,30	0,30	0,010	0,020	
45	0,31	0,31	0,34	0,34 0,33		0,025	
50	0,31 0,31 0,40 0,39		0,34	0,33 0,40	0,015 0,015	0,025 0,030	
55			0,41				
60	0,40	0,39	0,41 0,40	0,40	0,015 0,015 0,020	0,030 0,030 0,040	
65	0,40	0,39	0,41	0,40			
75	0,45	0,43	0,47	0,46			
80	80 0,45 0,43 85 0,58 0,54 90 0,58 0,54		0,43 0,47		0,020	0,040	
85			0,60	0,59	0,020	0,040 0,040	
90			0,60	0,59	0,020		
95	0,58	0,54	0,60	0,59	0,020	0,040	
100	0,58	0,54	0,60	0,59	0,020	0,040	
105	0,67	0,66	-	-	0,025	0,055	
110	0,67	0,67 0,66 0,70 0,69		0,69	0,025	0,055	
120	0,67	-	-			0,055	

Tabelle 10.1

Montage von Pendelrollenlagern mit kegeliger Bohrung

Bohrung Ød [mm]			inderung	Axialer Verschiebeweg a [mm]			Mindest-Endluft R ₂ [mm]			
		ØR (R1 – R2) [mm]		bei Ke ç	bei Kegel 1:12		bei Kegel 1:30		bei Lagern der Luftklasse	
>	≤	min	max	min	max	min	max	CN (Normal)	C3	C4
24	30	0,015	0,020	0,3	0,35	-	-	0,015	0,020	0,035
30	40	0,020	0,025	0,35	0,4	-	-	0,015	0,025	0,040
40	50	0,025	0,030	0,4	0,45	-	-	0,020	0,030	0,050
50	65	0,030	0,040	0,45	0,6	-	-	0,025	0,035	0,055
65	80	0,040	0,050	0,6	0,75	-	-	0,025	0,040	0,070
80	100	0,045	0,060	0,7	0,9	1,7	2,2	0,035	0,050	0,080
100	120	0,050	0,070	0,75	1,1	1,9	2,7	0,050	0,065	0,100
120	140	0,065	0,090	1,1	1,4	2,7	3,5	0,055	0,080	0,110
140	160	0,075	0,100	1,2	1,6	3,0	4,0	0,055	0,090	0,130
160	180	0,080	0,110	1,3	1,7	3,2	4,2	0,060	0,100	0,150
180	200	0,090	0,130	1,4	2,0	3,5	5,0	0,070	0,100	0,160
200	225	0,100	0,140	1,6	2,2	4,0	5,5	0,080	0,120	0,180
225	250	0,110	0,150	1,7	2,4	4,2	6,0	0,090	0,130	0,200
250	280	0,120	0,170	1,9	2,7	4,7	6,7	0,100	0,140	0,220
280	315	0,130	0,190	2,0	3,0	5,0	7,5	0,110	0,150	0,240
315	355	0,150	0,210	2,4	3,3	6,0	8,2	0,120	0,170	0,260
355	400	0,170	0,230	2,6	3,6	6,5	9,0	0,130	0,190	0,290
400	450	0,200	0,260	3,1	4,0	7,7	10,0	0,130	0,200	0,310
450	500	0,210	0,280	3,3	4,4	8,2	11,0	0,160	0,230	0,350
500	560	0,240	0,320	3,7	5,0	9,2	12,5	0,170	0,250	0,360
560	630	0,260	0,350	4,0	5,4	10,0	13,5	0,200	0,290	0,410
630	710	0,300	0,400	4,6	6,2	11,5	15,5	0,210	0,310	0,450
710	800	0,340	0,450	5,3	7,0	13,3	17,5	0,230	0,350	0,510
800	900	0,370	0,500	5,7	7,8	14,3	19,5	0,270	0,390	0,570
900	1000	0,410	0,550	6,3	8,5	15,8	21,0	0,300	0,430	0,640
1000	1120	0,450	0,600	6,8	9,0	17,0	23,0	0,320	0,480	0,700
1120	1250	0,490	0,650	7,4	9,8	18,5	25,0	0,340	0,540	0,770

Tabelle 10.2

Handling, Einbau und Ausbau von Wälzlagern

Wichtig ist in jedem Fall nach dem Aufschieben auf den Kegel eine Überprüfung der verbleibenden Lagerluft, der sogenannten **Endluft** (**R**₂).

Je nach Einbausituation und den jeweiligen Gegebenheiten kann eine solche Kontrolle entweder direkt durch eine Messung der verbleibenden Endluft oder auch indirekt über eine Messung des axialen Verschiebewegs erfolgen.

Eine **direkte** Kontrolle der Endluft bei einem montierten Lager erfolgt entweder durch eine **Messuhr** (siehe Abb. 10.15) oder, speziell bei größeren Pendelrollenlagern durch **Fühllehren**.

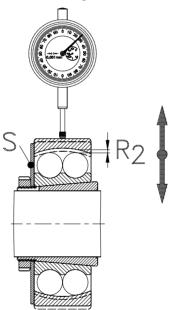
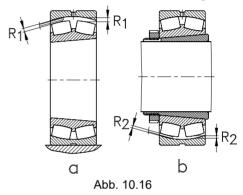



Abb. 10.15

Beim Einsatz von Messuhren (siehe Abb. 10.15) wird diese gegen den Außenring des montierten Lagers angestellt. Bei selbsteinstellenden Lagern wie Pendelkugellager und Pendelrollenlager empfiehlt sich zur Vereinfachung des Messvorganges die Verwendung einer **Stützscheibe** (**S**) um ein Ausschwenken des Außenringes während der Messung zu vermeiden.

Der Außenring des zu messenden Lagers wird zur Feststellung der **Endluft R** $_2$ in radialer Richtung von einer Endlage zur anderen gedrückt.

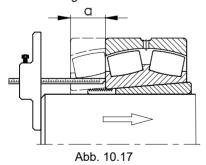
Bei größeren Lagern, insbesondere bei Pendelrollenlagern, ist eine solche Vorgangsweise zumeist nicht durchführbar. In diesen Fällen erfolgt die Überprüfung des Endspieles mit **Fühllehren** unter Zugrundelegung der in Tabelle 10.2 angegebenen Mindestwerte für die Endluft **R**₂.

Dabei sollte vor dem Einbau die Ausgangslagerluft R₁ durch eine Messung in unmontiertem Zustand festgestellt werden. Dies kann entweder mittels dem schon beschriebenen Verfahren unter Verwendung einer Messuhr geschehen oder, speziell bei größeren Lagern, mit ausreichender Genauigkeit auch mit Fühllehren.

Dazu sollte das Lager auf eine saubere, ebene Unterlage gestellt und dessen Innenring einige male durchgedreht werden, um ein vollständiges Anliegen der Wälzkörper an den Laufbahnen zu gewährleisten.

Da das Lager steht, kann die Luft **R**₁ durch das Einführen immer dicker werdender Messfühler zwischen Laufbahn und dem obersten Wälzkörper mit einer in der Praxis ausreichenden Genauigkeit festgestellt werden (Abb. 10.16a).

Der dickste, gerade noch verwendbare Messfühler gibt den Wert der Ausgangsluft an.


Beim Montieren des Lagers sollte das verbleibende Endspiel laufend kontrolliert werden.

Da das Lager dabei bereits auf der Welle sitzt, ist das Endspiel über die unterste Rolle und dem unteren Scheitelpunkt des Außenringes zu bestimmen (siehe Abb. 10.16b).

Die in der Tabelle 10.2 angegebenen Mindestwerte für die **Endluft R**₂ basieren auf Lagern, deren Ausgangsluft an den unteren Grenzen liegt. Die in der Tabelle 10.2 angegebenen Mindestwerte dürfen nicht unterschritten werden.

In vielen Fällen ist eine zuverlässige Feststellung des verbleibenden Endspieles in der oben beschriebenen Form nicht oder nur sehr schwer möglich. Bei einem Serienverbau kann dieses Verfahren darüber hinaus für einen Serienablauf zu zeitaufwendig sein.

In diesen Fällen kann das verbleibende Endspiel auch **indirekt** über den **axialen Verschiebeweg a** beim Einbau festgestellt werden.

Dabei ist der tatsächliche Verschiebeweg a mittels geeigneter Messwerkzeuge festzustellen. Geeignete Messwerkzeuge können je nach Lagergröße und Einbausituation Messuhren, Schiebelehren, Tiefenmaße oder ähnliches sein.

Auf diese Weise kann, unter Zuhilfenahme der Werte aus den Tabellen 10.1 und 10.2 die Montage, insbesondere bei einem Serienverbau, erheblich vereinfacht werden.

Zu beachten ist auch, dass die in diesen Tabellen angegebenen Werte für Vollwellen aus Stahl gelten.

In jedem Fall muss sich das montierte Lager noch leicht drehen bzw. ausschwenken lassen.

Montage von Lagern mit dem Druckölverfahren

Größere Wälzlager und Großlager lassen sich durch die Verwendung von Drucköl erheblich leichter Fin- und Ausbauen

Zum Einbau werden sogenannte **Hydraulik-muttern** (siehe Abb. 10.18) eingesetzt.

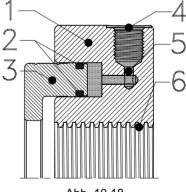


Abb. 10.18

Diese bestehen aus einem Mutternkörper (1), der mit einem Gewinde (6) versehen ist. Der Mutternkörper weist an einer Planfläche eine Nut auf, in der ein ringförmiger Kolben (3) sitzt. Durch Anschlussgewinde (4) und Ölkanäle (5) wird Öl mit hohem Druck in die Nut gepresst und drückt den Kolben nach Außen. Die Abdichtung übernehmen zwei O-Ringe (2), die in Nuten im Kolben sitzen.

Handling, Einbau und Ausbau von Wälzlagern

Zum Einbau von Lagern werden die Hydraulikmuttern so weit als möglich auf das Gewinde von Welle, Spann- oder Abziehhülse geschraubt.

Achten Sie darauf, dass sich dabei der Ringkolben in Ausgangslage, d.h. ganz eingefahren, befindet.

Zum leichteren Aufschrauben weisen Hydraulikmuttern üblicherweise Sackbohrungen an der dem Kolben gegenüberliegenden Planseite sowie teilweise auch am Umfang des Mutternkörpers auf, in die geeignetes Hilfsmittel zum Drehen gesteckt werden kann.

Der Kolbenhub ist bei den meisten Hydraulikmuttern so ausgelegt, dass bei fachgerechter Verwendung der Lagereinbau in einem Zug erfolgen kann.

Zur Markierung des maximal zulässigen Kolbenhubes sind bei den meisten Hydraulikmuttern eine oder zwei Markiernuten am Kolben vorgesehen.

Bei der Druckbeaufschlagung wird der Kolben mit erheblicher Kraft axial verschoben und drückt dadurch das Lager an seinen Platz.

Beachten Sie die dabei entstehende Radialluftverminderung und kontrollieren Sie nach jeder Montage die verbleibende Endluft.

Sofort nachdem sich das Lager an seinem vorgesehen Platz befindet, sollte das Rückflussventil der Hydraulikpumpe geöffnet werden, wodurch sich der Druck in der Hydraulikmutter abbaut.

Nach der Montage ist die Hydraulikmutter durch eine normale Nutmutter zu ersetzen.

Achtung:

Beim Einbau von Lagern mittels Drucköl werden hohe Drücke angewendet. Beachten Sie daher unbedingt auch die entsprechenden Empfehlungen der Hersteller der Hydraulikwerkzeuge.

Montage von Lagern durch Erwärmen

Ab einer gewissen Größe ist ein Einbau der Lager in kaltem Zustand nicht mehr sinnvoll. Auch schon bei relativ leichten Spielpassungen oder Übergangssitzen neigen größere Lager häufig zum Verkanten. Bei Presssitzen nehmen die erforderlichen Montagekräfte stark zu.

Ein optimales Verfahren zur Erleichterung der Montage größerer Lager, insbesondere bei festen Passungen auf den Wellensitzen ist ein **Anwärmen** der Lager erforderlich.

Durch die Erwärmung dehnt sich der zu montierende Ring aus, der Einbau kann dann rasch und einfach durchgeführt werden.

Die im Folgenden zur Lagermontage empfohlenen Vorgangsweisen und Verfahren eignen sich auch zum Einbau anderer Maschinenelemente wie Zahnräder, Buchsen, Hülsen usw., die häufig ebenfalls mit Presspassungen auf der Welle befestigt sind.

Erforderliche Erwärmung

Die für eine einfache Montage erforderliche Wärmedehnung hängt nicht zuletzt von der jeweiligen Passung am Wellensitz ab.

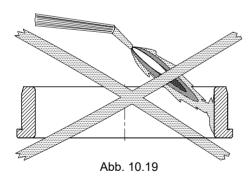
Im Regelfall reicht eine Erwärmung der Lager auf Temperaturen zwischen 90°C und 110°C für einen problemlosen Einbau auch bei Presspassungen völlig aus.

Achtung:

Bei der Erwärmung von Wälzlagern sind einige allgemeine Grundregeln unbedingt zu beachten:

a) Ein Wälzlager sollte niemals über 120°C erwärmt werden. Höhere Temperaturen können zu Gefügeveränderungen im Werkstoff der Lagerringe und somit zu unerwünschten Maß- und Formänderungen an den Ringen führen, bringen aber für die Montage kaum mehr Vorteile.

- b) Wälzlager mit Dicht- oder Deckscheiben (z.B. Lager mit Nachsetzzeichen -RS2, -2RS, -RS, -2RS, -2Z, -2LS, -LFS, -2LFS..) sollten zum Verbau grundsätzlich nicht mittels Ölbad oder Heizplatten erwärmt werden.
- c) Beim Erwärmen von Wälzlagern muss die Anwärmtemperatur immer überwacht werden, um eine Überhitzung auszuschließen.

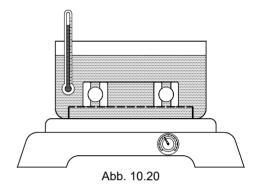

Gerade beim Hantieren mit erwärmten Lagern ist eine gute Vorbereitung der Einbaustelle erforderlich.

Lange Transportwege oder umständliches Hantieren mit dem erwärmten Lager führen zu vorzeitigem Auskühlen, wodurch der Effekt des Anwärmens rasch wieder zunichte gemacht wird.

Die Verwendung geeigneter Hebe- oder Anschlagmittel, sowie von geeigneten Schutzhandschuhen ist ebenso erforderlich, wie die Anwendung geeigneter Arbeitsmethoden.

Achtung:

In keinem Fall dürfen Wälzlager oder Lagerringe mit offener Flamme erwärmt werden!



Selbst bei sorgfältigster Handhabung führt ein Anwärmen der Ringe mittels Schweißbrenner oder Lötlampe zwangsläufig zu einer ungleichmäßigen Erwärmung der Ringe. Durch die fehlende Temperaturkontrolle können lokale Überhitzenden niemals völlig ausgeschlossen werden

Geeignete Anwärmmethoden

Erwärmung im Ölbad:

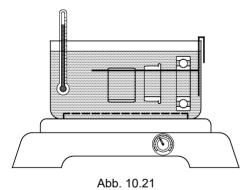
Dabei werden die Lager im Ölbad auf die erforderliche Temperatur gebracht (siehe Abb. 10.20).

Dieses Verfahren ermöglicht eine gleichmäßige Erwärmung der Teile. Durch ein Thermostat können die erwärmten Teile auch auf Temperatur gehalten werden.

Bei der Erwärmung von Lagerteilen im Ölbad müssen jedoch folgende Punkte unbedingt beachtet werden:

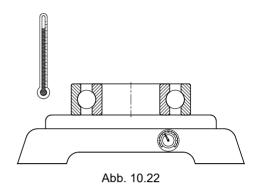
 Zur Erwärmung sollten dünnflüssige, oxydationsbeständige Maschinenöle mit einem Flammpunkt über 250 °C verwendet werden.

Handling, Einbau und Ausbau von Wälzlagern



- Die Öltemperatur muss permanent überwacht werden
- Wenn das Ölbad längere Zeit nicht benötigt wird, sollte der Behälter abgedeckt werden, um eine Verunreinigung des Öles zu vermeiden.

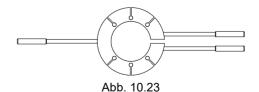
Das Öl unterliegt durch die häufige Erwärmung einer beschleunigten Alterung, wodurch sich Oxydationsprodukte im Öl bilden. Diese lagern sich, gemeinsam mit dem eingedrungenen Staub, am Boden des Ölbehälters ab.

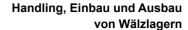

Um eine Verunreinigung der zu erwärmenden Teile zu vermeiden, sollen diese daher nicht unmittelbar auf den Boden des Ölbehälters gelegt werden.

Zur Vermeidung einer Verunreinigung der Lager könnten diese im Ölbad entweder auf Gitterroste gelegt werden (siehe Abb. 10.20) oder mittels Haken in das Ölbad eingehängt werden (siehe Abb. 10.21)

Heizplatten

Kleinere und mittelgroße Wälzlager werden häufig mit Hilfe **elektrischer Heizplatten** angewärmt.


Auch die Heizplatten sollten eine Temperaturregelung haben, auf jeden Fall ist die Temperatur des Lagers zu kontrollieren.


Zur Serienmontage gut geeignet sind die speziell dafür entwickelten Anwärmplatten, die mit einer Temperaturvorwahl und Thermostatregelung ausgestattet sind und zumeist auch eine Abdeckung aufweisen, um ein zu rasches Auskühlen der Lager zu verhindern.

Thermoringe

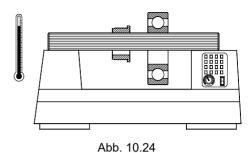
Für eine Serienmontage loser Nadellager- oder Zylinderrollenlager innenringe sind die sogenannten **Thermoringe** geeignet.

Es handelt sich dabei um geschlitzte Aluminiumringe mit isolierten Haltegriffen, deren Bohrungsdurchmesser auf die Laufbahndurchmesser der jeweils zu montierenden oder demontierenden Lagerringe abgestimmt sind (siehe Abb. 10.23).

Obwohl Thermoringe ursprünglich für die Demontage von Lagerringen entwickelt wurden, können sie auch beim Einbau von Lagerringen verwendet werden.

Die Laufbahn des zu montierenden Ringes ist für eine Montage mit dünnflüssigem, oxydationsbeständigem Maschinenöl einzustreichen. Der erhitzte Thermoring wird über den Lagering gelegt und mit den Handgriffen gespannt.

Sobald der Lagerring die erforderliche Temperatur angenommen hat, kann er mit dem Thermoring auf seinen Sitz geschoben werden.


Der Lagerring sollte bis zu dessen Erkalten gegen die Anlagefläche gepresst werden. Das Auskühlen des Ringes erfolgt durch die relativ kühle Welle sehr rasch.

Der Thermoring sollte erst dann entfernt werden, wenn sich der montierte Lagerring wirklich fest auf seinem Sitz befindet

Die erforderlichen Anwärmtemperaturen sowie die Anwärmzeiten bei dieser Methode sollten durch Erproben festgelegt werden, da diese Parameter durch viele Einflussgrößen wie Ringquerschnitte, Wellenmasse u.s.w. maßgeblich mitbestimmt werden.

Induktive Erwärmung

Bei häufigem Einbau von Lagern unterschiedlicher Größen, wie das bei Reparaturabteilungen oder in der Instandhaltung häufig vorkommt, aber auch beim Serienverbau von Lagern, Zahnrädern oder anderen ringförmigen Bauteilen stellen **Induktionserhitzer** (siehe Abb. 10.24) ein ideales Werkzeug dar.

Dabei werden die zu montierenden Bauteile auf induktivem Weg auf die erforderliche Montagetemperatur erwärmt.

Dieses Verfahren ist für alle Wälzlager geeignet und zeichnet sich durch wirtschaftliche, rasche und gleichmäßige Erwärmung aus.

Induktionserhitzer werden in mehreren Größen und Leistungsklassen angeboten. Die verwendeten Geräte sollten zumindest aber folgende Eigenschaften aufweisen:

- automatische Entmagnetisierung der Bauteile nach der Erwärmung
- Temperaturwahlschalter und Temperaturüberwachung
- Automatische Warmhalteeinrichtung

Bei den modernen Geräten kann die Erwärmung wahlweise über die Temperatur des Bauteiles oder über die Erwärmzeit gesteuert werden.

Handling, Einbau und Ausbau von Wälzlagern

Je nach Anbieter variiert die Ausstattung der Geräte. Es ist jedoch zu empfehlen, mehrere Joche mit unterschiedlichem Querschnitt zu verwenden, um eine optimale Nutzung des Gerätes zu ermöglichen.

Einige Induktionserhitzer weisen seitlich ausschwenkbare Joche auf, welche die Handhabung der erwärmten Bauteile wesentlich vereinfachen

Achtung:

Alle Induktionserhitzer erzeugen ein starkes Magnetfeld. Beachten Sie bitte in Ihrem eigenen Interesse die Sicherheitshinweise des Geräteherstellers!

Beim Arbeiten mit einem Induktionserhitzer Schutzhandschuhe verwenden. Die erwärmten Lager beim Einbau richtig ansetzen und zügig bis zum Anschlag auf den Lagersitz aufschieben.

Nach dem Aufbringen der Lagerringe diese bis zum Abkühlen auf Raumtemperatur gegen die Anlageflächen drücken, um ein ordnungsgemäßes Anliegen der Lager zu erreichen.

Einbau gepaarter und angestellter Lager

Kegelrollenlager und Schrägkugellager werden in der Regel paarweise eingebaut.

Voreingestellte Lagereinheiten wie beispielsweise Kegelrollenlagereinheiten oder auch komplette Lagersätze für Spindellagerungen werden bereits vom Hersteller aufeinander abgestimmt und ergeben ohne besonderen Einstellaufwand das vordefinierte Spiel bzw. die vorgesehene Vorspannung.

Bei einer Verwendung von Einzellagern oder Lagern in Universalausführung ist die gewünschte Lagerluft bzw. Vorspannung je nach Anwendungsfall und Einbausituation bei der Montage einzustellen.

Die Werte der Lagerluft bzw. Vorspannung sind entweder konstruktiv vorzugeben oder in den entsprechenden Wartungsunterlagen zu ersehen.

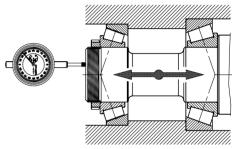


Abb. 10.25

In Abb. 10.25 ist die Einstellungsüberprüfung eines definierten Axialspiels am Beispiel einer Lagerung mit zwei Kegelrollenlagern dargestellt.

Im gezeigten Beispiel wird die Axialluft über die **Wellenmutter** eingestellt. Vor dem Einstellen eines bestimmten Luftwertes sollte die Welle einige Male durchgedreht werden, um ein korrektes Anliegen der Kegelrollen an den Führungsborden der Innenringe sicherzustellen.

Nach der Einstellung ist, zur Messung der Axialluft, die Welle von einer Endlage zur anderen zu verschieben.

Ein anderes Verfahren zur Einstellung eines bestimmten Spieles ist die Verwendung kalibrierter Zwischenringe.

Dabei wird jenes Axialspiel gemessen, das die Lagerung bei Verwendung eines Zwischenringes mit genau bekannter Breite aufweist (siehe Abb. 10.26).

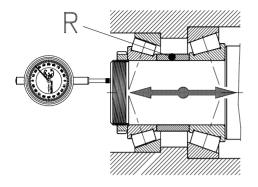


Abb. 10.26

Nach der Feststellung des Axialspiels mit dem Maßring wird dieser gegen einen passenden **Zwischenring R** ausgetauscht, der in der Lagerung verbleibt (Abb. 10.26).

Bei **X-Anordnung** der Lager und losen Passungen im Gehäuse kann das Spiel auch über Passscheiben im Gehäuse eingestellt werden (Abb. 10.27).

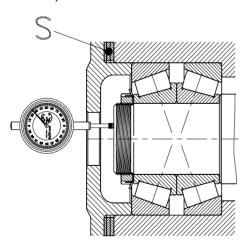


Abb. 10.27

In der ersten Annäherung sollten dabei die erforderlichen Passscheiben (**S**) etwas dicker als erforderlich gewählt werden, um ein Axialspiel feststellen zu können.

Mit dem damit ermittelten Wert kann die für das erforderliche Axialspiel benötigte Scheibenstärke bestimmt werden.

Bei **Serienmontagen** kommen noch andere Einstellmethoden zur Anwendung, wie etwa die Anstellung über den Verdrehwinkel an der Wellenmutter oder das Anziehen der Wellenmutter mit Drehmomentschlüsseln.

Auch Reibmomentmessungen werden zur Kontrolle der Lagereinstellung durchgeführt.

All diesen Methoden ist gemeinsam, dass sie empirisch ermittelt werden, d. h., dass die optimalen Werte in umfangreichen Versuchsreihen sowie in der praktischen Erprobung ermittelt werden müssen.

Montage mehrreihiger Wälzlager

Beim Einbau von Lagereinheiten oder mehrreihigen Lagern, die aus separat voneinander zu montierenden Einzelteilen bestehen, ist besondere Aufmerksamkeit geboten.

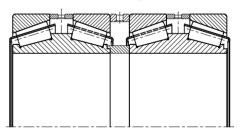


Abb. 10.28

Abb. 10.28 zeigt ein vierreihiges NKE Kegelrollenlager für Walzgerüste.

Handling, Einbau und Ausbau von Wälzlagern

Neben den bereits erwähnten allgemeingültigen Richtlinien für den Lagereinbau ist auf die richtige Montagereihenfolge der einzelnen Ringe, mitunter auch auf einen orientierten Einbau der einzelnen Lagerteile zu achten.

Bei dem in Abb. 10.28 gezeigten vierreihigen Kegelrollenlager sind die Ringe eines jeden Lagers speziell aufeinander abgestimmt und dürfen daher nicht mit Komponenten anderer Lager vertauscht werden. Zur Vermeidung von Verwechslungen sind alle Teile jedes Lagers gekennzeichnet. Beim Einbau ist darauf zu achten, dass die Komponenten jedes Lagers beisammen bleiben und die Teile in der richtigen Reihenfolge eingebaut werden.

Befettung des Lagers

Bei vielen fettgeschmierten Lagerungen ist eine Befettung der bereits vollständig montierten Lager nicht mehr oder nur unter erschwerten Umständen möglich.

In diesen Fällen muss der Schmierstoff bereits vor dem Lagereinbau eingebracht werden.

Achtung:

Bei vielen Menschen entwickelt sich bei häufigem Kontakt mit Ölen oder Fetten Allergien.

Verwenden Sie daher Handschuhe und vermeiden Sie übermäßigen Kontakt zu Ölen oder Schmierfetten.

Bei der Befettung der Lager vor dem Einbau sollten unbedingt einige Richtlinien beachtet werden:

 Die Lager erst unmittelbar vor der Montage aus den Originalverpackungen entnehmen und mit Schmierstoff versehen, um Verunreinigungen zu vermeiden.

- Das am Lager anhaftende Konservierungsmittel ist mit allen handelsüblichen mineralölbasischen Schmiermitteln verträglich und kann daher im Normalfall am Lager verbleiben. Lediglich bei der Verwendung synthetischer Sonderschmierstoffe sollten die Lager vor der Montage bzw. Schmierung in einem geeigneten Medium (Waschbenzin oder Petroleum) gereinigt werden.
- In jedem Falle ist das Konservierungsmittel von Bohrung und Außendurchmesser mit einem sauberen, fusselfreien Tuch (keinesfalls Putzwolle od. ähnliches) abzuwischen.

Achtung:

Das Konservierungsmittel selbst ist kein Schmierstoff und hat auch keine Schmiereigenschaften!

- Bereits befettete Lager müssen bis zum Einbau gut abgedeckt werden (z.B. durch Einschlagen in Polyäthylenfolie), um Verunreinigungen durch Staub und Späne zu vermeiden.
- Die vorgesehenen Schmierstoffe müssen in hermetisch geschlossenen Behältern gelagert werden, um Verunreinigungen durch Fremdpartikel zu vermeiden. Die Behälter sind unmittelbar nach einer Entnahme von Schmierstoff wieder sorgfältig zu verschließen. Der Schmierstoff sollte vor seiner Verwendung auf dessen Eignung bzw. auf Verunreinigungen untersucht werden.
- Beachten Sie, dass alte oder verunreinigte Schmierstoffe nicht geeignet sind und zu vorzeitigen Lagerausfällen führen können.

Die in die Lagerstelle einzubringende Fettmenge richtet sich, wie im Abschnitt "Schmierung von Wälzlagern" ausführlich dargestellt, im Wesentlichen nach der Betriebsdrehzahl. In jedem Fall sind die Freiräume des Lagers selbst mit Fett zu füllen, die Fettfüllung der Gehäusefreiräume sollte nach den in Tabelle 10.3 angegebenen Empfehlungen durchgeführt werden:

Drehzahlv	erhältnis *)	Fettfüllmenge **)
>	≤	[%]
-	20	80 ÷ 90
20	75	30 ÷ 50
75		25

Tabelle 10.3

- *) in % der in den Produkttabellen angegebenen Richtwerte für die Drehzahl bei Fettschmierung
- **) in % des Freiraumes im Lagergehäuse

Beim Umgang mit Schmierstoffen ist besondere Sorgfalt geboten.

Verunreinigungen wie Staub, Späne, Sand usw. bleiben auf öligen oder fettigen Oberflächen besonders leicht hängen. Bei der Verwendung von verunreinigtem Schmierstoff werden die Fremdpartikel zwangsläufig direkt in das Lager eingebracht.

Montage von Dichtungen

Nach dem fertigen Einbau der Lager sowie der Montage der Umgebungsteile werden häufig noch Dichtungen eingebaut.

Bei berührenden Dichtungen aus Elastomeren, beispielsweise bei O-Ringen oder Wellendichtringen, können dabei Probleme auftreten, da der Reibungskoeffizient trockener Elastomere, wie etwa von synthetischem Kautschuk (NBR), auf Stahl relativ hoch sein kann.

Bei einem Einbau in trockenem Zustand besteht somit die Gefahr von Beschädigungen, wie etwa Rissen an den Dichtlippen von Wellendichtringen. Dieses Problem kann durch ein leichtes Einölen oder Einfetten der **Dichtflächen** an den Bauteilen mit normalem Maschinenöl oder Wälzlagerfett vor dem Einbau der Dichtungen behoben werden. Bei vielen Bauformen berührenden Dichtungen, wie etwa bei Zweilippendichtungen, muss der Raum zwischen den Dichtlippen mit Fett befüllt werden, um eine optimale Dichtwirkung zu gewährleisten. Durch das Einölen oder Einfetten der Dichtungen wird reibungsloser Anlauf gewährleistet.

Inbetriebnahme der Lagerung

Es empfiehlt sich, sofern möglich, vor einer erstmaligen Inbetriebnahme einer Lagerung die Welle einige Male von Hand durchzudrehen, um die Lager auf Leichtgängigkeit hin zu überprüfen. Die Wellen müssen sich dabei leicht und ruckfrei drehen lassen

Bei Fettschmierung sollte nach erfolgtem Lagereinbau der vorgesehene Schmierstoff komplettiert und erst anschließend alle Anbauteile montiert werden, während bei Ölschmierung der Schmierstoff erst nach der Fertigmontage des Aggregates gemäß den Wartungsvorschriften eingebracht wird.

Handling, Einbau und Ausbau von Wälzlagern

In vielen Fällen kann zur Reinigung der Ölleitungen eine Ölspülung mit einem eigenen Spülöl erforderlich sein.

Entsprechende Hinweise sind in den Wartungshandbüchern der Maschinen oder Anlagen verzeichnet.

Achtung:

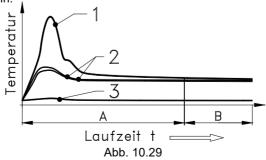
Bei Ölschmierung muss eine ausreichende Ölversorgung der Lager bereits vor der ersten Umdrehung gewährleistet sein.

In der Anlaufphase sollte die Drehzahl der Welle nur langsam bis auf die Betriebsdrehzahl gesteigert werden.

Bei erstmaliger Inbetriebnahme durchläuft die Lagerung eine sogenannte **Einlaufphase**, in der die an den Laufflächen von Ringen und Wälzkörpern vorhandenen, feinsten Oberflächenrauheiten geglättet werden.

Gleichzeitig verteilt sich in dieser Phase der Schmierstoff im Lager, was sich speziell bei Fettschmierung durch ein anfangs etwas erhöhtes Laufgeräusch, sowie höhere Betriebstemperaturen bemerkbar macht.

Die Dauer der Einlaufphase hängt von der jeweiligen Einbausituation ab. Allerdings sollte sich die Betriebstemperatur im Regelfall nach etwa 24 Betriebsstunden auf ein konstantes Temperaturniveau, die sogenannte Beharrungstemperatur, einpendeln. Abb. 10.29 zeigt den charakteristischen Verlauf der Einlaufphase bei einer fettgeschmierten Lagerung, wobei:


- A Dauer der Einlaufphase
- **B** Beharrungstemperatur
- 1 Temperaturverlauf, gemessen an einem komplett neuen Lager
- 2 Temperaturverlauf bei nachgefetteten, bereits eingelaufenen Lagern
- 3 Umgebungstemperatur

Die Beharrungstemperatur wird von mehreren Faktoren beeinflusst, so dass keine allgemeingültigen Regeln oder Empfehlungen dafür abgegeben werden können. Allerdings können Erfahrungswerte mit ähnlichen Anlagen zur Beurteilung des Laufverhaltens einer neu gelagerten Maschine herangezogen werden.

In jedem Fall sind nach dem Hochlaufen der Maschine die Lagerstellen auf Laufgeräusch, Laufruhe und Betriebstemperatur zu überprüfen.

Erheblich erhöhte Temperaturen, sowie ein erhöhtes Laufgeräusch können auf Verunreinigungen i Lager oder Schmierstoff, auf schleifende Anbauteile und Dichtungen oder auf Verspannungen des Lagers hinweisen.

Im Zweifelsfalle sind die Lagerstellen nochmals sorgfältig zu überprüfen.

Lagerüberwachung

In vielen Aggregaten stellen Lager kritische, d.h. für die Funktion einer Maschine oder Anlage funktionsentscheidende Komponenten dar.

Obwohl Wälzlager eine sehr hohe Zuverlässigkeit aufweisen, ist deren Lebensdauer nicht unbegrenzt.

Bei wichtigen Maschinen und Anlagen kann eine Überwachung der Lagerstellen sinnvoll sein, um potentielle Schäden zu einem möglichst frühen Zeitpunkt zu entdecken.

Diese Informationen bringen eine erheblich höhere Betriebssicherheit, da Schäden frühzeitig erkannt werden. Revisionen und eine vorbeugende Instandhaltung können auf diese Weise geplant werden.

Wie groß der zur Lagerüberwachung betriebene Aufwand tatsächlich gehalten wird, hängt von der Wichtigkeit der Anlage, sowie von einem einfachen Kosten / Nutzenvergleich ab.

Eine Lagerüberwachung kann grundsätzlich schon mit sehr einfachen Mitteln mit durchaus brauchbaren Resultaten durchgeführt werden.

Eine regelmäßige Überprüfung von Laufverhalten und Betriebstemperatur zeigt, ob die Lagerung zum Zeitpunkt der Kontrolle ein normales Laufverhalten aufweist

Die Überprüfung kann sowohl mit als auch ohne technische Hilfsmittel durchgeführt werden, sofern ausreichende Erfahrungswerte des überprüfenden Personals vorliegen.

Eine zuverlässigere Überwachung ist durch eine permanente Auswertung bestimmter Merkmale, beispielsweise der Betriebstemperatur oder der auftretenden Vibrationen, gegeben.

Von verschiedenen Anbietern sind auch komplexe Überwachungssysteme erhältlich, die eine kontinuierliche Überwachung sowie eine permanente Auswertung der Daten beinhalten.

Die meisten dieser Systeme basieren auf der Feststellung von Veränderungen im Schwingungsverhalten von Wälzlagern, die eine Änderung bestimmter Betriebszustände anzeigen.

Das Funktionsprinzip aller auf der Überwachung der Schwingungen basierenden Messgeräte ist ähnlich:

Die meisten Wälzlager bestehen aus einem Außen- und Innenring zwischen denen sich der im Regelfall durch einen Käfig gehaltene Wälzkörpersatz befindet.

In den meisten Fällen läuft der Innenring mit dem Wälzkörpersatz um, der Außenring steht still.

In den belasteten Bereichen der Laufbahnen, den Lastzonen, entstehen im Material durch die Überrollungen der Wälzkörper Schubspannungen, welche im Laufe der Zeit eine Materialermüdung bewirken

Die auftretenden Spannungen stehen in direktem Zusammenhang mit der wirkenden Lagerbelastung. Diese Schubspannungen führen im Lauf der Zeit knapp unter der Laufbahnoberfläche zu Mikrorissen, in weiterer Folge zu Materialausbrüchen in den Laufbahnen.

Dieser als **Ermüdungslebensdauer** bezeichnete Mechanismus wurde ausführlich untersucht und liegt auch der Lebensdauerberechnung zugrunde.

Wenn in das Lager gelangte Fremdkörper oder aus den Laufbahnen ausgebrochene Materialpartikel überrollt werden, entstehen in einem breiten Frequenzspektrum Schwingungen.

Eine Veränderung des Schwingungsverhaltens einer Lagerung kann somit ein Indiz für einen sich abzeichnenden Lagerschaden sein.

Lagerausbau

Der Großteil aller verbauten Wälzlager wird nicht mehr ausgebaut, sondern mit der Maschine oder dem Gerät, in dem sie eingebaut wurden, verschrottet

Ein Austausch von Lagern betrifft in erster Linie größere Lager, Großlager, aber auch Maschinen und Anlagen, in denen Lager zu den in mehr oder regelmäßigen Intervallen auszutauschenden Verschleißteilen gehören.

Allgemeines

Beim Ausbau von Lagern ist man im Normalfall auf die konstruktiv bereits vorgegebenen Demontagemöglichkeiten angewiesen.

Gerade bei Aggregaten und Maschinen, bei denen die Lager erfahrungsgemäß öfters ausgetauscht werden, können schon einfache konstruktive Hilfen für einen leichteren Lagerausbau die gesamte Wartung erheblich vereinfachen

Solche konstruktive Maßnahmen sind Abdrückgewinde, Demontagenuten und -bohrungen, aber auch Abdrückschrauben oder Abziehnuten an Welle oder Gehäuse.

Vorbereitungen zum Ausbau

Ähnlich wie beim Lagereinbau sollten auch beim Ausbau die Arbeiten gut vorbereitet werden.

Ein Studium der Wartungsunterlagen und Maschinenzeichnungen kann den Ausbau erleichtern.

Vor der Demontage der Maschine sollte diese zumindest grob gesäubert werden, um ein späteres Eindringen von Verunreinigungen, Schmutz und Staub in die Maschine zu verhindern.

Auch alle verwendeten Werkzeuge und Hilfsmittel müssen sauber und in gutem Zustand sein.

Falls eine Weiterverwendung der Lager beabsichtigt ist, müssen diese beim Ausbau genauso sorafältig behandelt werden, wie beim Einbau.

Grundsätzlich sollte der Ausbau der Lager in umgekehrter Reihenfolge wie der Lagereinbau erfolgen.

Beim Ausbau sind die Lager zuerst aus den Passungen mit **Schiebesitzen** auszubauen (Abb. 10.30).

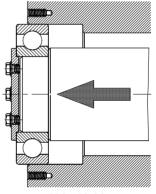


Abb. 10.30

Zerlegbare Lagerbauarten bieten auch beim Ausbau einige Vorteile (siehe Abb. 10.31).

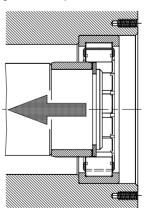


Abb. 10.31

Neben handelsüblichen Scheibenabziehern, die sich auch zum Lagerausbau gut eignen, werden auch spezielle Werkzeugsätze angeboten.

Diese bestehen aus einer mechanisch oder hydraulisch wirkenden Spindel, die mit verschiedenen Traversen als zwei- oder dreiarmige Abzieher eingesetzt werden können.

Von festen Press- oder Übergangssitzen können die Lager auch durch **Pressen** gedrückt werden (siehe Abb. 10.32).

Abb. 10.32

Wenn eine Wiederverwendung des Lagers beabsichtigt ist, muss auch beim Auspressen darauf geachtet werden, keine Kräfte über den Wälzkörpersatz zu leiten.

Bei Lagern, die mit **Spannhülsen** auf langen, gezogenen Wellen montiert sind, sollte vor dem Ausbau die ursprüngliche Position der Spannhülse auf der Welle markiert werden, um einen Wiedereinbau zu erleichtern.

Dann den Fixierlappen des Sicherungsbleches aufbiegen und die Wellenmutter einige Umdrehungen weit lösen, aber noch nicht ganz entfernen.

Zur Demontage das Lager mit einigen gezielten Schlägen am Umfang von der Hülse lösen (siehe Abb. 10.33).

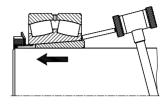
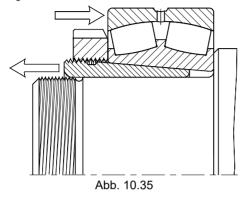


Abb. 10.33

Wenn die Lagerstelle in der Nähe eines Wellenendes liegt, kann das Lösen des Lagers auch durch Schlagbüchsen erfolgen.

Es ist sorgfältig darauf zu achten, dass durch die Schläge keine Beschädigung der Hülse erfolgt. Erst wenn sich das Lager gelockert hat, sollte die Wellenmutter mit dem Sicherungsblech ganz entfernt werden


Nach dem Ausbau des Lagers kann auch die Spannhülse entfernt werden.

Ein Aufspreizen der Spannhülse mit einem Schraubenzieher erleichtert das Entfernen der Hülse wesentlich.

Handling, Einbau und Ausbau von Wälzlagern

Bei Lagern auf Abziehhülsen muss zuerst die axiale Sicherung der Abziehhülse entfernt werden, erst dann kann der eigentliche Lagerausbau erfolgen.

Dazu wird die Abziehhülse mit einer passenden Wellenmutter aus dem Wellensitz gezogen (siehe Abb. 10.35).

Zur Verminderung der Reibung zwischen der Lagerplanfläche und der Mutternstirnseite sollten diese Flächen vor dem Aufschrauben der Wellenmutter mit Fett oder einem anderen dazu geeigneten Medium eingesprüht werden.

Lagerausbau mit dem Druckölverfahren

Bei kleinen oder mittelgroßen Lagern kann der Ausbau mit einfachen Werkzeugen auf mechanischem Wege erfolgen.

Bei Lagern größeren Durchmessers sowie bei den Großlagern werden die zum Ausbau erforderlichen Kräfte rasch sehr groß.

In diesen Fällen ist die Anwendung hydraulischer Demontageverfahren zu empfehlen.

Dabei können durch die Nutzung hydraulischer Kräfte auch sehr große und schwere Lager schonend ausgebaut werden.

Weiters wird durch die Demontage mittels Drucköl auch die Gefahr einer Beschädigung der Lager oder der Umbauteile, wie sie gerade beim Ausbau großer, festsitzender Lager gegeben ist, minimiert.

Achtung:

Festsitzende Lager können sich beim Ausbau mit dem Druckölverfahren schlagartig von ihren Sitzen lösen.

Dies kann in Extremfällen zu einem regelrechten Wegspringen auch sehr schwerer Lager führen.

Beachten Sie daher unbedingt die Gebrauchsanweisungen der Werkzeuge sowie die Herstellerempfehlungen.

Sichern Sie bei jedem Ausbau mit dem Druckölverfahren die Bauteile gegen ein Herunterfallen bzw. ein Abspringen. Wellenmuttern können eine wertvolle Sicherung darstellen. Diese sollten für den Ausbau einige Umdrehungen gelockert, aber noch nicht entfernt werden. Dies sollte erst nach dem Lösen der Lager von deren Sitzen erfolgen.

Eine einfache und universell verwendbare Einsatzmöglichkeit für das Druckölverfahren bietet die Verwendung einer Hydraulikmutter (Abb. 10.18), beispielsweise bei der Demontage großer Lager auf Abziehhülsen (siehe Abb. 10.36).

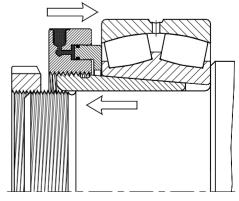
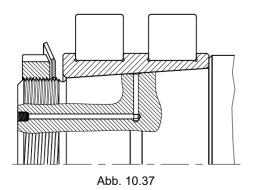


Abb. 10.36

Dabei wird im Prinzip wie bei Abb. 10.35 beschrieben vorgegangen, nur wird anstelle einer Wellenmutter eine auf das Gewinde der Abziehhülse passende Hydraulikmutter verwendet. Diese wird so weit als möglich auf das Gewinde der Abziehhülse geschraubt.


Anschließend wird eine axiale Sicherung, beispielsweise eine Wellenmutter, zur Vermeidung eines schlagartigen Lösens der Abziehhülse angebracht.

Erst danach sollte die Hydraulikmutter mit Druck beaufschlagt werden.

Durch die dadurch ausgelöste axiale Verschiebung des Ringkolbens wird die Abziehhülse vom Lagersitz gezogen.

Der Vorteil der Verwendung von Hydraulikmuttern liegt darin, dass diese auch bei Maschinen oder Anlagen eingesetzt werden kann, die keine konstruktiven Vorkehrungen für einen Lagerausbau mit dem Druckölverfahren aufweisen.

Bei Lagern, die direkt auf kegeligen Wellensitzen montiert werden, müssen die zum Ausbau erforderlichen Ölbohrungen und Ölnuten bereits bei der Fertigung der Welle berücksichtigt werden (siehe Abb. 10.37).

Zur Anschließen der Druckölleitungen sind die Ölbohrungen mit geeigneten Gewinden zu versehen.

Wenn diese nicht benötigt werden, sollten die Ölbohrungen zur Vermeidung einer Verunreinigung mit Verschlussstopfen abgedichtet werden.

Flache Ölnuten am Umfang des Lagersitzes ermöglichen die Verteilung des Drucköls.

Zum Ausbau des Lagers ist der Fixierlappen des Sicherungsbleches aufbiegen und die Wellenmutter einige Umdrehungen zu lösen, aber noch nicht ganz zu entfernen.

Die Schlauchleitungen anschließen und mit Druck beaufschlagen.

Durch das eingepresste Drucköl wird der Lagerring aufgeweitet, zwischen der Bohrung des Lagers und dem Wellensitz bildet sich ein hauchdünner Ölfilm. Durch die kegelige Bohrung gleitet das Lager dann im Normalfall leicht von dessen Sitz.

Für mittelgroße und große Lager, die mit kegeliger Bohrung auf zylindrischen Wellen montiert werden, können die passende Spann- und Abziehhülsen auch bereits mit Ölbohrungen und Ölkanälen für das Druckölverfahren geliefert werden.

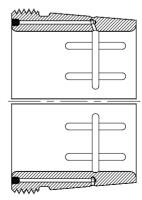


Abb. 10.38

Handling, Einbau und Ausbau von Wälzlagern

Abbildung 10.38 zeigt eine **Abziehhülse** der Type **AOH**..., die bereits mit den entsprechenden Ölbohrungen geliefert wird. Die An-schlussgewinde der Ölleitungen liegen dabei auf der größeren Planseite der Abziehhülse

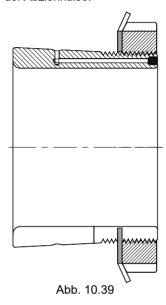


Abb. 10.39 zeigt eine für das Druckölverfahren vorgesehene Spannhülse. Bei diesen erfolgt die Ölzufuhr auf der kleineren Planseite.

Ausbau von Lagern durch Erwärmen

Bei der Lagerdemontage kann ein Erwärmen von Lager oder Gehäuse einen Ausbau mitunter erleichtern.

Je nach Anwendungsfall und Einbausituation kann beispielsweise ein Anwärmen von Gehäusen zweckmäßig sein.

Bei der Seriendemontage von Zylinderrollen- oder Nadellagern, beispielsweise bei Radsatzlagern von Schienenfahrzeugen, kommen **Thermoringe** (siehe Abb. 10.40) zum Einsatz.

Das sind geschlitzte, mit isolierten Haltegriffen versehene Ringe aus Aluminium, deren Bohrung auf die Laufbahndurchmesser der jeweils zu demontierenden Lagerringe abgestimmt sind.

Die einfachen Thermoringe werden beispielsweise mittels Heizplatten erwärmt. Die dafür erforderliche Erwärmung sollte durch Versuche ermittelt werden.

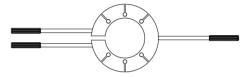


Abb. 10.40

Eine Weiterentwicklung dieser einfachen, aber sehr wirkungsvollen Werkzeuge sind Thermoringe, die in das Aluminium eingegossene Heizelemente aufweisen

Zum Ausbau wird die Laufbahn des auszubauenden Ringes dünn mit einem dünnflüssigen, oxydationsbeständigen Maschinenöl eingestrichen.

Der erhitzte Thermoring wird über den Lagerring gelegt und mit den Handgriffen gespannt bis sich die Wärme auf den Lagerinnenring übertragen hat.

Der dünnwandige Lagerring nimmt relativ rasch die Wärme des Thermoringes auf und löst sich dadurch auch bei sehr strengen Presspassungen leicht vom Sitz.

Das Lösen des Ringes ist leicht festzustellen. In der Regel genügen wenige Sekunden, dann kann der Thermoring mitsamt dem Innenring von der Welle abgezogen werden.

Da die Thermoringe nach jedem Abziehvorgang wieder erwärmt werden müssen, kann bei größeren Serien auch die Verwendung mehrerer Thermoringe sinnvoll sein.

The NKE plant in Steyr

NKE AUSTRIA GmbH

NKE AUSTRIA GmbH, headquartered in Steyr, Austria, is a bearing manufacturer in the premium class.

NKE develops and manufactures **standard** and **special bearings** for all industrial applications. The company's core competences – such as engineering, manufacturing/ final processing of components, assembly, quality assurance, logistics, sales and marketing – are centralised at our headquarters in Steyr. The site is certified to ISO9001:2008, ISO14001:2004 and OHSAS 18001.

In addition to the comprehensive product range, NKE also offers total **service support**, such as:

- application consulation
- product development and design
- technical calculations
- tests
- training

The comprehensive range of NKE standard bearings

NKE General Catalogue

This general catalogue contains the NKE **standard product range**, i.e. the range of products that are available either from stock or within a short-term delivery lead time.

Additionally, NKE produces special bearings according to customer requirements. Please contact us for more details.

The **NKE General Catalogue** is subdivided into two main sections:

- The Technical Section provides basic knowledge and essential information about topics on selection and dimensioning of bearing arrangements, design of bearing locations, handling, mounting and dismounting, lubrication of bearings including data for bearing tolerances etc.
- The Product Section consists of the actual product tables with a text section dealing with defined specific technical information on every individual bearing type.

What's New in the Fifth Edition?

We have updated the product range and complemented the technical data, such as bearing life calculation, limited speed ratings as well as thermal speed ratings.

i EN

Content	Page
Technical Section – German	11
Introduction Table of contents	185 186
Basic Components of Rolling Element Bearings	195
Introduction Basic principles Rolling bearing components Rings and washers Types of rolling elements Roller shapes Cages Additional parts and accessories	195 195 196 196 197 198 199 200
Types of Rolling Element Bearings	201
Classification of rolling bearings Overview of popular bearing types and their characteristics Deep groove ball bearings Angular contact ball bearings Four-point contact ball bearings Self aligning ball bearings Cylindrical roller bearings Spherical roller bearings Tapered roller bearings Thrust ball bearings Cylindrical roller thrust bearings Cylindrical roller thrust bearings Collindrical roller thrust bearings Cylindrical roller thrust bearings Cam rollers Accessories	201 202 202 203 204 204 205 206 207 208 209 209 210 211
Designation System	212
General ISO standards Designation system of standard bearings Prefixes	212 212 213 213

Content

Content	Page
Base designation	214
Bearings series	214
Bearing types	214
Bore diameter	216
Suffixes	217
Cage materials	219
Cage designs	219
Bearings without cages	219
Tolerance classes	219
Clearance	220
Special greases	221
Designation system of metric taper roller bearings according to DIN ISO 355	221
Adapter and withdrawal sleeves	223
Lock nuts	224
Locking washers	225
Bearing sets	225
General Bearing Data	226
General	226
Materials	226
Materials of rings and rolling elements	226
Heat treatment	226
Cage materials	226
Materials of bearing seals and shields	227
Shields	228
Seals	228
Speed limitation of contacting seals	229
Non-contacting seals	229
Materials of seals	229
Grease filling	230
Special grease fillings	230
Boundary dimensions of rolling bearings	230
Standard plans, boundary dimensions	231
Fillet dimensions	231
Fillet dimensions for metric radial bearings	233
Fillet dimensions of metric tapered roller bearings	235
Fillet dimensions of thrust bearings	236

Content	Page
Bearing Data Tolerances	237
General	237
Tolerance symbols used	237
Tolerances for radial bearings excluding tapered roller bearings	239
Tolerances for inch-sized tapered roller bearings	247
Tolerances for metric tapered roller bearings	243
Tolerances for thrust bearings	249
Tolerances for bearing heights of thrust bearings	251
Tolerances for tapered bearing bores	253
Selection of Bearing Type and Size of Bearings	255
General	255
Basic considerations	255
Detailed considerations	255
Selection of bearing type	257
Load rating and bearing life	258
Static load rating	258
Calculating rolling bearings under static loads	259
Static equivalent load P _o	259
Dynamic bearing life rating	260
Dynamic load ratings C _r or C _a	260
Calculating dynamic loaded bearings	260
Calculation of bearing load and speed at variable operating conditions	264
Calculation of bearing load in the case of baired bearings	266
Calculation of nominal rating life of oscillating bearings	266
Modified rating life	267
Factor for reliability a₁	267
Factor a _{ISO} for system consideration of lubrication, contamination, bearing material	268
Calculation examples	270
Selection of specific bearing features	276
General	276
Suitability for speeds	276
Running noise	279
Cage designs	279
Misalignments	280
Rigidty	281

Content	Page
Design of Bearing Location	282
General	282
Bearing arrangements	282
Floating and locating bearing	282
Suitability of different bearing types for locating or non-locating positions	282
Examples of bearing arrangements	283
Selection for bearing fits	286
Type and magnitude of applied loads	286
Magnitude of loading	288
Bearing type and size	288
Shaft and housing materials	288
Adjustment, mounting and dismounting	288
Fits of split bearing housings	288
Shaft fits for bearings on adapter or withdrawal sleeves	289
Required running accuracy of bearing seatings	289
Form tolerances of shaft and housing seats	290
Form accuracy of bearing seats	291
Surface roughness of bearing seats	291
Shaft and housing fits	292
Fits of thrust bearings	293
Recommended shaft fits for radial bearings with cylindrical bore	294
Fits for shaft washers of thrust bearings	295
Housing fits for radial bearings	296
Housing fits for thrust bearings	297
Tables of fits	298
Shaft fits	299
Housing fits	303
Design of bearing seats as raceways	307
Diameter tolerances of incorporated raceways	308
Axial location of bearing	308
Examples of axial locations of rolling bearings	309
Abutment and fillet dimensions	311
Design measures for bearing monitoring and dismounting	312
Sealing of bearing arrangements	313
General	313
Seal types	313
Non-contacting seals	313

Content	Page
Examples for non-contacting seals of bearing arrangements	314
Contacting seals	315
Examples for contacting seals	316
Combination of different sealing types	318
Bearing Clearance	319
General	319
Nominal internal bearing clearance and operational clearance	319
Nominal clearance	319
Operational clearance	320
Influence of bearing fits	321
Reduction of radial clearance due to interference fits	321
Smoothing of matching surfaces	322
Reduction of clearance due to temperature differences	322
Clearance of bearings with tapered bore	324
Connection between axial and radial clearance	325
Preloading of bearings	326
Increasing of stiffness	326
Enhancement of guiding accuracy	326
Running noise and vibration characteristics	326
Optimum use of the potential load rating of rolling bearings	327
Avoidance of slip and sliding friction	327
Applied amount of preloading	328
Reduction of running noise by preloading	328
Determination of preload force	329
Lubrication of Rolling Bearings	330
General	330
Methods of lubrication	330
Grease lubrication	330
Oil lubrication	330
Solid and dry lubrication	330
Selection of lubricating method	331
Speed ability of lubricants	331
Examples for typical n dm-values	331
Tasks of lubricants	331
Significant values of lubricants	332
Separation of metallic bearing surfaces	332

Content	Page
Selection of viscosity of lubricant	333
Additives in lubricants	333
Lubricating greases	334
Miscibility of greases	336
Grease quantity	336
Grease service life and relubricating intervals	336
Influences to the duration of relubrication intervals	337
Relubricating quantity	338
Grease circulation	339
Oil lubrication	340
Lubricating methods	340
Oil bath lubrication	340
Circulating oil lubrication	340
Splash oil lubrication	341
Oil injection lubrication	341
Oil mist lubrication	341
Oil quantities, oil ageing	341
Handling, Mounting and Dismounting Rolling Bearings	342
General	342
Bearing storage	342
Shelf life	342
Presuppositions for mounting	343
Cleanliness	343
Preparations	344
Selection of mounting method	345
Mounting of bearings in cold condition	346
Press mounting of bearings	347
Simplification of bearing mounting by constructive measures	347
Insertion of shafts in the case of separable bearings	348
Roller drop in cylindrical roller bearings	349
Mounting of bearings having filling slots	349
Mounting of bearings with tapered bore	350
Mounting of self aligning ball bearings with tapered bore	351
Mounting of spherical roller bearings with tapered bore	352
Mounting bearings by using oil injection method	354
Mounting of bearings by heating	355
Required heating	355

Content

Content	Page
Approved heating methods	356
Heating in oil baths	356
Hot plates and boxes	357
Hot plates	357
Thermo rings	357
Induction heating	358
Mounting of matched and adjusted bearings	359
Mounting of multi-row bearings	360
Greasing of bearings	361
Fitting of seals	362
Commissioning of bearing arrangement	362
Condition monitoring	364
Dismounting bearings	365
General	365
Preparations for dismounting	365
Dismounting bearings using the injection oil method	367
Dismounting of bearings by heating	369
Deep Groove Ball Bearings	371
Product information single row deep groove bearings	372
Single row deep groove ball bearings	386
Product information ball bearings with snap ring groove and snap ring	418
Deep groove ball bearings with snap ring groove and snap ring	420
Angular Contact Ball Bearings	439
	440
Product information single row angular contact ball bearings	440
Single row angular contact ball bearings	456
Single row angular contact ball bearings in universal design	462
Product information four-point contact ball bearings	466 470
Product information double row angular contact ball bearings	470 478
Double row angular contact ball bearings Product information four point contact ball bearings	476 484
Product information four-point contact ball bearings	404 490
Four-point contact ball bearings	490
Self Aligning Ball Bearings	495
Product information self aligning ball bearings	496
Self aligning ball bearings	508

Content	Page
Self aligning ball bearings with adapter sleeves Self aligning ball bearings with extended inner rings	526 532
Cylindrical Roller Bearings	535
Product information single row cylindrical roller bearings Single row cylindrical roller bearings Product information full complement cylindrical roller bearings Single row full complement cylindrical roller bearings Double row full complement cylindrical roller bearings Sealed double row full complement cylindrical roller bearings	536 550 598 608 628 644
Tapered Roller Bearings	649
Product information single row tapered roller bearings Metric single row tapered roller bearings Inch-sized tapered roller bearings Product information paired single row tapered roller bearings Paired single row tapered roller bearings Product information IKOS tapered roller bearings Information IKOS tapered roller bearings	650 656 680 686 692 696 704
Spherical Roller Bearings	707
Product information spherical roller bearings Spherical roller bearings Spherical roller bearings with adapter sleeve Spherical roller bearings with withdrawal sleeve	708 718 764 778
Thrust Ball Bearings	797
Product information thrust ball bearings Thrust ball bearings, single direction Thrust ball bearings, double direction Thrust ball bearings, single direction with spheroid housing washer Thrust ball bearings, double direction with spheroid housing washer	798 808 820 826 834
Cylindrical Roller Thrust Bearings	841
Product information cylindrical roller thrust bearings Cylindrical roller thrust bearings	842 850

Content	Page
Spherical Roller Thrust Bearings	857
Product information spherical roller thrust bearings Spherical roller thrust bearings	858 866
Cam Rollers	875
Product information cam rollers Cam rollers	876 882
Bearing Housings Units	887
Bearing units Insert bearings Plummer block units, cast iron Oval flanged units, cast iron Square flanged units, cast iron Round flanged units, cast iron Take up units, cast iron Plummer block units, pressed steel Oval flanged units, pressed steel	888 908 916 928 938 946 952 958
Accessories	967
Product information adapter and withdrawal sleeves adapter sleeves Product information withdrawal sleeves Withdrawal sleeves Product information lock nuts Lock nuts, KM-type Lock nuts, HM-type HM-type lock nuts with MS-locking clips Locking washers	968 972 990 1000 1004 1008 1010
Product Index	1025
Product Index in numerical order Product index in alphabetical order	1025 1030

Introduction

Rolling element bearings are standardised machine units.

They transmit forces, moments and rotating movements, including the guidance of shafts and spindles.

Transmission of forces and movements generate friction. Such frictional resistance proportionally increases torque and thus generating additional undesirable heat gain.

Any reduction in frictional resistance minimises these criteria. This directly reduces the required input power torque of a machine, thereby enabling a more compact design, higher effi-ciency and a simple construction of machines.

Basic Principles

In general, there are two different types of bearings. The principal differences are

- sliding friction (e.g. plain bearings)
- rolling friction (e.g. rolling bearings)

For plain bearings, sliding friction occurs when two surfaces, generally separated by a third medium (e.g. air and/or lubricant), move relative to each other (fig 1.1).

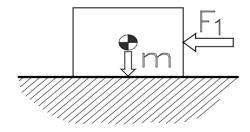


Fig. 1.1

The maximum forces transmitted by plain bearings are determined basically by the permissible specific pressure in the contacting area between the component elements.

The specific pressure is determined by the strength of material selected.

This historical principle is used for all types of plain bearings in their various applications (e.g. carriages, etc.)

The main advantage of plain bearings lies in their very simple and thus inexpensive structure. They are frequently used in maintenance-free designs and require less space in the machine design.

Their main disadvantages are limited ability in transferring forces, less accuracy in guiding shafts and spindles plus a relatively large starting torque.

Rolling element bearings, however, work with the principle of rolling friction (fig. 1.2).

The applied load is transmitted by rolling elements, rotating around and between two bearing rings, normally guided by ring raceway grooves. Usually the rolling elements are positioned within the bearing by separators, also termed retainers or cages. As described for plain bearings, rolling bearings also require lubricant separation of the metallic parts.

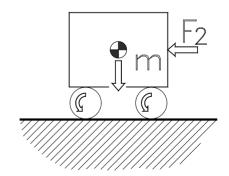


Fig. 1.2

Basic, Components of Rolling Element Bearings

This along with good surface finish ensures smooth running surfaces and reduces friction from the transmitted forces, resulting in minimising power loss.

In practice no pure rolling motion occurs within rolling bearings. The basic rolling motion of the rolling elements will include elements of sliding friction.

The amount of sliding friction within the bearing is dependant upon the kinematic properties of the respective bearing itself.

An excessive amount of sliding friction may cause serious damage on the bearing components and thus may cause premature failure.

Sliding friction is common, but it may cause problems in the event of high speeds, accelerations or the bearing runs under too lightly applied load. There is supporting evidence that rolling bearings require an effective load to perform efficiently.

Rolling element bearings, compared to plain bearings, have the following advantages:

- less starting torque, energy conservation.
- greater availability of different types and sizes, globally and standardised.
- many capable of taking combined radial and axial loads.
- greater load carrying capabilities within limited design space.
- maintenance free, sealed "for-life" design arrangements.
- less lubrication consumption.
- very precise guidance of shafts.
- rolling element bearings are more suitable to greater operating temperatures.
- rolling element bearings are also available in special designs to meet particular applications, such as stainless steel bearings, special greasing etc.

Rolling Bearing Components

Normally rolling bearings (fig. 1.3) consist of two rings (fig. 1 and 4) or – in case of thrust bearings – washers, with rolling elements (2), mostly retained by a cage (3), in between.

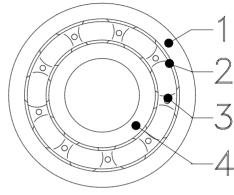


Fig. 1.3

In certain cases the rolling elements may run directly onto running surfaces of connecting parts such as shafts or housings.

Several bearing types are available with integrated seals or shields.

Rings and Washers

The bearing rings or washers (fig. 1.4) accommodate loads which are transmitted onto the seating positions of shafts and housings.

A bearing ring or washer normally has a raceway groove where the rolling elements rotate and locate.

To assist in their precise location the outer ring (O.D.) and inner ring (bore) have similar surface finishes.

Rolling bearings depending upon type are able to accommodate radial or axial loads, many are capable of combined loads.

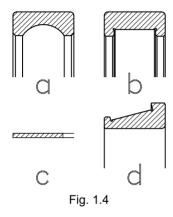


Figure 1.4 shows some examples of different bearing rings.

- 1.4a) Outer ring single row deep groove ball bearing
- Outer ring single row cylindrical roller bearing
- 1.4c) Flat thrust washer of a needle roller thrust bearing
- 1.4d) Inner ring single row tapered roller bearing

Types of Rolling Elements

Rolling elements are simple geometrical bodies i.e. balls, rollers or bearing needles, which transmit the applied forces.

The principle distinction between rolling element bearings and their initial bearing description is generally classified solely due to the rolling element shape (e.g. ball bearing, roller bearing, needle roller bearing, etc.)

The difference between ball and roller bearings is also considered in the calculation formula for rolling bearings. This is due to the differences in geometric surface contact behaviour.

 a) A ball lying on a flat surface makes contact at a single point. This is termed "point contact" (fig 1.5).

In practice a ball under load will have elastic deformation. The curved shape of ball bearing raceway changes this contact shape to become ellipsoidal.

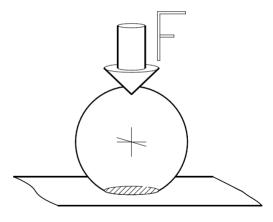


Fig. 1.5

Due to this usually very small contacting area ball bearings have less frictional resistance and are more suitable in high speed applications.

These small contact areas result in higher specific pressure at given loads when compared to roller bearings of equal size (i.e. less load carrying capability).

Basic, Components of Rolling Element Bearings

b) A roller lying on a flat surface makes contact in a line. This is termed "line contact" (fig 1.6).

When a load is applied the line contact changes basically to a rectangle for cylindrical surfaces and trapezoidal for conical surfaces.

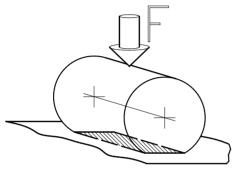
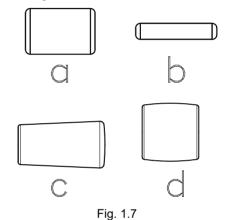


Fig. 1.6

Under a given load the contacting areas for line contact is larger than that of point contact. Thus rolling bearings have higher load ratings than ball bearings, although they also have higher friction.

The length of this contacting area makes roller bearings more sensitive to misalignment between rollers and raceways. Misalignment causes undesired stress at the roller ends. Such stress peaks may cause a local overloading of the bearing steel. To eliminate these stress concentrations, termed "edge loading", it is usual to profile rollers and raceways.

As stated earlier, there are calculation formula differences for ball and roller bearings, e.g. when calculating the nominal bearing life rating according to the standardised method the different geometric surface contact behaviour is considered by different life exponents.


The life exponent \mathbf{p} in the standardised equation is for

ball bearings: p = 3

roller bearings: p = 10/3 (3.333333)

Roller Shapes

Rollers used in rolling bearings are of different shape. The most important base shapes are shown in fig. 1.7:

· ·

1.7a) Cylindrical roller

Mainly produced with a profiled shape of roller diameter to avoid excessive edge stresses.

1.7b) **Needle roller**

Needle rollers are basically cylindrical rollers with a large ratio of length to diameter.

1.7c) **Tapered roller**

Formed as a conical shaped solid element and profiled shape of diameter.

1.7d) Barrel roller

Barrel shaped rollers are produced either symmetric or asymmetric in design (i.e. as used in self-aligning spherical roller bearings).

Cage

A cage fulfils several functions within a rolling bearing:

- to separate the individual rolling elements.
- to guide and position the rolling elements between the raceways.
- to retain the rolling elements.

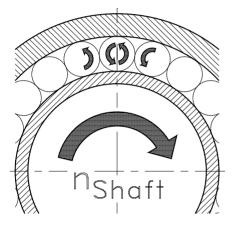


Fig. 1.8

Under certain conditions a cage may be omitted from the assembled bearing type. This is termed **full complement** bearing.

This enables a maximum load carrying capacity by utilising the bearing cross sectional area with the optimum number of rollers.

This causes higher friction therefore lower speed capabilities.

It can be seen (fig 1.8) that each rolling element contacts the other in a contrarotating motion, thereby, generating higher bearing friction and thus having lower speed capabilities.

For rolling bearings fitted with cages, however, minimal sliding friction occurs between the respective surfaces of rolling elements and cage pockets (fig 1.9).

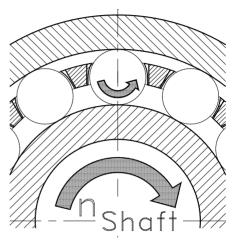


Fig. 1.9

Rolling bearing cages are manufactured from the following materials:

- pressed mild steel sheet,
- pressed brass or bronze sheet,
- brass or bronze,
- plastics (e.g. polyamide or nylon),
- light metal alloys,
- steel,
- resin,
- sintered metals,
- special materials.

Additional Parts and Accessories

Several bearing types are manufactured with integrated shields or seals.

There is a wide variety of designs and materials used for seals and shields when fitted to rolling bearings. Additionally, rolling bearing seals are manufactured in materials suitable for high temperature applications.

Some bearing types, mainly deep groove ball bearings, are manufactured with snap ring grooves on their outer diameter. This feature enables simple axial location at mounting when used in conjunction with a snap ring. These bearings can be fitted with or without a snap ring (see fig 1.10).

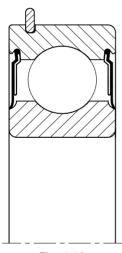
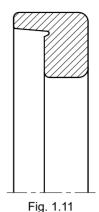



Fig. 1.10

Other bearing types similarly have loose, yet matching parts (e.g. cylindrical roller bearing – separate thrust collar or side plates). (fig 1.11)

Many of these parts are individually available.

Accessories are usually integral parts to a rolling bearing assembly. Examples are adapter sleeves, withdrawal sleeves, lock nuts (see fig. 1.12), locking devices and rolling elements etc.

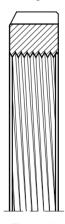


Fig. 1.12

Some of these accessories are used for different purposes, not only in connection with bearings. Separate balls, for example, are often used in vents or even for calibrating gauges.

Lock nuts are also frequently used for locking of other machine components like couplings, gears or disks.

Classification of Rolling Bearings

Design engineers may select the most suitable bearing for their purposes from a large number of different bearing types and designs. In making a selection it is necessary to have some knowledge of the different bearing types and their specific behaviours.

The selection of rolling element bearings is based on the following general criteria:

- a) Based on the direction of applied load (i.e. rolling element shape)
 - Deep groove ball bearings
 - Angular contact ball bearings
 - Cylindrical roller bearings
 - Tapered roller bearings
 - Spherical roller bearings
 - Needle roller bearings
- b) Based on their load capacity and capability (i.e. radial, angular contact, axial or thrust forces)
 - Radial deep groove ball bearings
 - Angular contact thrust ball bearings
 - Cylindrical roller thrust bearings
 - Radial tapered roller bearings
 - Spherical roller thrust bearings
- c) Based on availability and suitability whether standard bearings or bearings for special application requirements.

NKE will design, develop and produce special bearings and associated products to individual customer application requirements with specific reference to **reliability**, **performance** and **service** operations.

- Clutch release bearings
- Traction motor bearings for railway vehicles
- Track runner bearings and support rollers
- Stainless steel bearings
- Ball and roller bearing for hightemperature applications
- High precision bearings for machine tool spindles
- Roll neck bearings for steel rolling mills
- Profiled rollers
- Shaker screen bearings
- Electric insulated bearings
- d) Based on application and unit design assembly.

d 1) Separable bearings:

Where one or more bearing components may be mounted or dismounted easily within an application assembly procedure, e.g. taper roller, cylindrical roller, needle roller bearings, thrust ball bearings and split bearings.

d 2) Non-separable bearings:

Where each bearing is mounted and dismounted as a complete unit, e.g. deep groove ball, angular contact bearings and spherical roller bearings.

Overview of the More Popular Bearing Types and their Characteristics

Radial Deep Groove Ball Bearing

Single row deep groove ball bearings (fig. 2.1) are the most commonly used rolling bearings.

The balls run in deep grooves in both the outer and inner rings. This enables the bearing type to accommodate radial loads as well and some axial loads in either direction.

Deep groove ball bearings are especially suitable for high speed applications due to their low friction. They achieve the highest speed ratings of all rolling bearing types. Deep groove ball bearings are available in a wide variety of designs with different shields and seals. This enables greased "for life" bearings, maintenance free and more efficient designs.

Other classifications of single row deep grooved ball bearing are **miniature bearings** – up to and including 3.175 mm inner bore diameter

Extra small bearings – over 3.175 mm up to and including 9.525 mm inner bore diameter

Max type bearings – greater number of balls than normal allowing higher radial loads, with limited axial loads in one direction.

For more information see page 371.

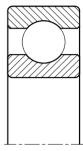
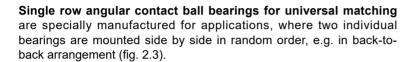


Fig. 2.1



Angular Contact Ball Bearings

Single row angular contact ball bearings (fig. 2.2) support axial loads applied at a certain contact angle to their axis in one direction only. These bearing types are not separable; therefore, they are mounted in bearing pairs or a combination of bearing sets.

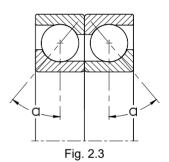
This bearing is suitable for high and very high speeds, commonly used in machine tool spindle applications.

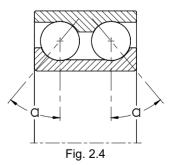
For more information see page 440.

The rings are machined to ensure that specific clearances or preload values are attained within a mounting arrangement. Individual bearings can be arranged in either back-to-back, face-to-face or tandem mounting arrangement and demonstrate excellent ability to absorb radial and axial loads.

For more information see page 462.

Double row angular contact ball bearings (fig. 2.4) are similar in their internal design to two single row angular contact bearings mounted in a back-to-back arrangement.


Double row angular contact ball bearings have less overall width than two single row ball bearings. They can accommodate heavy radial loads and axial loads in either direction additionally, providing a very rigid bearing arrangement.


Designs with polyamide cage are without filling slots. This execution can operate at temperature up to +120°C. Bearings fitted with pressed steel or brass cages have ball filling slots on one side face, therefore, are less suited to accommodate equal axial loadings. These bearing types are sensitive to misalignment.

For more information see page 470.

Fig. 2.2

Four-Point Contact Ball Bearings

Four-point contact ball bearings (fig. 2.5) are basically single row angular contact ball bearings with split inner ring (i.e. two half inners). This bearing is separable.

The contact geometry between rolling element and raceway is "four-point" contact, due solely to raceway form design (i.e. Gothic arch) this enables the support of equal axial loads in either direction.

Where necessary there are locating grooves in the outer rings to prevent undesirable rotation.

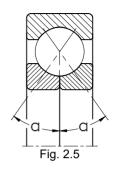
For more information see page 484.

Self Aligning Ball Bearings

Self aligning ball bearings (fig. 2.6) are double row ball bearings, each set of balls rotate within a single outer ring spherical raceway. This gives the bearing a self aligning feature to overcome misalignments, shaft deflections and housing variations.

Self aligning ball bearings are non-separable. They are suitable for medium radial loads and low axial forces

Engineers should be aware and consider in their application designs that some self aligning ball bearing units have balls that protrude beyond the bearing faces.


Self aligning ball bearings are frequently used with a 1:12 tapered bore (fig. 2.7) for mounting using adapter sleeves.

This feature enables direct mounting onto shafts for applications where high running accuracy is unnecessary.

Other design variants include the use of extended inner rings; these rings have slots on one side face to which dowel pin location via the shaft is permitted. The inner ring bore diameter variation for these types is to tolerance class J7.

Some self aligning ball bearings are available fitted with rubber seals on both sides (i.e. sealed "for-life").

For more information see page 496.

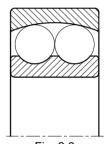


Fig. 2.6

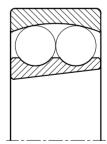
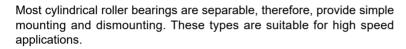


Fig. 2.7


Cylindrical Roller Bearings

Single row cylindrical roller bearings are used in the transmission of high radial forces. Depending on their rib design arrangement single row cylindrical roller bearings also have the following features:

N and NU, (fig. 2.8), may be used as a floating bearing.

NJ and NF types also support axial loads in one direction only.

NH (i.e. NJ+HJ) and NUP provide axial location and support axial loads in either direction.

For more information see page 535.

Full complement cylindrical roller bearings (fig. 2.9) are cageless bearings designed to accommodate maximum radial load capacity.

Under service conditions the roller elements contact each other in a contra rotating motion resulting in considerably higher friction when compared to caged bearing types. This additional friction results in a lower speed rating.

Standard full complement cylindrical roller bearings are manufactured in either single row or in double row designs.

Bearing type NNF 50... -2LS-V has seals fitted.

For more information see page 598.

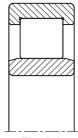


Fig. 2.8

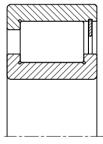


Fig. 2.9

Spherical Roller Bearings

Spherical roller bearings are two rows of barrel-shaped rollers running in a single spherically formed outer ring (fig. 2.10).

This allows the self aligning bearing feature thereby accommodating the manufacturing and assembly misalignments of shaft to housing, including shaft bending and deflections.

Spherical roller bearings are non-separable and can accommodate very high radial loads and certain axial loads in either direction.

Due to their kinematic characteristics spherical roller bearings are not suitable for very high speeds.

Typical applications for spherical roller bearings are mining and heavy industries.

The majority of spherical roller bearings are produced with a circumferential groove and lubrication holes in the outer ring this allows relubricating the bearings.

Spherical roller bearings are less frequently used with **tapered bore** (fig. 2.11) mounted directly onto a tapered shaft.

Generally, mounting of these bearing types is in conjunction with either adapter or withdrawal sleeves. The most common tapered bore is 1:12, namely designation **suffix K**. Other spherical roller bearings with a small radial cross section (i.e. series **240** and **241**) have slower tapers 1:30, namely designation **suffix K30**.

Large spherical roller bearings are often mounted and dismounted using hydraulic nuts in conjunction with the standard adapter and withdrawal sleeves, or alternatively, using the oil injection method with modified adapter and withdrawal sleeves.

Spherical roller bearings for vibrating screen applications (suffix **SQ34**) have differing design features, namely machined solid brass cages, closer geometric tolerances and radial clearances when compared to standard bearings.

For more information see page 707.

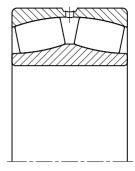


Fig. 2.10

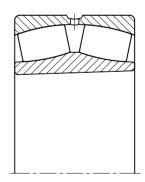


Fig. 2.11

Tapered Roller Bearings

Tapered roller bearings (fig. 2.12) are normally separable radial bearings. They comprise of a cone assembly (i.e. inner ring, with cage and roller assembly) and separable "cup" (i.e. outer ring). Due to the contact angle each radial load applied on a tapered roller bearing generates an internal thrust force. Since single row tapered roller bearings accommodate thrust loads in one direction only they have to be arranged against a second taper roller bearing to accommodate thrust loading in the opposite direction. Tapered roller bearings support high radial and thrust forces even at high speeds.

They do not permit large misalignment.

For more information see page 649.

Paired single row tapered roller bearings are two single row tapered roller bearings paired using spacers and distance pieces for defined axial clearance or preload.

These bearing are supplied back-to-back, face-to-face or tandem arrangements according to customer requirements.

The pairing of bearings is completed during the manufacturing stages, therefore, mounting time and cost is reduced.

Several types of paired single row tapered roller bearings are available in face-to-face arrangement as standard bearings, identified by suffix **DF** (fig. 2.13).

Other sizes and /or designs are available on request.

Double row tapered roller bearings (fig. 2.14) are ready-for-use **units**. Depending on the application they are arranged either in face-to-face or back-to-back arrangement.

They consist of an inner ring with two roller rows and a one-piece or multiple-part outer ring.

Such units are used in machine tool spindles and as axle box bearings of railroad vehicles.

Double row tapered roller bearings belong to the supplementary range and are available on request.

Four row tapered roller bearings (fig. 2.15) also belong to the supplementary product range.

They are ready for use **bearing units** for rolling stands in steel mills. Due to the many different sizes and designs such bearing units are manufactured to customer order only.

For more information on **NKE multi-row tapered roller bearings** please contact NKE.

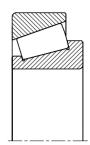


Fig. 2.12

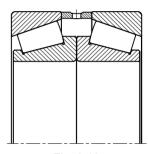


Fig. 2.13

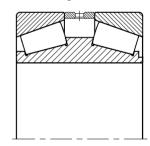


Fig. 2.14

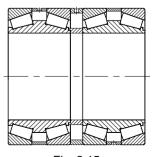


Fig. 2.15

Types of Rolling Element Bearings

Thrust Ball Bearings

Thrust ball bearings are available as single direction and double direction designs. They are separable and thus easy to mount. Thrust ball bearings can support axial loads only.

They are unsuitable for high speed use.

These bearing types do not permit any misalignments. However, to overcome this problem, design variations incorporating spherical housing washers and seating rings are available.

To ensure optimum function, thrust ball bearings require a specific minimum load.

Single direction thrust ball bearings (fig. 2.16) consist of a shaft (i.e. small bore) and housing washer (i.e. large bore) each having a face raceway groove. These washers are separated by a cage and ball assembly.

This design will take thrust loads in one direction only.

Double direction thrust ball bearings (fig. 2.17) are suitable for accommodating axial forces in both directions. They consist of two shaft washers, a central housing washer located in the middle of the assembly separated by two ball and cage assemblies. These bearings do not permit any misalignment.

However they are also available with spheroid housing washers for applications where some misalignment may occur.

For more information see page 798.

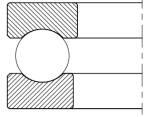
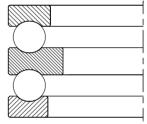
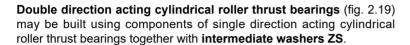


Fig. 2.16




Fig. 2.17

Cylindrical Roller Thrust Bearings

Cylindrical rollers thrust bearings (fig. 2.18) are of very simple design consisting of a shaft washer, housing washer, cage and roller assembly. Cylindrical roller thrust bearings are capable of supporting higher loads compared to thrust ball bearings, therefore, are suitable for applications where very high thrust load carrying capability is required. These bearing types are insensitive to shock loading, unsuitable for radial loading and do not permit any misalignment.

Such intermediate washers belong to the NKE supplementary product range. Details are available upon request.

For more information see page 841.

Spherical Roller Thrust Bearings

Additional to the thrust bearings previously mentioned **spherical roller thrust bearings** (fig. 2.20) are self aligning bearings that are separable and thus easy to mount.

Spherical roller thrust bearings are single direction acting and can accommodate high thrust loads as well as a certain amount of radial loads.

For an optimum function spherical roller thrust bearings need a certain minimum load. These bearings are used in applications where high capability in taking thrust loads and misalignments is necessary.

For more information see page 857.

Fig. 2.18

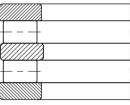


Fig. 2.19

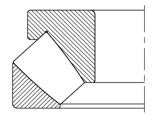


Fig. 2.20

Types of Rolling Element Bearings

Cam Rollers

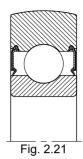
Cam rollers are ball bearings with a very thick-walled outer ring that runs directly onto a guiding surface or a track.

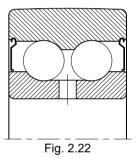
Due to this thick-walled outer ring they are capable to run even under shock loads

Because of the fact that cam rollers are usually used under very rough operating conditions they are supplied with incorporated seals or shields.

To avoid excessive edge stresses when running on tracks or to compensate for misalignments the cam rollers are frequently used with crowned outer diameter (suffix **R**).

Single row cam rollers are similar to sealed single row deep groove ball bearings. They are usually used with two seals, but on request they are also available with shields.


Single row cam rollers are frequently used with crowned outer diameter (fig. 2.21).


Double row cam rollers (fig. 2.22) are based on double row angular contact ball bearings of series **32**... and **33**... .

They feature polyamide cages and shields; these rollers are also often used with a crowned outer diameter.

To guarantee a long service life even under tough operating conditions these rollers have a lubrication hole on their inner rings.

For more information see page 875.

Accessories

The term "accessories" used by NKE is applicable to separable products as used in specific bearing assemblies.

Examples:

- a) Separate cylindrical roller bearing thrust collars
- b) Separate needle roller bearing inner rings
- c) Adapter sleeves, washers and locking nuts (fig. 2.23)
- d) Withdrawal sleeves (fig. 2.24)

Other examples for bearing accessories are snap rings, sealing washers, spacers, etc.

For more information see page 968.

Fig. 2.23

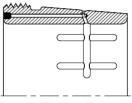


Fig. 2.24

General

The **designations** of rolling element bearings consist of combinations of letters and numbers. Although the designation system has been built up following a logical principle the classification of individual bearing types may sometimes be hard to understand for the layman.

The designation code of rolling element bearings has been built up in such a way that different parts of the designation exactly identify the bearings type, size and specific characteristics.

Besides the classification system of standard bearings, there are a large number of individual special bearing designations for "special" bearings or standard bearings that feature some special characteristics. Such special designation may differ according to manufacturer standards.

The basis of the rolling element bearing designation system is DIN-standard **DIN 623**.

ISO Standards

Basic bearing design, their boundary dimensions and the tolerances of **standard bearings** are defined by internationally recognised standard plans (e.g. **ISO 15**, **ISO 355** and **ISO 104** reps. in **DIN 616** and **DIN ISO 355**.) Boundary dimensions as defined by the standard plans include bearing cross sections and their boundary dimensions according to mathematical rules.

In these standard plans for each **bore diameter** several different possible **outer diameters** and **widths** or, in the case of thrust bearings, **heights** have been assigned.

In this way **diameter series** and **width series** for standard bearings have been defined.

Some examples for the structure of standard plans are shown in fig. 3.1.

Defined in these standards are bearing base design, bore diameter (d), outer diameter (D), width (B), or, in the case of thrust bearings, height (H, T) and minimum values for chamfer dimensions (r) (fig.3.2).

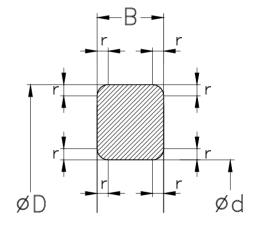


Fig.3.2

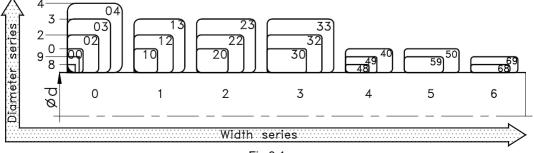


Fig.3.1

Designation System of Standard Bearings

The general classification system of standard bearing bases includes the **diameter series** and width series

The standard classification system includes:

- prefixes
- a base designation
- suffixes

(see fig.3.3)

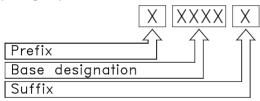


Fig.3.3

For metric tapered roller bearings the "traditional" designation system according to DIN 720 has a new "parallel" designation system now established according to **DIN ISO 355**.

Fig. 3.4 shows in principle the structure of the designation system for standard bearings.

In the following more important symbols are explained.

Prefixes

Prefixes usually identify **separate parts** of bearings, special bearings or in the case of stainless steel bearings the different bearing material.

Examples for bearing parts:

Separable bearing types, (e.g. cylindrical roller bearings or needle roller bearings), sometimes are used without specific components.

In these cases the used components are identified by the following prefixes:

L..... separate ring

NU314-E

e.g. LNU314-E Inner ring of cylindrical roller bearing

IR..... ring

e.g. IR40X50X20

Separate inner ring of a needle roller bearing

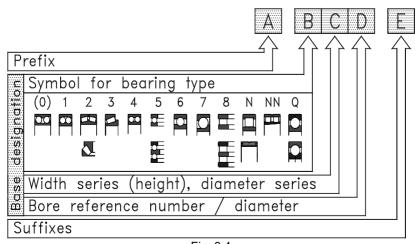


Fig. 3.4

Examples for bearing parts:

R..... ring with roller set

e.a. RNU314-E

Outer ring with roller set of a cylindrical roller bearing NU314-E

e.g. RNA6912

Outer ring with needle roller assembly of a needle roller bearing NA6912

BO..... loose rib

e.g. **BO-**NUP220-E

Loose rib of a cylindrical roller bearing NUP220-E

AXK... Needle roller and cage thrust assembly e.g. AXK5578

GS..... housing washer

e.g. GS-81111

Housing washer of a cylindrical roller thrust bearing 81111

WS..... shaft washer

e.a. WS-81111

Shaft washer of a cylindrical roller thrust bearing 81111

Base Designations

The **base designation** describes bearing type, base design and its size.

Standard bearings usually have base designations that consist of letters and numbers or a combination of both. They indicate:

- type and base design (bearing series)
- size (bearing bore diameter)

Fig.3.5 shows a schematic representation of the structure of base designation of standard bearings.

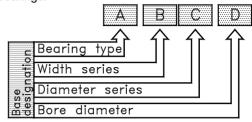


Fig. 3.5

Bearing Series

The symbol of the bearing series contains information about the **type of bearing** and its assignment to a certain **width** or **diameter series** or, in the case of thrust bearings, to a certain **height** and **diameter series**.

The individual bearing series is identified by letters or numbers, or a combination of both.

Bearing Types

The identification of the **bearing type** is made by the first symbols of the base designation.

The different bearing types may be distinguished by letters or numbers or a combination of both.

In some cases it has been established to omit the first numbers of the identification symbol of the Bearing type, particularly the first figure of the dimension series.

The most common **bearing series** are:

(0) Double Row Angular Contact Ball Bearings

For practical use the "0" is omitted.

Common series: (0)32

(0)33

1 Self Aligning Ball Bearings

The "1" is omitted in some cases. Common series:

122 **1**(0)**3 1**(1)**0 104 1**(0)**2**

(1)23 (1)22

2 Spherical Roller Bearing

Standard series:

Radial spherical roller bearings:

223 231 238 213 240 248 232 241 239 222 230 249

Spherical roller thrust bearings

292

293

294

3 Tapered Roller Bearings

Standard series:

 302
 303
 313

 320
 322
 323

 330
 331
 332

329

4 Double Row Deep Groove Ball Bearings

The "2" in the designation of width series is omitted for practical use:

Series: 4(2)2

4(2)3

5 Thrust Ball Bearings

The most commonly used series:

510 511 512 513 514 522 523 524 532 533 534 542 543 544

6 Single Row Deep Groove Ball Bearings

In most cases the "0" and the "1" from the symbol of width series is omitted for practical use.

The most important series are:

618 619 (60)2 (60)3 622 623 630 16(0)0 16(0)1 6((1)0 6(0)2 6(0)3 6(0)4

7 Single Row Angular Contact Ball Bearings

For single row angular contact ball bearings the "0" and the "1" from the symbol of width series is omitted for practical use.

The most common series are:

708 718 719 7(1)0 7(0)2 7(0)3 7(0)4

8 Cylindrical Roller Thrust Bearings

The most common series are:

811 812 893 894

N Cylindrical Roller Bearings

The letter \mathbf{N} may be followed by other letters which indicate the design of the bearing in more detail

Examples: NU, NJ, NUP, NCF, NNU, NNCF, etc.

If the bearing designation starts with "NN", double or multi-row bearings are indicated.

In most cases for cylindrical roller bearings the "0" and the "1" from the symbol of width series is omitted

The most frequently used bearing series are:

(0) 2	(0) 3	(0) 4	
22	23		
10	20	30	50
18	29	39	
48	49	69	

NA Needle Roller Bearings

The designation of needle roller bearings with machined rings starts with **NK** or **NA**.

Q Four-Point Contact Ball Bearings

Depending upon their design four-point contact ball bearings are identified either by "Q" (split outer ring) or "QJ" (with split inner ring).

For four-point contact bearings the "0" of the symbol for the width series is omitted for practical use.

The most commonly used series are:

10 (0)**2** (0)**3**

T Tapered Roller Bearings

The designation of metric standard tapered roller bearings is in accordance with DIN ISO355 the first letter being "T".

Bore Diameter

Normally the bore diameter of a standard bearing is integrated in its base designation as a two-digit number, termed the **bore reference number**.

This bore reference number is written after the symbol indicating the bearing series, (see fig. 3.4 and fig. 3.5). The **bore reference number**, when multiplied by 5, indicates the bore diameter in millimetres.

Single row deep groove ball bearing

Examples:

6205

	Bore diameter 05 x 5 = 25mm
NU23 36	Single row cylindrical roller bearing Bore diameter 36 x 5 = 180mm
33 18	Double row angular contact ball bearing

Exceptions to this rule:

In specific cases the bore diameter is indicated differently, as follows:

Bore diameter $18 \times 5 = 90 \text{mm}$

a) Bearings with bore diameters of 10, 12, 15 or 17 mm.

These bore diameters are identified by the following code numbers:

00 = 10 mm 01 = 12 mm 02 = 15 mm 03 = 17 mm

Example:

60**02** Single row deep groove ball bearing, Bore diameter **15mm**

b) Bearing having bore diameters less than 10 mm and over 500 mm.

For such bearings their bore diameter will be given directly in millimetres. It is separated from the symbol of bearing series by an oblique slanting line.

Examples:

62/**2,5** Single row deep groove

ball bearing

bore diameter 2,5mm

230/710 Spherical roller bearing

bore diameter 710mm

618/850 Single row deep groove

ball bearing

bore diameter <u>850mm</u>

c) Bearings having bore diameters that deviate from standard sizes.

Such bore diameters are also indicated directly in millimetres, separated from the bearing base symbol using an oblique slanting line.

This also applies to bearings having bore diameters of 22, 28 and 32 mm.

For other bearings the principle has already been established in identifying the bore size in a direct uncoded manner following the identification symbol of the bearing series.

Examples:

320/22 Tapered roller bearing

bore diameter 22mm

608 Single row deep groove

ball bearing

bore diameter 8mm

62/32 Single row deep groove

ball bearing

bore diameter 32mm

127 Self aligning ball bearing

bore diameter 7mm

d) Certain bearing series

For **Magneto bearings** of the series **E**, **BO**, **L** and **M** the bore diameter is given directly in millimetres.

Example:

E17 Magneto bearing

Bore diameter 17mm

Suffixes

Suffixes are written following the bearings base designation.

They give some information regarding details of bearing design, as far as it deviates from the defined standard.

Suffixes must always be considered in relation to the bearing type used. As an example, the letter "E" will have a completely different meaning according to its bearing type.

Not all suffixes are standardised. Many details, such as details of cage or seals are defined according to the manufacturers' standards.

The following features which may deviate from the standard design will have defined and differing suffixes

- Internal design
- Outer shape or profile
- Seals and shields
- Design and material of cage
- Tolerances and accuracy
- Clearance
- Heat treatment
- Grease filling

In many cases several suffixes are presented in different combinations.

Examples of Suffixes

Suffixes of Internal Design

Changes or modifications to internal design are identified by suffixes. These suffixes are not standardised and will be used when necessary.

Examples: Suffixes A, B, C, D, E

3210**B** Double row angular contact ball bearing, modified design without filling

slots

Suffixes Indicating Boundary Shape

Suffix K

Bearing with tapered bore, taper 1:12

Example: 1207-K

Suffix K30

Bearing with tapered bore, taper 1:30

Example: 24138-K30

Suffix Z

Bearing with one shield Example: **6207-Z**

Suffix -2Z

Bearing with two shields Example: **6207-2Z**

Suffix RS

Bearing with one seal Example: **6207-RS**

Suffix -2RS

Bearing with two seals Example: **6207-2RS**

Suffix -2RSR

Bearing with two RSR-seals Example: **6208-2RSR**

Suffix -2LS

Cylindrical roller bearing with two land riding seals located on its inner ring.

Example: NNF 5016-2LS-V

Suffix -2LFS

Bearing with two non-contacting LFS-seals

(LFS = Low Friction Seal). Example: 6205-2LFS

Suffix N

Bearing with a snap ring groove in its outer

ring.

Example: 6207-N

Suffix NR

Bearing with a snap ring groove in its outer

ring and fitted with a snap ring.

Example: 6008-NR

Suffix 7-N

Bearing having a shield on one face side and a snap ring groove in the outer diameter

on the opposite face.

Example: **6206-Z-N**

For bearings fitted with seals the suffix is

-RS-N

When fitted with two seals or shields:

Examples: **6206-2Z-N** (e.g. with two shields)

or

6206-2RS-N (e.g. with two seals)

Suffix N2

Bearing having two locating grooves on one

side of outer ringor. housing washer.

Example: QJ228-N2

Suffix R

Bearing with flanged outer ring

Example: 33217-R

Suffixes of Cage Design

When a cage is the "primary or standard" one fitted within a bearing no cage suffix coding is shown.

Therefore, where designs and materials of cages differ from the standard the bearing designation will have defining suffixes. The following are some suffixes used.

Cage Materials

J Pressed steel cages

pressed steel cages are the standard cage of many bearing types.

Thus pressed steel cages in most cases do not indicate a separate suffix.

- M Solid brass cage
- F Solid cage made from steel or iron

TV Polyamide cage

Normally polyamide 6.6 with or without glass fibres is used.

Cage Designs

Cage design symbols are normally used in conjunction with the cage material symbols.

- P Window-type cage
- H Claw-type cage
- A Cage guided on the bearing outer ring
- B Cage guided on the bearing inner ring
- S Cage with lubricating slots in the guiding surfaces.

Examples:

MB Inner ring guided solid brass cage

MPB Inner ring guided solid brass cage, designed as window one piece type.

MAS Outer ring guided solid brass cage with lubricating slots in the guiding surfaces.

Where there are numbers following the cage symbol, these may indicate design variants of that cage type.

Examples:

M6 Roller guided solid brass cage for cylindrical roller bearings, cage body designed with trapezoid-shaped machined rivets.

MA6 Outer ring guided solid brass cage for cylindrical roller bearings, cage body designed with trapezoid-shaped machined rivets.

Bearings without Cages

Under certain circumstances a bearing may be used without cages.

In such cases the bearings are **full complement**.

Full complement bearings are identified by the following suffixes:

V full complement ball or roller bearing

VH full complement cylindrical roller bearing with self retaining roller set.

Tolerance Classes

Rolling element bearings are produced in different tolerance classes.

Bearings of the **standard tolerance class PN** fulfil the demands of general machinery in respect to their running and dimensional accuracy.

For special applications that require higher dimensional and geometrical accuracy the bearings can be produced to a higher precision class tolerance (i.e. P6, P5, P4 and P2).

Tolerances for most of the bearing types are standardised according to DIN 620.

For the standardised tolerance classes the following suffixes are used:

PN(P0) Bearings in standard tolerance.

As this is the standard the suffix PN is not used in the bearing description, historically the symbol (P0) was used.

P6 Bearings having closer tolerances than standard bearings

P5 Tolerances closer than P6

P4 Tolerances closer than P5

P2 Tolerances closer than P4

For special applications certain rolling element bearings are also produced with closer tolerances for certain features like radial run-out, side runout with reference face etc.

Examples of bearings with close tolerances are spherical roller bearings for vibrating screen applications, design suffix **SQ34**.

The particular tolerances of those bearings are as shown in the respective product tables.

Clearance

To adjust the operating clearance of a rolling bearing when it is mounted in an optimum way most bearings are produced in different clearances.

Depending upon the particular bearing type one differentiates between **radial clearance** and **axial clearance**.

For the more common bearing types and sizes values of clearances have been defined in clearance groups according to **DIN 620**.

Clearance groups:

C1 Smaller clearance than C2

C2 Smaller clearance than CN

CN(C0) Clearance "Normal"

As this is the standard the suffix CN is not used in the bearing description, historically the symbol (C0) was used.

C3 Clearance larger than CN

C4 Clearance larger than C3

C5 Clearance larger than C4

Special clearance:

Where individual or special clearances are required which are not according to the clearance groups standardised in DIN 620 suffixes are used as part of the bearing description.

Depending upon either "radial" or "axial" clearances the suffixes "R" and "A" are used together with the minimum and maximum values of clearance expressed in microns (µm), each value separated by a "&". The following are typical suffixes used.

R80&150 Special radial clearance.

Clearance between 80 and 150 µm

A70&110 Special axial clearance
Clearance between 70 and 110 μm

If required the values of a clearance may be controlled within a part of a standard clearance group.

Such a restriction is indicated by a letter (\mathbf{H}, \mathbf{M}) or \mathbf{L}) that follows the symbol of the bearing clearance group.

Examples:

C2L Clearance controlled within the lower half of clearance group C2.

C3M Clearance controlled within the middle range of clearance group C3.

C4H Clearance controlled within the upper half of clearance group C4.

Tolerances and Clearance

When bearings have a special tolerance class and a specific clearance both features are combined in one symbol. In such cases the "C" for bearing clearance is omitted. The following are typical suffixes used:

Tolerance class **P6** + clearance **C2** = **P62**Tolerance class **P5** + clearance **C4** = **P54**

Special Greases

For special operating conditions NKE bearings can also be supplied with special grease fillings according to customer's specification or with variable grease fill mass than the standard.

To distinguish them from standard bearings these types are identified by different suffixes.

The **NKE designation system** for bearings containing special grease is as follows:

A) Symbol for temperature range of grease:

Low Temperature grease
 MT Medium Temperature grease
 HT High Temperature grease
 LHT Special grease suitable for Low and High Temperatures

XX) Continual number

- B) Symbol for grease fill mass as a % of bearings free space
 - A Filling volume 10% ÷ 15%
 - **B** 15% ÷ 25% free space of bearing
 - -- Filling volume 25% up to 50% (Standard)

- **M** Filling volume 45% up to 60%
- X Filling volume 70% up to 90% (Bearing is fully filled with grease)
- C Filling volume according to Individual customers' specifications

Example: LHT23

LHT Special grease suitable for Low and High Temperatures

23.. Continual number

Standard grease filling mass

Designation System of Metric Tapered Roller Bearings According to DIN ISO 355

In the case of the metric taper roller bearings historically there are two different designation systems in use.

Designations for the series of metric taper roller bearings according to **DIN 616** begin with the number "3" (see also page **234**).

According to **DIN ISO 355** the designation system of metric taper roller bearings begins with a "**T**" which stands for **T**apered roller bearing, followed by a 6-digit combination of letters and numbers (fig. 3.6).

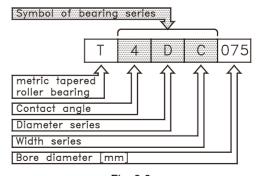


Fig. 3.6

Symbols of contact angle:

0	Contact angle α		
Symbol	>	≤	
1	reserved		
2	10°	13°52'	
3	13°52'	15°59'	
4	15°59'	18°55'	
5	18°55'	23°	
6	23°	27°	
7	27°	30°	

Table 3.1

Diameter series:

The diameter series of metric tapered roller bearings is defined by the ratio of their cross section (e.g. the ratio of bore to outer diameter):

Symbol	d ⁰) ,77
	>	≤
Α	rese	rved
В	3,4	3,8
С	3,8	4,4
D	4,4	4,7
E	4,7	5,0
F	5,0	5,6
G	5,6	7,0

Table 3.2

Width series:

The width series are also defined by their boundary dimensions:

Symbol	T (D - d)0,95		
	>	≤	
Α	reserved		
В	0,50	0,68	
С	0,68	0,80	
D	0,80	0,88	
E	0,88	1,00	

Table 3.3

Bore diameter:

In the designation system according **DIN ISO 355** the bore diameter of metric tapered roller bearings are given as their denomination uncoded in millimetres

Special Quality Requirements

In many applications standard bearings that are in use have been optimised for specific requirements.

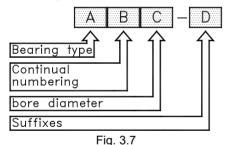
Such an adjustment may be actioned by specifying certain features according to the special demands.

Such adjustments are fulfilled by the so-called Special Quality requirements (suffix SQ) which accommodate particular features, defined and required, in a bearing design for certain applications.

Some examples of NKE Special Quality Requirements are:

- **SQ1** Rolling element bearings used in railway traction motors
- **SQ2** Rolling element bearings used in railway axle boxes
- **SQ34** Spherical roller bearings for vibrating applications (shaker screens etc.)

Special Bearings


For applications where standard bearings do not perform effectively **special bearings** may be used to meet customer application requirements.

Such special bearings are "tailor-made" to suit these very special demands.

In many cases they do not have much in common with standard bearings.

To prevent these special bearings getting mixed up with standard bearings and to cover the entire range of possible variations, these special bearings have a separate designation system unique to each manufacturer.

The **NKE** designation system for **special bearings** is shown in Fig. 3.7:

A) Symbol for bearing type:

CRB Special cylindrical roller bearing

DGB Special deep groove ball bearing

ACB Special angular contact ball bearing

SRB Special spherical roller bearing

TRB Special taper roller bearing

THB Special thrust bearing

SG Special bearing housing

B) Continual numbering

C) Symbol for bore diameter

As for standard bearings, the bore diameter will be written according to bearing size either as a **bore reference number** (bore diameter in mm divided by 5) or as a direct size in millimetres.

If the bore diameter is written as a direct size (mm), it is separated from the bearings number by an oblique slanting line (/)

D) Suffixes

If required, special bearings may also have suffixes.

Designation System of Accessories and Parts

Adapter and Withdrawal Sleeves

The designations of **adapter and withdrawal sleeves** are combinations of one or more letters followed by several identification numbers for the bearing series they belong to including the size of the sleeves.

The **bore identification number** of an adapter or a withdrawal sleeve always identifies the bore diameter of the bearing the particular sleeve belongs to.

For the identification of the sleeve bore diameter the same system is used as for bearings.

If the bore diameter of such sleeves does not apply in the standard designation system, the nominal dimension of the sleeve bore diameter is written after the base designation, separated by an oblique slanting line.

Large sleeves are frequently used with oil holes and connecting bores for applying the oil injection method during mounting the bearing.

Examples of adapter or withdrawal sleeves:

H Metric standard adapter sleeve

H320 Adapter sleeve for shaft Ø90 mm series H3, for d = Ø100 mm

OH Adapter sleeve with oil grooves for mounting the bearing by oil injection method. In all other features they are identical to standard.

Designation System

OH31/500

Adapter sleeve with oil grooves, series OH 31, d = Ø500 mm

AH Metric standard withdrawal sleeve

AH314

Withdrawal sleeve for shaft Ø65 mm, series AH3, for d = Ø70 mm

AHX Withdrawal sleeve with boundary dimensions already defined to ISO- standards.

AHX2310

Withdrawal sleeve for shaft Ø45 mm, series AHX23, for d = Ø50 mm

AOH and **AOHX**

Withdrawal sleeve with oil grooves for mounting the bearing by oil injection method. In all other features they are identical to standard sleeves of the series AH and AHX.

HA and **HF**

Adapter sleeves for inch-sized shaft diameters are for all other features identical to metric standard adapter sleeves.

Lock Nuts

The designations of **lock nuts** normally begin with "**KM**" or "**HM**", followed by letters and an identification number for the size of their thread. This thread identification number gives, when multiplied by 5, the nominal thread diameter in millimetres.

The only exception to this is locking nuts of the series **HM 30** and **HM 31**. For these types the base designation consists of a four-digit number where the first two numbers identify the series and the second two numbers indicate the size of the thread.

For locking nuts with thread diameters larger than 500 mm the nominal thread diameter is written behind the base designation, separated by an oblique slanting line.

Examples:

KM Standard lock nut with metric ISO-thread

KM30

Lock nut with metric thread M 150x2. Outer diameter 195 mm.

KML Lock nut with metric ISO thread; narrower cross section compared to standard KM lock nuts.

KML30

Lock nut with thread M 150x2. Outer diameter 180 mm.

HM Lock nuts with metric ISO trapezoidal thread

HM52-T

Lock nut with trapezoidal thread Tread 260x4. Outer diameter 330 mm.

HML Lock nuts with metric ISO trapezoidal thread; narrower cross section compared to standard HM-lock nuts.

HML52-T

Lock nut with trapezoidal thread Thread 260x4. Outer diameter 310 mm.

KMT Lock nut with metric ISO thread; with grub screws for axial fixing.

KMT30

Lock nut with grub screws, thread M 150x2.

KMTA Lock nut with metric ISO thread; with grub screws for axial fixing. Although KMTA type lock nuts are similar to KMT type lock nuts, the KMTA design have a smooth cylindrical outside diameter

KMTA30

Lock nut with grub screws. Smooth outer diameter, thread M 150x2.

Locking Washers

For securing lock nuts and to protect them from becoming loose **Locking Washers** are used.

The designations of locking washers begin with "MB" or "MBL", followed by the identification number of the size. This identification number gives, multiplied by 5, the nominal bore diameter of the locking washer in millimetres.

MB Standard locking washer

MB30 Standard locking washer

for lock nut KM30

MBL Locking washer for lock nuts of the KML series, cross section narrower than in case of standard MB type

locking nuts.

MBL30 Locking washer for lock nut KML30

Bearing Sets

In certain application, such as bearings used in machine tool spindles, individual bearings are often combined as bearing sets.

Although this applies mainly to taper roller bearings and angular contact ball bearings, other bearing types like deep groove ball bearings may be paired as sets.

For use in sets the bearings have to be matched or paired carefully.

Bearing sets usually are identified by suffixes indicating the number of single bearings the set consists of and the arrangement of the bearings to each other.

Also the clearance or even the preload of the bearing set is normally stated.

DB Set consisting of two single bearings, (single row deep groove ball bearings, angular contact ball bearings or taper roller bearings) matched for mounting in a backto-back arrangement.

DF Two single bearings matched for mounting in a face-to-face arrangement.

TQO Two matched double row taper roller bearings.

QBC Four single row deep groove ball bearings or angular contact ball bearings, each pair of bearings are arranged in tandem arrangement, for mounting in a back to back arrangement.

QBT Set of four single row deep groove ball bearings or angular contact ball bearings, one bearing pair is arranged back to back, this will be combined with the other bearing pair in tandem arrangement.

TR Three single row deep groove ball bearings or cylindrical roller bearing matched for equal radial load distribution.

2S Two selected bearings to be used in pairs for equal radial load distribution.

General

As well as the individual type dependent characteristics, all rolling element bearings have several common features which are clearly defined within the ISO. DIN and BSI standards.

Materials

Materials of Rings and Rolling Elements

Rings and rolling elements of NKE standard bearings are made from direct or through-hardening steels according to DIN 17230/ISO 683-17: normal section (100Cr6) (SAE 52100), larger bearings or heavier wall sections (100CrMn6).

Rolling bearings operating under severe shock loading are made from case hardening steels.

In special cases of prolonged high temperature and hardness retention requirements a variety of **tool steels** are available for rolling bearing manufacture although, the temperatures are usually restricted by the lubrication properties.

For rolling bearings operating in corrosive environments **stainless steels** are used, although this has a markedly lower hardness than the standard and therefore reduced load carrying capacity.

Heat Treatment

NKE rolling element bearings are hardened using the most modern heat treatment facilities. The rings have dimensional stability for standard operating temperatures up to 120°C (248°F), also short operating periods of up 150°C (302°F) are permissible. The normal hardness values for standard heat treated components are:

Rings 58-64 HRC
Rolling elements 58-64 HRC

There is no suffix marking shown on the bearing components having the standard heat treatment (i.e. SN)

Constant operating temperatures of more than +150°C (302°F), however, will lead to several metallurgical processes within the bearing steel that cause undesired changes, loss of hardness, dimensional and geometric accuracy.

This is why bearings which operate at constantly higher temperatures than standard require special heat treatment.

NKE produce such stabilised bearings on request. Please see data and designation in table 4.1:

Thermal Stabilisation					
up to max.	Class	Factor f _t *)			
120°C (248°F)	SN	1,00			
150°C (302°F)	S0	1,00			
200°C (392°F)	S1	0,90			
250°C (482°F)	S2	0,75			
300°C (572°F)	S3	0,60			

Table 4.1

Important *)

f_t = temperature reduction factor, see chapter "Selection of bearing type and size", page 255.

Cage Materials

The majority of all rolling bearings are fitted with cages. The standard cages of NKE rolling bearings are carefully selected to meet the individual characteristics of each bearing type and size including the required operating criterion in an optimum way.

Pressed steel cages:

Single or multiple piece pressed steel cages are made from mild steel. The multiple cage designs are riveted or welded together.

As pressed steel cages are "standard" for many bearing types such as deep groove ball bearings or tapered roller bearings, the cage type suffix marking will not appear in the bearing description.

Pressed brass cage:

Used in magneto bearings and some small deep groove ball bearings, pressed brass cages are identified by the suffix Y.

Polyamide cages:

The standard cage for some bearing types due to its optimum shape accuracy and ease of assembly, especially for double-row bearings.

Polyamide cages are often used with a filling of glassfibres to strengthen its mechanical properties. They are designed as snap-type cage or as solid window-type cage.

These cages are injection moulded and often have superior performance due to their reduced weight and design conformance.

They are suitable within the temperature range of - 40°C up to + 120°C (- 40°F up to + 248°F). Polyamide cages are identified by the letter "T", followed by other letters and/or numbers, such as TVP, TV or TH this indicates design or material variants

Solid metal cages:

These cages are machined from bar, tube, forging and cast material forms. Solid metal cages are used, when

- a very strong cage is required due to special operating conditions, such as heavy vibrations, shock loads etc. In these cases the cages are often guided either on the outer or the inner ring ribs.
- small volumes are produced where it is not economic to make expensive equipment, tooling or moulds for other cage types (e.g. special "bespoke" bearings and large bearings).

Generally, solid metal cages are manufactured in brass; other materials used are bronze, steel, and alloys etc. The designation for solid metal cages usually contains a letter indicating its material (**M** stands for **brass**, **F** means **steel**, **L** indicates **light metal alloys**,...) and other letters or combinations of letters and figures provide more detailed information with reference to cage type and design. Examples are: **MA**, **MB**, **MPA**, **MPB**, **M6**, **FPA**, **etc**.

Special cage materials:

In the event of very special operating conditions other cage materials may be used.

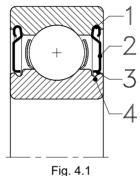
Examples are wound fabric resin cages used for high speed spindle bearings and cages made from sintered materials etc.

Materials of Bearing Seals and Shields

Several bearing types are available fitted with either seals or shields. In this way the bearing position is sealed in an effective, efficient and spaces saving design arrangement as the seals or shields are contained within the overall bearing width

Although the vast majority of bearings offered with seals or shields are ball bearings, there are some types of sealed cylindrical roller or needle roller bearings available.

Bearings that feature shields or seals on both faces are already supplied with a grease fill.


In principle a distinction has to be made between **shields** and **seals**:

Shields (-Z, -2Z)

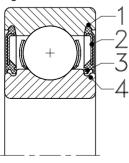
Shields represent the simplest form of sealing. In the locating grooves, form turned (1) into the outer ring, profiled **shims of steel sheet** (2) are press fitted (see fig. 4.1).

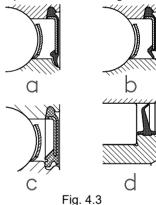
For small bearings or miniature bearings the shields sometimes are fixed using snap rings located beside the shields

In this way shields (Z-shields) form a simple gap seal (3) against the inner ring shoulder (4). Shields avoid an escape of grease from the bearing and provide some protection against the penetration of dust or larger foreign particles.

Seals

Deep groove ball bearing seals (fig.4.2) usually consist of a flexible material that forms a sealing closure (3). To stiffen the seal, steel washers (2) have been integrated into the rubber compound.




Fig. 4.2

The seals are located in grooves in the outer ring (1); one or more sealing lips are lightly rubbing under certain preload against the contacting inner ring face (4).

This provides excellent sealing and eliminates the penetration of most contamination, foreign particles and water splash.

Due to the rubbing action such seals are also called "contacting" or "rubbing" seals. Historically, many design variations have been developed.

Some examples are shown in fig. 4.3, complete:

- 4.3a) Contacting ball bearing seal, RS-type. The sealing lip touches the inner ring axially.
- 4.3b) Contacting ball bearing seal, **RSR**-type. In this case the sealing lip rubs radially against the ground inner ring shoulder.
- 4.3c) Contacting ball bearing seal, **RS2**-type. The sealing lip touches the inner ring axially.
- 4.3d) The land riding seal of full complement cylindrical roller bearings, type LS sits on the inner ring shoulder and runs on the outer ring raceway.

Speed limitation of contacting seals

All **contacting seals** generate additional heat due to the rubbing of their preloaded sealing lips.

This is why the maximum permissible speeds of bearings with contacting seals (suffix -RS2, -RS2, -RSR, -2RSR etc.) is limited.

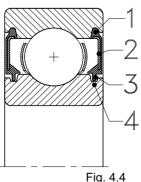
Their maximum speed must not exceed 2/3 of the speed ratings recommended for these bearings whether open or sealed design with grease lubrication.

$$n_{\text{gRS}}\!=\!\frac{n_{\text{gGrease}}\,\star\,2}{3} \end{(Eq.\,4.1)}$$

where

 \mathbf{n}_{gRS} = Speed limit for the bearing,

sealed version [rpm]


 $\mathbf{n}_{\text{gGrease}}$ = Speed limit for the bearing with

grease lubrication [rpm]

Non-Contacting Seals

For applications with higher speeds where the sealed bearings are necessary, a special designed seal is available.

This so-called LFS-seal (LFS stands for Low Friction Seal, see fig. 4.4) features two sealing lips, a radial one and another in axial direction (3). The radial seal lip fits into a groove turned in the inner ring (4) and thus forms a non-contacting seal.

The sealing effectiveness of LFS-seals is much better than shields (Z-shields), but less than the contacting seals of types -RS2, -2RS2, -RSR, -2RSR.

On the other hand, **LFS-seals** do not generate additional heat.

Thus bearings that are fitted with **LFS**-seals do not have a restriction in operating speed as do the other contacting seals.

Materials of Seals

The standard contacting seals of the types -RS2, -2RS2, -RSR, -2RSR etc, including the non-contacting LFS seals are produced using a synthetic rubber compound (Nitrile-Butadien-Rubber, in short NBR).

Integrated steel washers increase the seals rigidity. **NBR** is the standard material for all NKE bearings fitted with seals, therefore, suffix marking is unnecessary.

Standard seals made from synthetic **NBR** rubber are suitable for operating temperatures from -30°C up to +120°C (-22°F up to +248°F).

For special applications, however, seals are also available in other materials.

Some examples are listed in the table below:

Seal material		Temperature - range ¹)	
Symbol	Material	>	≤
NBR	Nitrile- Butadien- rubber	-30°C (-22°F)	+120°C (+248°F)
ACM	Acrylic rubber	-20°C (-4°F)	+150°C (+302°F)
MVQ	Silicon rubber	-60°C (-76°F)	+180°C (+356°F)
FPM	Flour rubber	-30°C (-22°F)	+200°C (+392°F)

Table 4.2

Values for guidance only. The temperature range may vary according to the individual material composition.

Grease Filling

NKE rolling bearings with seals or shields on both sides (suffixes -2Z, -2RS2, -2RSR or -2LFS) are already supplied grease filled.

The normal grease-fill is approximately 25% to 50% of the bearings cavities.

As standard grease NKE uses:

 Single deep groove ball bearings with inner diameter up to 60mm: NKE lithium soap LHT23, Di-Esteröl, NLGI class2

This grease is qualified for working temperature -50°C (-58°F) to +150°C (+302°F). LHT23 is characteristics about low noise level and noise absorbing.

 For larger deep groove ball bearings and sealed angular contact ball bearing, spherical roller bearings, cam rollers and housing bearings: NKE lithium soap MT2, mineral oil NI GI class 3

This grease is qualified for working temperatures -30°C (-22°F) to +120°C (+266°F).

 NKE IKOS integral tapered roller bearings: NKE lithium soap MT32, mineral oil NLGI class 2.

This grease is qualified for working temperature -20°C (-4°F) to +130°C (+266°F).

Special grease fillings

For special applications all NKE rolling bearings can also be supplied with different grease types and specific grease filling mass.

To identify these variants from standard greased bearings, they have different designations.

The **NKE designation system** for rolling element bearings with special greasing consists of following symbols:

Boundary Dimensions of Rolling Bearings

The boundary dimensions for all standard bearings are standardised and comply with the relevant national and international standards (i.e. ISO, DIN, BS...)

This ensures that standard rolling bearings are internationally interchangeable.

The **standard plans** defined in the above provide boundary dimensions for the different bearing types. The standardised dimensions like **bore diameter** (d), **outer diameter** (D), **bearing width** (B) or **height** (H, T) and **minimum chamfer dimensions** (r) (see also fig. 4.5).

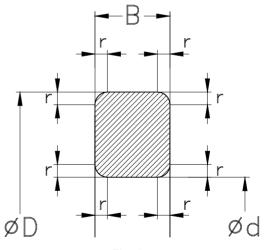


Fig. 4.5

Standard Plans Boundary Dimensions

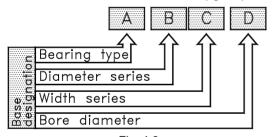
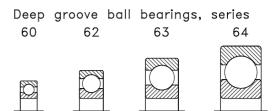
The standard plans as defined by ISO, BS, DIN standards determine the cross section of the standard bearings according to mathematical formula.

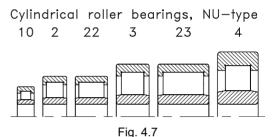
In these standard plans for each **bore diameter** several different possible **outer diameters**, **widths** or, in case of thrust bearings, **heights** have been determined.

In this way **diameter series** and **width series** for standard bearings has been defined.

The organisation of standard bearing designations is also based on this.

The **base designation** of a standard bearing, for example, consists of a symbol for each bearing type, the width series and its diameter series, (fig. 4.6).


Fig. 4.6

Using this system it is possible to select, for a given shaft diameter, bearings with different cross sections and thus different load ratings. See the example shown in fig. 4.7.

This enables the optimum solution to accommodate the requirements of the machine or equipment, with particular reference to shaft sizes, space utilisation and bearing service life expectations.

Some examples of different width and diameter series are shown below.

As shown in fig. 4.7 there are also wider width series of cylindrical roller bearings (series **N 22**, **N 23**..).

These wider width series provide higher load ratings but require more space compared to "normal" cylindrical roller bearings, despite the identical shaft and outer diameter sizes.

For more detailed information see section "Designation System", page 212.

Fillet Dimensions

To avoid sharp edges and assist in their mounting, bearing rings have profiled corners.

The **fillet dimensions** are defined by the values in **ISO 582** and respectively **DIN 620 / part 6**.

These standards give minimum and maximum values of fillet dimensions both in radial $(\mathbf{r}_1, \mathbf{r}_3)$ and axial directions $(\mathbf{r}_2, \mathbf{r}_4)$, (fig. 4.8).

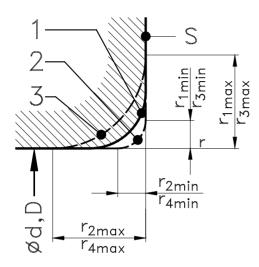


Fig. 4.8

Ød, D bearing bore or outer diameter

S bearing face

 \mathbf{r}_{1min} smallest single fillet dimension

r₃min in radial direction

r_{2min} smallest single fillet dimension

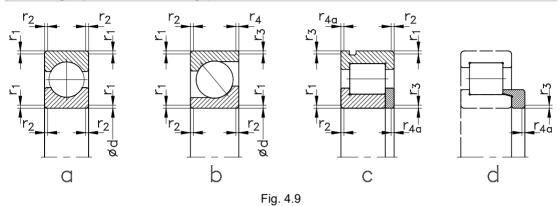
 \mathbf{r}_{4min} in axial direction

 \mathbf{r}_{1max} largest single fillet dimension

r_{3max} in radial direction

r_{2max} largest single fillet dimension

r_{4max} in axial direction1 real fillet profile

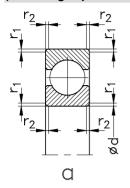

2 profile of smallest permissible fillets

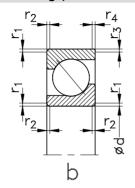
3 profile of largest permissible fillets

Minimum values for fillet dimensions of each individual bearing are stated in the product tables. The maximum values are listed in the following tables:

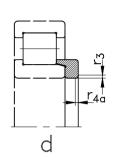
Limit Values of Fillet Dimensions for Metric Radial Bearings (Excluding Tapered Roller Bearings)

- 4.9 a) Value of fillet dimensions for symmetric bearing sections
- 4.9 b) Fillet dimensions for asymmetric bearing sections
- 4.9 c) Fillet dimensions for snap ring grooves on outer rings and side plate
- **4.9 d)** Value of fillet dimensions for separate thrust collars (identical indices mean same nominal values)


Table 4.3: Limit values for fillet dimensions of radial bearings (except tapered roller bearings)


r _{s min}	Ø	d	r ₁ ; r ₃	r ₂ ; r ₄ ¹)	r _{4a}
	>	≤	max	max	max
0,05	-	-	0,1	0,2	0,1
0,08	-	-	0,16	0,3	0,16
0,1	-	-	0,2	0,4	0,2
0,15	-	-	0,3	0,6	0,3
0,2	-	-	0,5	0,8	0,5
0,3	-	40	0,6	1	0,8
0,3	40	-	0,8	1	0,8
0,5	-	40	1	2	1,5
0,5	40	-	1,3	2	1,5
0,6	-	40	1	2	1,5
0,6	40	-	1,3	2	1,5
1	-	50	1,5	3	2,2
l I	50	-	1,9	3	2,2
1,1	-	120	2	3,5	2,7
1,1		-	2,5	4	2,7


¹⁾ For miniature bearings with widths \leq 2 mm, the r_{1max} values apply.



Limit Values for Fillet Dimensions of Metric Radial Bearings (excluding Tapered Roller Bearings)

Continued from table 4.3:

r	Ø	d	r ₁ ; r ₃	r ₂ ; r ₄	r _{4a}
r _{s min}	>	≤	max	max	max
1,5	-	120	2,3	4	3,5
1,5	120	-	3	5	3,5
	-	80	3	4,5	4
2	80	220	3,5	5	4
	220	-	3,8	6	4
2,1	-	280	4	6,5	4,5
2,1	280	-	4,5	7	4,5
	-	100	3,8	6	5
2,5	100	280	4,5	6	5
		-	5	7	5
3	-	280	5	8	5,5
		-	5,5	8	5,5
4	-	-	6,5	9	6,5
5	-	-	8	10	8
6	-	-	10	13	10
7,5	-	-	12,5	17	12,5
9,5	-	-	15	19	15
12	-	-	18	24	18
15	-	-	21	30	21
19	-	-	25	38	25

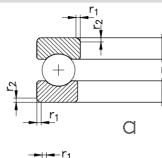
 r_4

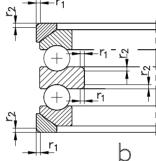
Limit Values for the Fillet Dimensions of Metric Tapered Roller Bearings

_	Ød	i, D	r ₁ ; r ₃	r ₂ ; r ₄
r _{s min}	^	≤	max	max
0,3	-	40	0,7	1,4
0,3	40	-	0,9	1,6
0,6	-	40	1,1	1,7
0,0	40	-	1,3	2
1	-	50	1,6	2,5
	50	-	1,9	3
	-	120	2,3	3
1,5	120	250	2,8	3,5
	250	-	3,5	4
	-	120	2,8	4
2	120	250	3,5	4,5
	250	-	4	5
	-	120	3,5	5
2,5	120	250	4	5,5
	250	-	4,5	6
	-	120	4	5,5
3	120	250	4,5	6,5
	250	400	5	7
	400	-	5,5	7,5
	-	120	5	7
4	120	250	5,5	7,5
7	250	400	6	8
	400	-	6,5	8,5
5	-	180	6,5	8
	180	-	7,5	9
6	-	180	7,5	10
		-	9	11

Fig. 4.10

Table 4.4




Limit Values for the Fillet Dimensions of Thrust Bearings

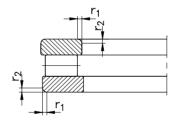

r _{s min}	r₁; r₂ max
0,05	0,1
0,08	0,16
0,1	0,2
0,15	0,3
0,2	0,5
0,3	0,8
0,6	1,5
1	2,2
1,1	2,7
1,5	3,5
2	4
2,1	4,5
3	5,5
4	6,5
5	8
6	10
7,5	12,5
9,5	15
12	18
15	21
19	25

Table 4.5

- 4.11a) Single direction thrust ball bearing
- 4.11b) Double direction thrust ball bearing with spheroid housing washers and seating washers + centre washer
- 4.11c) Single direction cylindrical roller thrust bearing
- 4.11d) Spherical roller thrust bearing

C

 r_1

Fig. 4.11

General

The following tables are standardised and defined in the international valid standards DIN ISO 1132 and relevant DIN 620 part 2.

Standard values for tolerances including the symbols used.

Tolerance Symbols Used

Bore Diameter

d	nominal bore diameter	

d_s single bore diameter

 \mathbf{d}_{mp} mean bore diameter in one radial plane

d_{ps max} largest bore diameter in one radial plane

d_{ps min} smallest bore diameter in one radial plane

•

 Δ dmp

d_{mp} - **d** deviation of mean bore diameter from nominal

 Δ_{ds} d_s - d deviation of a single bore diameter from nominal

 Δ_{d1mp} $d_{1mp} - d_1$ deviation of mean bore diameter fromnominal, in the case of tapered boresat the large theoretical bore diameter

V_{dp} d_{ps max} - d_{ps min} variation of bore diameter in one radial plane

V_{dmp} d_{mp max} - d_{mp min} variation of mean bore diameter; difference between largest and smallest mean bore diameter

Outer Diameter

D nominal outer diameter

D_s single outer diameter

D_{mp} mean outer diameter in one radial plane

D_{ps max} largest outer diameter in one radial plane

D_{ps min} smallest outer diameter in one radial plane

diameter from nominal

 Δ_{Dmp} D_{mp} - D deviation of mean outer

 Δ_{Ds} $D_s - D$ deviation of a single outer
diameter from nominal

V_{Dp} D_{ps max} - D_{ps min} variation of outer diameter in one radial plane

V_{Dmp} D_{mp max} - D_{mp min} variation of mean outer diameter; difference between largest and smallest mean outer diameter

Bearing Data Tolerances

Width and Height

- B nominal inner ring width
- **C** nominal outer ring width
- **B**. single width of inner ring
- **C**_s single width of outer ring
- $\begin{array}{ccc} \Delta_{\text{Bs}} & & \textbf{B}_{\text{s}} \textbf{-} \textbf{B} \\ & \text{deviation of a single inner ring} \\ & \text{ring width from nominal} \end{array}$
- Δ_{cs} C_s C
 deviation of a single outer ring
 width from nominal
- V_{Bs} B_{smax} B_{smin} variation of inner ring width
- V_{Cs} C_{smax} C_{smin} variation of outer ring width
- T nominal total height of tapered roller bearings
- **T**_s single height of a tapered roller bearing
- **T**_{1s} single height of a tapered roller bearing cone assembled with master cup
- T_{2s} single height of a tapered roller bearing cup assembled with master cone
- ΔT_s $T_s T$, $\Delta_{T1s} = T_{1s} T_1$, $\Delta_{T2s} = T_{2s} T_2$ deviation of a single width of a tapered roller bearing from nominal
- H_s , H_{1s} , H_{2s} , H_{3s} , H_{4s} single height of a thrust bearing
- $\begin{array}{lll} \Delta H_s & \quad H_s H, \; \Delta_{H1s} = H_{1s} H_1, \; \Delta_{H2s} = H_{2s} H_2 \\ & \quad \text{deviation of a single bearing height of a} \\ & \quad \text{thrust bearing from nominal} \end{array}$

Running Accuracy

- **K**_{ia} radial run out of inner ring within assembled bearing
- K_{ea} radial run out of outer ring within assembled bearing
- S_d side face run out of inner ring side face to bearing bore
- S_D outside inclination variation; variation in inclination of the outside of cylindrical surface to outer ring side face
- S_{ia} side face run out of radial bearings
- S_{ea} side faces run out of radial bearings
- S_i thickness variation of the shaft washer for thrust bearings, raceway to outside or back face
- S_e thickness variation of the housing washer for thrust bearings raceway to outside or back face

Inner ring

All dimensions shown in [mm]

Nominal	over	2,5	10	18	30	50	80	120	180	250	315	400	500	630	800	1000	1250	1600
bore diameter	incl.	10	18	30	50	80	120	180	250	315	400	500	630	800	1000	1250	1600	2000

Tolerance class PN (normal)

Tolerances in [µm]

		оо լра																	
Bore, deviation		$oldsymbol{\Delta}_{dmp}$	0 -8	0-8	0 -10	0 -12	0 -15	0 -20	0 -25	0 -30	0 -35	0 -40	0 -45	0 -50	0 -75	0 -100	0 -125	0 -160	0 -200
Variation V _{dp}	Diam series	eter s 7, 8, 9	10	10	13	15	19	25	31	38	44	50	56	63					
	0, 1		8	8	10	12	19	25	31	38	44	50	56	63					
	2, 3,	4	6	6	8	9	11	15	19	23	26	30	34	38					
Variation		V_{dmp}	6	6	8	9	11	15	19	23	26	30	34	38					
Bore, taper 1:12 Deviation	2	$oldsymbol{\Delta}_{dmp}$	+15 0	+18 0	+21 0	+25 0	+30 0	+35 0	+40 0	+46 0	+52 0	+57 0	+63 0	+70 0	+80 0	+90 0	+105 0	+125 0	+150 0
Deviation		Δ _{d1mp} - Δ _{dmp}	+15 0	+18 0	+21 0	+25 0	+30 0	+35 0	+40 0	+46 0	+52 0	+57 0	+63 0	+70 0	+80 0	+90 0	+105 0	+125 0	+150 0
Variation		V_{dp}	10	10	13	15	19	25	31	38	44	50	56						
Bore, taper 1:3 Deviation	30	$\Delta_{ ext{dmp}}$					+15 0	+20 0	+25 0	+30 0	+35 0	+40 0	+45 0	+50 0	+75 0	+100 0	+125 0	+160 0	+200 0
Deviation		Δ _{d1mp} - Δ _{dmp}					+35	+40 0	+50 0	+55 0	+60 0	+65 0	+75 0	+85 0	+100 0	+100 0	+115 0	+125 0	+150 0
Variation		V_{dp}					19	25	31	38	44	50	56	63					
Ring width deviation		Δ _{Bs}	0 -120	0 -120	0 -120	0 -120	0 -150	0 -200	0 -250	0 -300	0 -350	0 -400	0 -450	0 -500	0 -750	0 -1000	0 -1250	0 -1600	0 -2000
Ring width Variation		V _{Bs}	15	20	20	20	25	25	30	30	35	40	50	60	70	80	100	120	140
Radial run out		K _{ia}	10	10	13	15	20	25	30	40	50	60	65	70	80	90	100	120	140

Tolerance class P6

Tolerances in [µm]

Deviation		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Deviation	Δ_{dmp}	-7	-7	-8	-10	-12	-15	-18	-22	-25	-30	-35	-40	-50	-60	-75	-90	-115
Variation V _{dp}	Diameter series 7, 8, 9	9	9	10	13	15	19	23	28	31	38	44	50					
	0, 1	7	7	8	10	15	19	23	28	31	38	44	50					
	2, 3, 4	5	5	6	8	9	11	14	17	19	23	26	30					
Variation	V_{dmp}	5	5	6	8	9	11	14	17	19	23	26	30					
Ring width		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
deviation	$oldsymbol{\Delta}_{Bs}$	-120	-120	-120	-120	-150	-200	-250	-300	-350	-400	-450	-500	-750	-1000	-1250	-1600	-2000
Ring width	V	15	20	20	20	25	25	30	30	35	40	45	50	55	60	70	70	80
variation	V_{Bs}	15	20	20	20	20	25	30	30	33	40	45	30	55	00	70	70	80
Radial run out	K_{ia}	6	7	8	10	10	13	18	20	25	30	35	40	45	50	60	70	80

Outer ring

All dimensions shown in [mm]

Nominal outer	over	6	18	30	50	80	120	150	180	250	315	400	500	630	800	1000	1250	1600	2000
diameter	incl.	18	30	50	80	120	150	180	250	315	400	500	630	800	1000	1250	1600	2000	2500

Tolerance class PN (normal)

Tolerances in [µm]

	LI.	4																	
Deviation	$\Delta_{Dmp}^{1)}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Deviation		-8	-9	-11	-13	-15	-18	-25	-30	-35	-40	-45	-50	-75	-100	-125	-160	-200	-250
Variation V _{Dp}	Diameter series 7, 8, 9	10	12	14	16	19	23	31	38	44	50	56	63	94	125				
	0, 1	8	9	11	13	19	23	31	38	44	50	56	63	94	125				
	2, 3, 4	6	7	8	10	11	14	19	23	26	30	34	38	55	75				
	sealed bearings 2, 3, 4	10	12	16	20	26	30	38											
Variation	V_{Dmp}	6	7	8	10	11	14	19	23	26	30	34	38	55	75				
Radial run out	K _{ea}	15	15	20	25	35	40	45	50	60	70	80	100	120	140	160	190	220	250

The deviation Δ_{Dmp} for all Magneto bearings is uniform 0 / +10 μ m. The width tolerances Δ_{Cs} and V_{Cs} are identical to Δ_{Bs} and V_{Bs} of the inner ring of the same bearing.

Tolerance class P6

Tolerances in [µm]

Deviation	$oldsymbol{\Delta}_{Dmp}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Boviation	△Dmp	-7	-8	-9	-11	-13	-15	-18	-20	-25	-28	-33	-38	-45	-60	-75	-90	-115	-135
Variation V _{dp}	Diameter series 7, 8, 9	9	10	11	14	16	19	23	25	31	35	41	48	56	75				
	0, 1	7	8	9	11	16	19	23	25	31	35	41	48	56	75				
	2, 3, 4	5	6	7	8	10	11	14	15	19	21	25	29	34	45				
	sealed bearings 0,1,2, 3, 4	9	10	13	16	20	25	30											
Variation	V_{Dmp}	5	6	7	8	10	11	14	15	19	21	25	29	34	45				
Radial run out	K _{ea}	8	9	10	13	18	20	23	25	30	35	40	50	60	75	85	100	100	120

The width tolerances Δ_{Cs} and V_{Cs} are identical to Δ_{Bs} and V_{Bs} of the inner ring of the same bearing.

Inner ring

All dimensions shown in [mm] Tolerances in [µm]

Nominal	over	2,5	10	18	30	50	80	120	180	250	315	400	500	630	800	1000	1250	1600
bore diameter	incl.	10	18	30	50	80	120	180	250	315	400	500	630	800	1000	1250	1600	2000

Tolerance class P5

Tolerances in [µm]

Deviation	$oldsymbol{\Delta}_{dmp}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		-5	-5	-6	-8	-9	-10	-13	-15	-18	-23	-28	-35	-45	-60	-75	-90	-115
Variation V _{dp}	Diameter series 7, 8, 9	5	5	6	8	9	10	13	15	18	23							
	0, 1, 2, 3, 4	4	4	5	6	7	8	10	12	14	18							
Variation	V_{dmp}	3	3	3	4	5	5	7	8	9	12							
Ring width		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
deviation	$oldsymbol{\Delta}_{Bs}$	-40	-80	-120	-120	-150	-200	-250	-300	-350	-400	-450	-500	-750	-1000	-1250	-1600	-2000
Ring width variation	V _{Bs}	5	5	5	5	6	7	8	10	13	15	17	20	26	32	38	45	55
Radial run out	K _{ia}	4	4	4	5	5	6	8	10	13	15	17	19	22	26	30	35	40
side face runout	S _d	7	7	8	8	8	9	10	11	13	15	17	20	26	32	38	45	55
side face runout	S _{ia}	7	7	8	8	8	9	10	13	15	20	23	25	30	30	30	30	30

¹⁾ The values of side face run out S_{ia} apply to deep groove ball bearings and angular contact ball bearings.

Outer ring

All dimensions shown in [mm]

Nominal outer	over	6	18	30	50	80	120	150	180	250	315	400	500	630	800	1000	1250	1600	2000
diameter	incl.	18	30	50	80	120	150	180	250	315	400	500	630	800	1000	1250	1600	2000	2500

Tolerance class P5

Tolerances in [µm]

Deviation		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Deviation	Δ_{Dmp}	-5	-6	-7	-9	-10	-11	-13	-15	-18	-20	-23	-28	-35	-50	-63	-80	-100	-125
Variation V _{Dp}	Diameter series 7, 8, 9	5	6	7	9	10	11	13	15	18	20	23	28	35					
	0, 1, 2, 3, 4	4	5	5	7	8	8	10	11	14	15	17	21	26					
Variation	V_{Dmp}	3	3	4	5	5	6	7	8	9	10	12	14	18					
Ring width variation	V _{Cs}	5	5	5	6	8	8	8	10	11	13	15	18	20	25	30	35	38	45
Radial run out	K _{ea}	5	6	7	8	10	11	13	15	18	20	23	25	30	35	40	45	55	65
Outside inclination variation	S _D	8	8	8	8	9	10	10	11	13	13	15	18	20	25	30	35	40	50
Side face run out	S _{ea} 1)	8	8	8	10	11	13	14	15	18	20	23	25	30	35	45	55	55	55

The values of side face run out S_{ea} apply to deep groove ball bearings and angular contact ball bearings.

The width tolerance Δ_{Cs} is identical to Δ_{Bs} of the inner ring of the same bearing.

Inner ring

All dimensions shown in [mm]

Tolera	inces in [µ	mj												
Nominal	over	10	18	30	50	80	120	180	250	315	400	500	630	800
bore diameter	incl.	18	30	50	80	120	180	250	315	400	500	630	800	1000

Tolerance class PN (normal)

Deviation	<u> </u>	0	0	0	0	0	0	0	0	0	0	0	0	0
Deviation	Δ_{dmp}	-12	-12	-12	-15	-20	-25	-30	-35	-40	-45	-50	-75	-100
Variation	V_{dp}	12	12	12	15	20	25	30	35	40	45	50	75	100
	V_{dmp}	9	9	9	11	15	19	23	26	30				
Ring width		0	0	0	0	0	0	0	0	0	0	0	0	0
deviation	ΛBs	-120	-120	-120	-150	-200	-250	-300	-350	-400	-450	-500	-750	-1000
Radial run out	K _{ia}	15	18	20	25	30	35	50	60	70	70	85	100	120
Ring width		+200	+200	+200	+200	+200	+350	+350	+350	+400	+400	+500	+600	+750
variation	Δ _{Ts}	0	0	0	0	-200	-250	-250	-250	-400	-400	-500	-600	-750
		+100	+100	+100	+100	+100	+150	+150	+150	+200				
	Δ _{T1s}	0	0	0	0	-100	-150	-150	-150	-200				
		+100	+100	+100	+100	+100	+200	+200	+200	+200				
	Δ _{T2s}	0	0	0	0	-100	-100	-100	-100	-200				

Tolerance class P6X

Davistica		0	0	0	0	0	0	0	0	0		
Deviation	Δ_{dmp}	-12	-12	-12	-15	-20	-25	-30	-35	-40		
Variation	V_{dp}	12	12	12	15	20	25	30	35	40		
	V_{dmp}	9	9	9	11	15	19	23	26	30		
Ring width		0	0	0	0	0	0	0	0	0		
deviation	ΔBs	-50	-50	-50	-50	-50	-50	-50	-50	-50		
Radial run out	K _{ia}	15	18	20	25	30	35	50	60	70		
Ring width		+100	+100	+100	+100	+100	+150	+150	+200	+200		
variation	$oldsymbol{\Delta}_{Ts}$	0	0	0	0	0	0	0	0	0		
		+50	+50	+50	+50	+50	+50	+50	+100	+100		
	∆ T1s	0	0	0	0	0	0	0	0	0		
		+50	+50	+50	+50	+50	+100	+100	+100	+100		
	∆ _{T2s}	0	0	0	0	0	0	0	0	0		

Outer ring

All dimensions shown in [mm]

Tolerances in [µm]

		_													
Nominal	over	18	30	50	80	120	150	180	250	315	400	500	630	800	1000
outer diameter	incl.	30	50	80	120	150	180	250	315	400	500	630	800	1000	1250

Tolerance class PN (normal)

Deviation		0	0	0	0	0	0	0	0	0	0	0	0	0	0
Deviation	ΔDmp	-12	-14	-16	-18	-20	-25	-30	-35	-40	-45	-50	-75	-100	-125
Variation	V_{Dp}	12	14	16	18	20	25	30	35	40	45	50	75	100	125
	V_{Dmp}	9	11	12	14	15	19	23	26	30	34	38			
Radial run out	K _{ea}	18	20	25	35	40	45	50	60	70	80	100	120	120	120

The width tolerance Δ_{Cs} is identical to Δ_{Bs} of the inner ring of the same bearing.

Tolerance class P6X

Deviation		0	0	0	0	0	0	0	0	0	0	0		
Deviation	Δ Dmp	-12	-14	-16	-18	-20	-25	-30	-35	-40	-45	-50		
Variation	V_{Dp}	12	14	16	18	20	25	30	35	40	45	50		
	V_{Dmp}	9	11	12	14	15	19	23	26	30	34	38		
Ring width		0	0	0	0	0	0	0	0	0	0	0		
deviation	∆Cs	-100	-100	-100	-100	-100	-100	-100	-100	-100	-100	-100		
Radial run out	K _{ea}	18	20	25	35	40	45	50	60	70	80	100		

The width tolerance Δ_{Cs} is identical to Δ_{Bs} of the inner ring of the same bearing.

Inner ring

All dimensions shown in [mm]

Tolerances in [µm]

Nominal	over	10	18	30	50	80	120	180	250	315	400	500	630
bore diameter	incl.	18	30	50	80	120	180	250	315	400	500	630	800

Tolerance class P5

Deviation		0	0	0	0	0	0	0	0	0	0	0	0
Deviation	Δ_{dmp}	-7	-8	-10	-12	-15	-18	-22	-25	-30	-35	-40	-75
Variation	V_{dp}	5	6	8	9	11	14	17					
	V_{dmp}	5	5	5	6	8	9	11					
Ring width		0	0	0	0	0	0	0					
deviation	∆Bs	-200	-200	-240	-300	-400	-500	-600					
Radial run out	K _{ia}	5	5	6	7	8	11	13					
Side face run out	S_d	7	8	8	8	9	10	11	13	15	17	20	30
Ring width		+200	+200	+200	+200	+200	+350	+350	+350	+400	+400	+500	+600
deviation	Δ _{Ts}	-200	-200	-200	-200	-200	-250	-250	-250	-400	-400	-500	-600

Outer ring

All dimensions shown in [mm]

Tolerances in [µm]

Nominal	over	18	30	50	80	120	150	180	250	315	400	500	630	800
outer diameter	incl.	30	50	80	120	150	180	250	315	400	500	630	800	1000

Tolerance class P5

Deviation		0	0	0	0	0	0	0	0	0	0	0	0	0
Deviation	Δ Dmp	-8	-9	-11	-13	-15	-18	-20	-25	-28	-33	-38	-45	-60
Variation	V_{Dp}	6	7	8	10	11	14	15	19	22				
	V_{Dmp}	5	5	6	7	8	9	10	13	14				
Radial run out	K _{ea}	6	7	8	10	11	13	15	18	20	23	25	30	35
Outsideinclination	S _D	8	Q	8	9	10	10	11	13	13	15	18	20	30
variation deviation	J _D	°	ı °	0	ا ا	10	10	- 11	13	13	15	10	20	30

The width tolerance Δ_{Cs} is identical to Δ_{Bs} of the inner ring of the same bearing.

Tolerances for NKE inch-sized tapered roller bearings

Inner ring

All dimensions in [mm]

Nominal	over	-	76,2	266,7	304,8	609,6
bore diameter	Incl.	76,2	266,7	304,8	609,6	914,4

Tolerance class 4 (Normal)

tolerance n µm

Deviation	$\Delta_{\sf ds}$	+13 0	+25 0	+25 0	+51 0	+76 0
Ring width deviation	ΔBs	+76 -254	+76 -254	+76 -254	+76 -254	+76 -254

Tolerance class 2

Deviation	$oldsymbol{\Delta}_{ds}$	+13 0	+25 0	+25 0	+51 0	+76 0
Ring width	۸-	+76	+76	+76	+76	
deviation	ΔBs	-254	-254	-254	-254	

Tolerance class 3

Tolerance class	2	+13	+13	+13	+25	+38
Deviation	Δds	0	0	0	0	0
Ring width		+76	+76	+76	+76	+76
deviation	Δ_{Bs}	-254	-254	-254	-254	-254

Overall width of the bearing, single row

Nominal	over		101,6	266,7	304,8	304,8	609,6
bore diameter	Incl.	101,6	266,7	304,8	609,6	609,6	
Nominal outer	over					508	
diameter	Incl	1	-		508	-	

Width	Class 4	+203	+356	+356	+381	+381	+381
deviation		0	-254	-254	-381	-381	-381
	Class 2	+203	+203	+203	+381		
Δ _{Ts}		0	0	0	-381		
		+203	+203	+203	+203	+381	+381
		-203	-203	-203	-203	-381	-381

Tolerances for NKE inch-sized tapered roller bearings

Outer ring

All dimensions in [mm]

Nominal	over		266,7	304,8	609,6	914,4	1219,2
outer diameter	incl.	266,7	304,8	609,6	914,4	1219,2	

Tolerance class 4 (Normal)

tolerance in μm

Deviation	Δ _{Ds}	+25	+25	+51	+76	+102	+127
	△ Ds	0	0	0 0 0	0	0	0
Ring width	_	+51	+51	+51	+51	+51	+51
deviation	ΔCs	-254	-254	-254	-254	-254	-254

Tolerance class 2

Deviation	Δ_{Ds}	+25 0	+25 0	+51 0	+76 0	
Ring width deviation	Δcs	+51 -254	+51 -254	+51 -254	+51 -254	

Tolerance class 3

Deviation	$\Delta_{ extsf{Ds}}$	+13	+13	+25	+38	+51	+76
	_50	0	0	0	0	0	0
Ring width	•	+51	+51	+51	+51	+51	+51
deviation	ΔCs	-254	-254	-254	-254	-254	-254

Tolerances for NKE thrust bearings

Shaft washer

All dimensions shown in [mm]

Tolerances in [µm]

Nominal ov	ver -	18	30	50	80	120	180	250	315	400	500	630	800	1000
bore diameter in	ncl. 18	30	50	80	120	180	250	315	400	500	630	800	1000	1250

Tolerance class PN (normal)

Deviation		0	0	0	0	0	0	0	0	0	0	0	0	0	0
Deviation	∆dmp	-8	-10	-12	-15	-20	-25	-30	-35	-40	-45	50	-75	-100	-125
Variation	V_{dp}	6	8	9	11	15	19	23	26	30	34	38			
Thickness variation	S _i *)	10	10	10	10	15	15	20	25	30	30	35	40	45	50
Seating washer Deviation	$oldsymbol{\Delta}_{du}$	+70 0	+70 0	+85 0	+100 0	+120 0	+140 0	+140 0	+160 0	+180 0	+180 0				

Tolerance class P6

Deviation	Δ dmp	0 -8	0 -10	0 -12	0 -15	0 -20	0 -25	0 -30	0 -35	0 -40	0 -45	0 -50	0 -75	0 -100	0 -125
Variation	V_{dp}	6	8	9	11	15	19	23	26	30	34	38			
Thickness variation	S _i *)	5	5	6	7	8	9	10	13	15	18	21	25	30	35

Tolerance class P5

Deviation	∆dmp	0 -8	0 -10	0 -12	0 -15	0 -20	0 -25	0 -30	0 -35	0 -40	0 -45	0 -50	0 -75	0 -100	0 -125
Variation	V _{dp}	6	8	9	11	15	19	23	26	30	34	38			
Thickness variation	S _i *)	3	3	3	4	4	5	5	7	7	9	11	13	15	18

^{*)} The values for thickness variation S_i of shaft washers also apply to housing washers

Tolerances for NKE thrust bearings

Housing washer

All dimensions shown in [mm]

Tolerances in [µm]

Nominal	over	-	30	50	80	120	180	250	315	400	500	630	800	1000	1250
outer diameter	incl.	30	50	80	120	180	250	315	400	500	630	800	1000	1250	1600

Tolerance class PN (normal)

Deviation	Δ_{Dmp}	0 -13	0 -16	0 -19	0 -22	0 -25	0 -30	0 -35	0 -40	0 -45	0 -50	0 -75	0 -100	0 -125	0 -160
Variation	V_{Dp}	10	12	14	17	19	23	26	30	34	38	55	75		
Seating washer Deviation	$oldsymbol{\Delta}_{Du}$	0 -30	0 -35	0 -45	0 -60	0 -75	0 -90	0 -105	0 -120	0 -135	0 -180				

Tolerance class P6

Deviation	Δ_{Dmp}	0	0	0	0	0	0	0	0	0	0	0	0	0	0
201.4	△ Dmp	-13	-16	-19	-22	-25	-30	-35	-40	-45	-50	-75	-100	-125	-160
Variation	V_{Dp}	10	12	14	17	19	23	26	30	34	38	55	75		

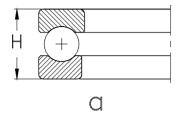
Tolerance class P5

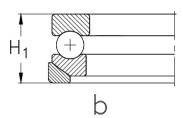
Deviation	A	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Deviation	△Dmp	-13	-16	-19	-22	-25	-30	-35	-40	-45	-50	-75	-100	-125	-160
Variation	V_{Dp}	10	12	14	17	19	23	26	30	34	38	55	75		

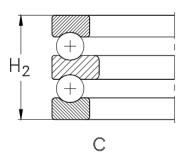
Tolerances for bearing heights of NKE thrust bearings

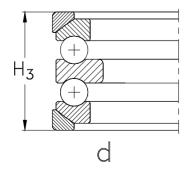
Values apply to tolerance classes PN (normal), P6, P5

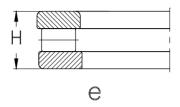
All dimensions shown in **[mm]**Tolerances in **[um]**

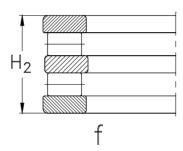

Nominal	over	-	30	50	80	120	180	250	315	400	500	630	800	1000
bore diameter	incl.	30	50	80	120	180	250	315	400	500	630	800	1000	1250
Deviation		+20	+20	+20	+25	+25	+30	+40	+40	+50	+60	+70	+80	+100
	ΔHs	-250	-250	-300	-300	-400	-400	-400	-500	-500	-600	-750	-1000	-1400
	_	+100	+100	+100	+150	+150	+150	+200	+200	+300	+350	+400	+450	+500
	Δ _{H1s}	-250	-250	-300	-300	-400	-400	-400	-500	-500	-600	-750	-1000	-1400
		+150	+150	+150	+200	+200	+250	+350	+350	+400	+500	+600	+700	+900
	Δ _{H2s}	-400	-400	-500	-500	-600	-600	-700	-700	-900	-1100	-1300	-1500	-1800
	_	+300	+300	+300	+400	+400	+500	+600	+600	+750	+900	+1100	+1300	+1600
	∆ _{H3s}	-400	-400	-500	-500	-600	-600	-700	-700	-900	-1100	-1300	-1500	-1800
		+20	+20	+20	+25	+25	+30	+40	+40	+50	+60	+70	+80	+100
	Δ _{H4s}	-300	-300	-400	-400	-500	-500	-700	-700	-900	-1200	-1400	-1800	-2400


See fig. 5.1:


- a) Thrust ball bearing, single direction
- b) Thrust ball bearing, single direction with spheroid housing washer and seating washer
- c) Thrust ball bearing, double direction, with centre washer
- d) Thrust ball bearing, double direction with spheroid housing washers, seating washers and centre washer
- e) Cylindrical roller thrust bearing, single direction
- f) Cylindrical roller thrust bearing, double direction
- g) Spherical roller thrust bearing




Bearing heights of NKE thrust bearings



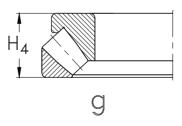


Fig. 5.1

Tolerances for tapered bearing bores

For definitions (see fig.5.2)

Tapered bore, taper 1:12

Half angle of taper 1:12: $\alpha = 2^{\circ}23'9,4''$ Theoretical large diameter d1 for taper 1:12

$$d_1 = d + \frac{B}{12}$$
 (Eq. 5.1)

Values for tolerance classes PN (normal) and P6

All dimensions shown in **[mm]** Tolerances in **[µm]**

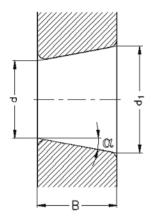
Nominal	over	18	30	50	80	120	180	250	315	400	500	630	800	1000
bore diameter [mm]	incl.	30	50	80	120	180	250	315	400	500	630	800	1000	1250
Deviation		+21	+25	+30	+35	+40	+46	+52	+57	+63	+70	+80	+90	+105
Deviation	∆dmp	0	0	0	0	0	0	0	0	0	0	0	0	0
Deviation		+21	+25	+30	+35	+40	+46	+52	+57	+63	+70	+80	+90	+105
Deviation	Δ d1mp - Δ dmp	0	0	0	0	0	0	0	0	0	0	0	0	0
Deviation		13	15	19	25	31	38	44	50	56	-	-	-	-
Deviation	V_{dp}	13	15	19	25	31	38	44	50	56	-	-	-	-

Tapered bore, taper 1:30

Half angle of taper 1:30 $\alpha = 0^{\circ}57'17,4''$

Theoretical large diameter d₁ for taper 1:30

$$d_1 = d + \frac{B}{30}$$
 (Eq. 5.2)


Values for tolerance classes PN (normal)

All dimensions shown in [mm] Tolerances in [um]

		-										
Nominal	over	50	80	120	180	250	315	400	500	630	800	1000
bore diameter [mm]	incl.	80	120	180	250	315	400	500	630	800	1000	1250
Deviation	_	+15	+20	+25	+30	+35	+40	+45	+50	+75	+100	+125
Deviation	∆dmp	0	0	0	0	0	0	0	0	0	0	0
Deviation		+35	+40	+50	+55	+60	+65	+75	+85	+100	+100	+125
Deviation	∆ d1mp - ∆ dmp	0	0	0	0	0	0	0	0	0	0	0
Deviation		19	25	31	38	44	50	56	63	-	-	-
Deviation	V_{dp}	19	25	31	38	44	50	56	63	-	-	-

Tolerances for tapered bearing bores

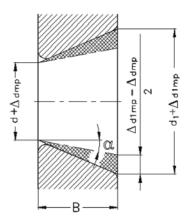


Fig. 5.2

See above fig. 5.2:

d theoretical small diameter

d₁ theoretical large diameter

 α half angle of taper

B bearing width

 $\Delta_{\text{\tiny dmp}}$ deviation of mean bore diameter from nominal

 $\Delta_{\mbox{\tiny d1mp}}$ deviation of mean large diameter from nominal at tapered

Selection of Bearing Type and Size

General

Rolling element bearings are machine elements that satisfy key functions in rotating machines. They transmit forces, moments and rotating motions and guide axles, shafts and machine tool spindles.

The bearing selection has to be made carefully in terms of high reliability, balanced life expectations and economics.

This is why prior to making a bearing determination and calculating its fatigue life for a given application, it is necessary to determine all the important input data and parameters for the specific application.

In many cases experience with common or similar applications and bearing arrangements is available and is a useful guide.

For new applications it is recommended to collect all operational requirements and details and make use of NKE application engineering services.

Basic Considerations

In order to design the optimum bearing arrangement, both technically and economically, the following general aspects have to be considered.

- type of expected loads and moments to select adequate bearing type.
- magnitude and characteristic of the most important parameters that determine the bearing's function and its life.
- interdependence of bearing type, applied loads, operating conditions, maintenance and bearing life expectations.
- impact of professional mounting and lubrication on the flawless function of a rolling bearing.

Detailed Considerations

Size and direction of applied loads

This information is usually stated within the specific machine or application performance data. The initial step for selecting a bearing type is not the load magnitude, but the direction and characteristic of applied loads.

- Is a thrust bearing needed additionally or will a radial bearing fulfil the requirements?
- Is the bearing operated under dynamic load or stationary load only?
- Is the applied force a pure radial or pure thrust load? Or is it a combination of both? If yes what is the ratio of radial to thrust load.
- Does the direction of load change?
- Will vibrations or even shock loads occur?

Available space

At this stage of bearing selection usually the main data of the machine such as shaft diameter, housing dimensions, space etc. have already been set. Thus the available space to accommodate the bearing arrangement within the machine is often determined and is a limiting factor in bearing size selection.

Rigidity, misalignments

- Will misalignments occur due to variations of shaft, housing, manufacturing tolerances, etc.?
- Will deformation of the housing and / or shaft occur under load?
- Does the bearing arrangement require certain rigidity?

Arrangement of shaft and bearing position

- Are the shafts that have to be supported arranged in vertical or horizontal direction?
- Based on the load applied to the bearing what are the necessary shaft and housing fits?

Selection of Bearing Type and Size

- Where should the locating and the non-locating bearing be positioned?
- Does the proposed bearing arrangement require adjustment or preloading?

Bearing life expectation

- What bearing life is requested by customer?
- What bearing life is realistically reasonable and cost effective?
- Which comparisons can be made with the experience and knowledge of well operating existing applications?

Precision, running accuracy, running noise

- Is there any requirement for specific running accuracy or low noise levels for certain applications (e.g. household appliances, fans, electric motors, etc.)?
- Will precision guidance of the shaft be necessary?
- Will the bearing arrangement require a reduced starting torque?

Environmental effects

- Is the application affected by negative environmental influences (e.g. abrasive materials, sand, dust, water or corrosive media)?
- Is there any additional heat source, adjacent to the bearing arrangement?
- How can the heat dissipation be assured?
 Is a cooling device installed?
- Will the bearing arrangement operate at normal or extremes temperature?

Lubrication, mounting and maintenance

- What type of lubrication is projected?
- Are other lubricating means available within the machine that may be used to lubricate the bearings?

- Will the bearing require a special lubrication (minimum lubrication, oil mist lubrication) etc.?
- Is additional heat dissipation required?
- How will the lubrication system be designed, how should lubrication slots, oil pipes, relubricating vents, etc. be arranged?
- Is the bearing position sealed?
- In which manner may the bearings be mounted in a quick, reliable and economic way?
- How much time is needed for adjusting the bearings? It may be reasonable in some cases to select pre-adjusted bearing arrangements.
- Will it be more economic to mount the bearings using adapter sleeves or even withdrawal sleeves to reduce expensive machining of bearing seats?
- How will the bearing be dismounted or replaced in a quick and economic way?
 What design features may ease the maintenance of bearings?
- Where will the bearing relubrication points be located for easy access and service?
- What practical and economic design features and arrangements facilitate bearing monitoring and inspection?

Economic effects

Design engineers have to bear in mind the economic aspects of their activities, too.

In general the standard catalogue program of rolling bearing manufacturers should be preferred. This ensures an excellent availability and price level because of mass production volumes. Such standard bearings are proven in the vast majority of applications.

Non-standard bearings should only be used in very special cases, where standard bearings cannot fulfil the requirements sufficiently.

When requiring special bearings, it has to be considered that they are usually produced according to customer's order only, and consequently have longer lead times and restricted availability.

Therefore the following questions should also be answered:

- Is a standard bearing or a variation of a standard bearing able to fulfil the requirements in this application?
- Can one of the ready-to-mount plummer block or flanged housing units be used?
- How wide-spread is the bearing you have selected?
- What is the demand of bearings or accessories?
- When should the delivery commence?
- What delivery time has to be taken into consideration?
- What is the long term availability of the selected bearing or the lubricant?
- Will the designated bearing be available in the aftermarket as a OEM customer part number or through general resale distributor outlets?

Selection of Bearing Type

At this initial stage of bearing selection the specific characteristics of different bearing types are described in detail in the bearing tables provided.

Table 6.1 lists some of the main characteristics of the most important bearing types.

Explanation of the symbols used in table 6.1:

- +++ highly suitable
- ++ adequately suitable
- fairly suitable
- depending upon the particular bearing design (for more detailed information please consult the particular product tables)
- → in one direction

The table 6.1 is for **basic guidance only**. Therefore for each application the selected bearing type and size or arrangement must be checked and approved for suitability. Additionally at this stage and where applicable, the relative positions for the locating and the non-locating bearings should already be determined.

Bearing type	radial	axial	combined	tilting		mis-
Bearing type	loads	loads	loading	moments	speed	alignment
Single row deep groove ball bearings	+	+ ↔	+ ↔		+++	+ a
Double row deep groove ball bearings	+	+ a ↔	+ ↔	+	+	
Single row angular contact ball bearings	+	++ →	+ →		+++	
Paired angular contact ball bearings	++	++ a ↔	++ a ↔	++ a	++	
Double row angular contact ball bearings	++	++ a ↔	++ ↔	++	++	
Four-point contact ball bearings		++ ↔	+↔	++	++	
Self aligning ball bearings	+				++	+++
Single row cylindrical roller bearings	++		+ a		++	
Spherical roller bearings	+++	+ ↔	++ ↔		+	+++
Single row tapered roller bearings	++	++ →	+++ →		+	
Single row tapered roller bearings, paired	+++	++ ↔ a	+++ ↔ a	++ a	+	
Thrust ball bearings		+ a				
Cylindrical or needle roller thrust bearings		++ a				
Spherical roller thrust bearings		+++	+ →			+++
Full complement cylindrical roller bearings	+++		+ a			

Table 6.1

Load Ratings and Bearing Life

Each bearing application is affected by several influencing parameters during operation.

That is why one has to distinguish between different terms which determine the fitness of a bearing.

These terms are defined as follows:

Static load calculation

 is the calculation to investigate the impact of the maximum contact pressure on a stationary, oscillating or very slow rotating bearing without permanent damage to raceway or rolling elements by residual plastic deformation.

Dynamic load calculation

 is a statistical value based on the fatigue life of the bearing materials.

Service life

 is a term which tries to describe the overall life of the bearing in its application and may differ from application to application, even for the same fatigue life.

For example, the service life of a machine that is fitted with sealed deep groove ball bearings may be far below the theoretical life rating of the bearings, because the grease fill within the bearings may have a shorter life, when compared to the life ratings of the bearings.

Thus the extended life calculation has to be applied taking into account environmental impacts such as lubrication and cleanliness (see page 267).

The service life of a bearing is additionally altered by additional influences which are hardly computable, e.g.

- wear,
- misalignment,
- deviating operational conditions,

- inadequate operational clearance,
- vibrations, detoriation during mounting and transport, grease degrading.

Static Load Rating

Rolling element bearings are able to accommodate high loads that will be transmitted via very small areas between the rolling elements and the bearing rings.

Thus in the contacting areas very high pressure, the so-called **Hertzian pressure**, occurs.

This pressure may cause some deformation on the contacting bearing parts.

Up to a certain limit the deformations lie within the elastic range which means that if the pressure is removed the parts spring back to their initial shape.

If the forces are too high, a plastic deformation may remain.

Extended tests and practical experiences have proven that a remaining deformation of less than .0001 (0.01%) of the respective rolling element diameter will not have a negative impact on the performance of a bearing.

Subsequently the standardized **static load rating** of a bearing, as defined in the ISO 76:2009 indicates the magnitude of load which will generate this residual deformation in the contact zone of the top loaded rolling element and the adjacent raceway.

The corresponding values of the **Hertzian pressure** have been calculated for the different bearing types:

for self aligning ball bearings: 4600 MPa for ball bearings in general: 4200 MPa for roller bearings: 4000 MPa (1 MPA = 1N/mm²)

Values of static load ratings (C_{0r} for radial bearings and C_{0a} for thrust bearings) are listed in the product tables.

Calculating Rolling Bearings at Static Loads

The static load safety margin (S_0) has been checked. This is the ratio of the static load acting upon the bearing and the static load rating of the bearing.

When radial bearings are exposed to pure radial load, or thrust bearings are exposed to pure axial loads the **static load safety** margin (S_0) is calculated by the following formula:

$$S_0 = \frac{C_0}{P_0}$$
 (Eq. 6.1)

where

S₀ = static load safety margin

C₀ = static load rating [kN]

Cor for radial bearings,

C_{0a} for thrust bearings

 P_0 = maximum static equivalent

load applied [kN]

For recommended values of static load safety margins see **table 6.2**.

Static Equivalent Load Po

If a bearing is exposed to combined loads (radial and axial loads simultaneously) these forces have to be converted into an imaginary load that would generate the same deformation in the bearing as the actual forces. This imaginary load is called the **static equivalent load** (P_0).

where:

$$P_0 = X_0 * F_r + Y_0 * F_a$$
 (Eq. 6.2)

or:

$$P_0 = F_r$$
 (Eq. 6.3)

The **greater** of these two values must be used as (\mathbf{P}_0) for checking the static carrying safety.

where

P₀ = static equivalent load [kN]

 X_0 = static radial factor

(given in product tables)

Fr = radial load on bearing [kN]

 Y_0 = static axial factor

(given in product tables)

 F_a = axial load [kN]

Recommended Values for the Static Load Safety Margin

Required running	Recommended values for S ₀		
accuracy	ball bearings roller bearin		
High	≥ 2	≥ 3	
Normal	≥ 1	≥ 1,5	
Low	≥ 0,5	≥ 1	

Table 6.2

Exceptions:

For the following bearing types the minimum values for static load safety margins must be higher for specific reasons:

Spherical roller thrust bearings: $S_{0min} \ge 4$

Dynamic Rating Life

The bearing rating life calculation is based on the bearing **steel fatique mechanism**.

Such fatigue of bearing material is a natural phenomenon depending upon both the stresses caused by the induced tumescent loads and the cleanliness of the material being used for the bearing rings. These cyclic load stresses generated by the frequently overrolling of the raceways by the rolling elements will finally cause micro cracks within the bearing steel and subsequently they can be observed as spalling in the raceways.

This natural process follows statistical theories making this phenomenon predictable and even calculable

For calculating the dynamic rating life of a bearing the **dynamic load ratings** listed in the product tables must be used.

The calculation of the dynamic load rating of a bearing is done in accordance with the international standard DIN ISO 281:2009.

Dynamic Load Ratings C, or Ca

This reference value is defined in DIN ISO 281 as an in its magnitude and direction constantly acting radial load, when applied to radial bearings, or axial and central load, when applied to thrust bearings, thus providing a nominal bearing life of 10^6 revolutions (i.e. one million revolutions) before material fatigue happens.

Nominal Rating Life L₁₀

This is defined as the life expectancy reached by **90%** of the same bearing group subjected to equal operating conditions prior to the occurance of material fatigue.

The definition is based on collective data over several years and forms the basis of acceptable reliable engineering design practice.

It is well proven that the majority of bearings exceed their calculated rating life successfully; in fact 50% of bearings exceed the calculated nominal rating life by a factor of up to 5 times.

Calculation of Dynamic Loaded Bearings

For a calculation of the nominal bearing rating life L10 in terms of millions of revolutions the formula below must be applied:

 $L_{10} = \left(\frac{C}{P}\right)^{p}$ (Eq. 6.4)

where

p = life exponent

for ball bearings: p = 3

for roller bearings: p = 10/3

 L_{10} = nominal rating life [10⁶ U]

C = dynamic load rating [kN]

C_r for radial bearings,

 \mathbf{C}_{a} for thrust bearings

P = dynamic equivalent load [kN]

If stating the nominal **rating life L**_{10h} in terms of **operating hours**, the formula below must be applied:

$$L_{10h} = \frac{\left(\frac{C}{P}\right)^p \times 10^6}{60 \times n} \quad \text{(Eq. 6.5)}$$

where

Р

p = life exponent

for ball bearings: p = 3

for roller bearings: p = 10/3

L_{10h} = nominal rating life [h]

c = dynamic load rating [kN]

C_r for radial bearings,C_a for thrust bearings

= dynamic equivalent

load [kN]

n = operating speed [min⁻¹]

Recommended values for nominal rating life L_{10H} are listed in **table 6.3**.

Application	L10h [h]	Remarks
Elevators, lifts	10,000 ÷ 15,000	high reliability required
Construction equipment	2,000 ÷ 8,000	often running in harsh environment
Crusher, mills	20,000 ÷ 40,000	frequent shock loads
Electric motors		
Small electric motors, e.g.	2,000 ÷ 5,000	very quiet running noise requirement
for household equipment		
Industrial motors	30,000 ÷ 70,000	
Large motors	50,000 ÷ 100,000	
Household machines	500 ÷ 2,000	short-term operation
Motor tools	3,000 ÷ 10,000	short-term operation
Woodworking machines	3,000 ÷ 10,000	usually high speeds
Conveyors		
Conveyors, general	15,000 ÷ 20,000	often running in harsh environment
Conveyor belt rollers	15,000 ÷ 100,000	
Gear boxes		
Industrial gear boxes	5,000 ÷ 20,000	high reliability is usually required
Large gear boxes	40,000 ÷ 100,000	
Railway axle gearboxes	20,000 ÷ 75,000	
Compressors	5,000 ÷ 30,000	
Power plants	80,000 200,000	high reliability required
Agricultural equipment		
Tractors	4,000 ÷ 8,000	often running in harsh environment
General agricultural equipment	1,000 ÷ 2,000	often long inactive or stationary periods
Paper mills	75,000 ÷ 150,000	high reliability required
Presses	10,000 ÷ 50,000	9
Pumps	,	
Circular pumps	20,000 ÷ 80,000	
Piston pumps	1,000 ÷ 10,000	
Gear pumps	1,000 ÷ 10,000	
Shaker screens	10,000 ÷ 20,000	special bearing design requirements
Out-of-balance motors	2,500 ÷ 7,500	special bearing design requirements
Fans	20,000 ÷ 100,000	sometimes high reliability required
Steel mills	10,000 ÷ 50,000	bearings often being exposed to
		humidity, shock loads, dirt etc.
Machine tools	10,000 ÷ 50,000	high accuracy required
Centrifuges	10,000 ÷ 20,000	high accelerations

Table 6.3

If the nominal rating life L_{10S} is stated in terms of running kilometres the formula below must be applied:

$$\label{eq:L10S} \text{L10S} = \left(\frac{\text{C}}{\text{P}}\right)^{\text{p}} \star \ \pi \ \star \ \text{D} \tag{Eq. 6.6}$$

where

p = life exponent

for ball bearings: **p = 3**

for roller bearings: p = 10/3

 L_{10s} = nominal rating life [km]

C = dynamic load rating [kN]

 $\boldsymbol{C}_{\boldsymbol{r}}$ for radial bearings

C_a for thrust bearings

P = dynamic equivalent

load [kN]

D = wheel diameter [mm]

Please find in **table 6.4 below** typical recommendations regarding nominal bearing life L_{108} requirements:

Axle box bearings of railway vehicles		
Freight cars	800,000 ÷ 1,000,000	
Underground	1,000,000	
Trams	1.500,000	
Locomotives	3,000,000 ÷ 5,000,000	
Personal wagons	3,000,000	
Railcars	3,000,000 ÷ 4,000,000	

Table 6.4

The above listed examples are for reference only.

Practical values may differ considerably.

Dynamic equivalent load P

The formulas for the calculation of the dynamic bearing life as previously stated, anticipate a load of uniform magnitude and direction that acts radially only (for radial bearings) or axially and centrally (for thrust bearings.)

In case of bearings that are exposed to **combined dynamic loads** the single load components have to be transferred into an imaginary load which affects the bearings in the same way as the actual forces.

This imaginary load is called **dynamic equivalent** load P

P is calculated in the following manner:

$$P = X * F_r + Y * F_a$$
 (Eq. 6.7)

where

P = dynamic equivalent load [kN]

X = dynamic radial factor (given in product tables)

F_r = radial bearing load [kN]

Y = dynamic axial factor (given in product tables)

F_a = axial load [kN]

Limiting load ratio e

When calculating the dynamic equivalent load **P** for a single row radial bearing, axial loading of less than the limiting load ratio **e** can be neglected.

This applies to thrust bearings that may accommodate radial loading, too. An example of such a bearing is a spherical roller thrust bearing.

In case of **double row radial bearings**, however, even small axial loads have to be considered.

The value of this **limiting load ratio e** depends on the specific suitability of a certain bearing type to take up combined loads.

For more detailed information on the ability of each single bearing type see product tables.

Determination of Operating Load

To obtain a reliable result when calculating the bearing life all forces acting on the bearing must be identified and included in the calculations.

The weight forces derived from the mass of the shaft and its adjacent parts should be known, including the forces generated by the input and output power and gear transmissions.

Some dynamic forces especially shock loads or vibrations, usually cannot be determined precisely.

The magnitude and direction of load, including the operating speed may vary during operation, too. A valuable contribution to estimate the loads is practical experience with comparable applications.

Below factors can be applied:

where

 P_{eff} = Pnom * f_s * f_z (Eq. 6.8)

P_{eff} = effective dynamic load acting on bearing [kN]

P_{nom} = nominal load on bearing [kN]
 f_s = shock factors (see table 6.5)
 f_z = additional factors for dynamic bearing load (see table 6.6)

Shock factor fs:

In many applications shock loads or vibrations may occur in addition to the known calculated forces.

Such additional loads have to be considered by using a **shock factor f**_s.

The movable masses in a machine are to be multiplied by the shock factors listed in table 6.5:

Shock loads	Application examples	Shock factor f _s
little shock loads	electric motors generator machine tools pumps	1.0 ÷ 1.2
normal shocks	fans conveyors general machinery	1.2 ÷ 1.5
heavy or frequent shocks	crusher shaker screens mills rolling stands	1.5 ÷ 3.0

Table 6.5

Gear factor fz:

Gear drives and gearboxes create additional forces generated by pitch errors of the gears and/ or by manufacturing tolerances and geometric inaccuracies.

Out of balance forces of gears and shafts also create additional loads.

Such forces will increase the load on the bearings and thus must be considered when calculating the bearing life using the **gear factor** f_z .

Values of gear factor \mathbf{f}_{z} for reference are listed in table 6.6.

Accuracy of gear	Gear factor f _z
high precision gears pitch and form errors less than .02 mm	1.05 ÷ 1.1
standard accuracy pitch and form errors between .02 and .1 mm	1.1 ÷ 1.3

Table 6.6

Additional Forces of Chain and Belt Drives

Chain and belt drives create additional forces that must be considered for bearing dimensioning.

Belt drives always run under preload to enable the transmission of forces. This invariably causes vibrations.

In case of **chain drives** vibrations and shock loads occur frequently.

Some empirical values for consideration of these additional forces are listed in table 6.7 by applying the factor \mathbf{f}_{2} .

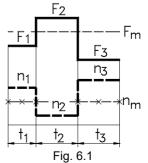
Type of drive	Factor f _z	
Chain drives	1.1 ÷ 1.5	
Belt drives		
V-belt	1.5 ÷ 2.5	
Toothed belt	1.1 ÷ 1.5	
Flat belt	3 ÷ 4	
Flat belt with pulley	2.5 ÷ 3	

Table 6.7

Calculation of Bearing Load and Speed under Variable Operating Conditions

It is the exception that machines operate at uniform load and constant speed all the time.

Normally the magnitude of load, forces, and the rotational speed vary during operation.


However, more often the parameters follow a certain pattern, such as during a CNC machine production cycle, when this cycle loading and speed change is repetitive. In some cases load patterns are defined by customer requirements and as such included within the bearing design arrangement.

To determine a realistic magnitude for the estimation of bearing life the variable loads and speeds have to be transferred into an imaginary (fictitious) constantly acting **mean load** \mathbf{F}_m and respectively a uniform **mean speed** \mathbf{n}_m .

Depending upon the individual conditions or the load or speed pattern the **mean load F**_m and the **mean speed n**_m may be calculated according to the formula shown on page 288 Ep. 6.9 and Ep. 6.10, respectively.

Rectangular Course (fig. 6.1):

A typical load and speed pattern for power transmissions, e.g. in a mechanical gear box is represented by a staircase input of load and/or speed.

To calculate the **mean load** as in fig. 6.1., the formula **Eq. 6.9 shall be** applied.

$$F_{m} = \begin{bmatrix} \frac{\sum \left(F_{i} & * & n_{i} & * & t_{i}\right)}{\sum \left(n_{i} & * & t_{i}\right)} \end{bmatrix}^{1/p}$$
(Eq. 6.9)

where

 F_m = mean load [kN]

F_i = load during time period i [kN]

n_i = speed during time period i [rpm]

t_i = duration of time period i.

The duration can be calculated as a percentage of the total duration

of load cycle

p = life exponent

for ball bearings: p = 3for roller bearings: p = 10/3

At constant load the **mean speed** is calculated according to formula **Eq. 6.10**:

$$n_{m} = \frac{\sum (n_{i} * t_{i})}{\sum t_{i}}$$
 (Eq. 6.10)

Periodic Linear Load Changes

For conveyor applications there may be changes in linear loading during the operational time at constant speed (fig. 6.2).

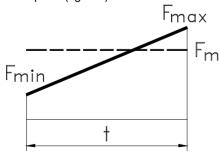
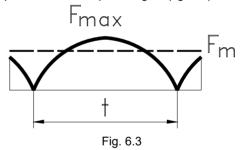


Fig. 6.2

The mean load on the bearing \mathbf{F}_{m} may be evaluated with sufficient accuracy using formula Eq. 6.11:

$$F_{m} = \frac{F_{min} + 2 * F_{max}}{3}$$
 (Eq. 6.11)

where

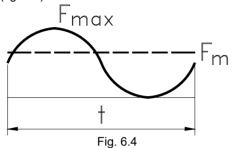

 \mathbf{F}_{m} = mean load [kN] \mathbf{F}_{min} = minimum load [kN] \mathbf{F}_{max} = maximum load [kN]

Sinusoidal Load Pattern:

The changes in magnitude of load correspond in its course to a sine wave-form.

Two main load patterns have to be distinguished:

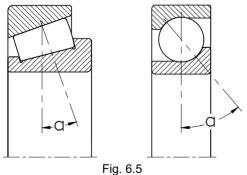
a) the magnitude of load returns to zero and peaks in the next phase again (fig. 6.3).



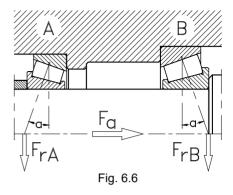
At constant speed the mean load \mathbf{F}_{m} may be calculated roughly according to the following formula:

$$F_{m} = 0.75 * F_{max}$$
 (Eq. 6.12)

b) The load changes its magnitude in a sine wave-form course between two extreme values (fig. 6.4).



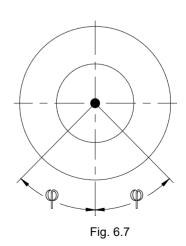
At constant speed the mean load \mathbf{F}_{m} can be calculated with sufficient accuracy by the following formula:


$$F_{m} = 0.65 * F_{max}$$
 (Eq. 6.13)

Calculation of Bearing Load for Paired Tapered Roller Bearings and Angular Contact Ball Bearings

Angular contact ball bearings and tapered roller bearings transmit loads through their inclined raceways with a specific contact angle α towards the shaft axis (fig. 6.5).

In this way each external applied load, even pure radial load, generates an internal force that converts into an external thrust force towards the opposite bearing (fig. 6.6).



This induced axial force has only to be considered when it exceeds the **limiting load ratio e**. The bearing that generates the smaller thrust load has to be observed.

For more detailed information see the product chapter and tables.

Calculation of Nominal Rating Life of Oscillating Bearings

Where bearings do not rotate, but have some oscillating movements only (fig. 6.7),

the calculation of nominal life rating is according to the formula below:

$$L_{10 \text{ osc}} = \frac{\left(\frac{C}{P}\right)^p}{2 + 180}$$
 (Eq. 6.14)

where

p = Life exponent

for ball bearings: p = 3

for roller bearings p = 10/3

 L_{10osc} = nominal rating life for

oscillating movement

[10⁶ movements]

C = dynamic load rating [kN]

C_r for radial bearings,

C_a for thrust bearings

P = equivalent bearing load [kN]

9 = half oscillating amplitude [°]

Modified Rating Life

A comparison between the calculated nominal rating life values and the actual experienced bearing life times differ significantly.

This has brought the bearing manufacturers to advance calculation methods that got standardized as **extended rating life calculation** by latest DIN ISO 281:2009.

The extended rating life calculation considers and evaluates the influences of material quality and operating conditions.

These influences are as follows:

- reliability,
- lubrication condition,
- contamination,
- bearing material strength.

The formula to be used for calculating the extended rating life L_{nm} is:

$$L_{nm} = a_1 * a_{iso} * L_{10}$$
 (Eq. 6.15)

or

$$L_{nm} = a_1 * a_{lso} * \left(\frac{C}{P}\right)^p$$
 (Eq. 6.16)

where

L_{nma} = extended rating life [10⁶ rev]

a₁ = factor for reliability

 $\mathbf{a}_{\mathsf{iso}}$ = factor for combined consideration of

lubrication, bearing material,

contamination

Factor for Reliability a₁

The nominal rating life calculation as per standardised method (see formula Eq. 6.4) assumes a **reliability** of **90%**.

This means that within a group of identical bearings operating under the same running conditions 10 % may fail theoretically by reasons of material fatigue and will not attaintheir calculated rating life.

Practical experiences, however, have proven that more than half of these bearings exceed the life expectations by up to 5 times of the rating life.

For general machinery applications 90% reliability may be acceptable; other cases may require higher reliability with subsequent higher safety. This can be achieved using the reliability factors a, listed in table 6.8.

Reliability		Factor
[%]	L _{nm}	a ₁
90	L _{10m}	1.00
95	L _{5m}	0.64
96	L_{4m}	0.50
97	L _{3m}	0.47
98	L _{2m}	0.37
99	L _{1m}	0.25

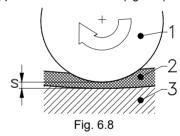
Table 6.8

It can be clearly observed that in order to achieve 99% reliability (L_{1m}), the rating life value will be reduced to $\frac{1}{4}$ of the standard rating life calculated at 90% reliability (L_{10m}).

Factor a_{ISO} for System Consideration of Lubrication, Contamination, Bearing Material

If lubrication conditions, cleanliness and other operating conditions are favourable, NKE bearings made of high grade steels and high manufacturing quality can reach an infinite life when exposed below a certain load level. Usually the bearing material's limiting tensile strength is reached when the contact pressure of the top loaded rolling element levels at some 1,500 MPa. The corresponding bearing limit load Cu is defined by the type of bearing, the internal bearing design, the profile of the rolling elements and material and is shown in the product tables.

If the lubrication gap between rolling element and raceway is contaminated by solid particles residual indentations act as bearing life consuming stress raisers.


Table 6.9 gives good practical indications.

Grade of Contamination	e _c for d _m	e _c for d _m	
Grade of Contamination	< 100 mm	≥ 100 mm	
extreme cleanliness	1	1	
high cleanliness	0,8 to 0,6	0,9 to 0,8	
normal cleanliness	0,6 to 0,5	0,8 to 0,6	
light contamination	0,5 to 0,3	0,6 to 0,4	
medium contamination	0,3 to 0,1	0,4 to 0,2	
severe contamination	0,1 to 0	0,1 to 0	
extremely severe contamination	0	0	

Table 6.9

e_c = contamination factor

One of the most important requirements for a satisfactory function of a rolling bearing is the proper lubrication selection. The main task of the lubricant in a bearing is to separate the metallic bearing parts from each other (fig. 6.8).

The standard formula for calculating the **nominal** rating life (see formula Eq. 6.4) assumes a good, clean lubricant that provides a sufficient separation of the bearing parts.

Such a separation will be achieved only when the **lubrication layer** (2) builds up between the **bearing rings** (3) and the **rolling elements** (1) to separate the adjacent surfaces.

Therefore the lubrication layer must have a **thickness** (s) greater than the sum of both the surface roughnesses.

Additionally, no other solid particles or impurities may contaminate the lubricant.

The build up of a lubrication layer in a bearing is basically dependant on the lubricant's consistency during operation, this is termed **operating viscosity**.

The term **kinematic viscosity** is defined as the extent to which a fluid resists the tendency to flow. It is one of the most significant characteristics of lubricating oil. For grease lubricants the base oil viscosity will be stated.

For further information (see page 330).

Temperature affects the oil viscosity; subsequently, viscosity values are relative to individual temperatures. The kinematic viscosity (\mathbf{v}_{40}) therefore refers to an ambient temperature of 40 °C (104°F).

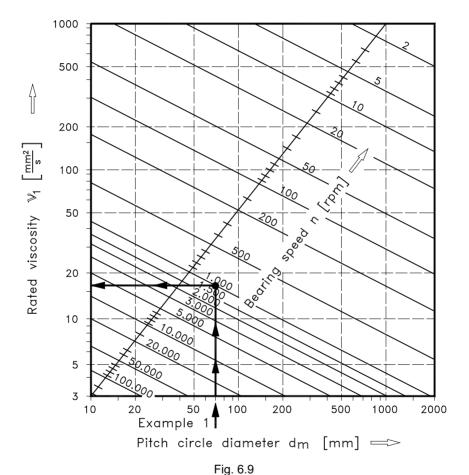
The required minimum viscosity of a lubricant during operation depends on the following factors:

- bearing size
- operating temperature
- rotational speed

A simple and generally accurate estimate of the influences of lubrication on the rated bearing life is possible using the following diagrams and instruction steps:

- 1) Calculation of bearing mean diameter d_m
- Estimation of (required) rated viscosity v₁
- Determination of (actual) operating viscosity γ
- 4) Building of the ratio of rated to operating viscosity κ
- 5) Determination of factor a_{iso} .

These steps are specified on the following pages.



Example

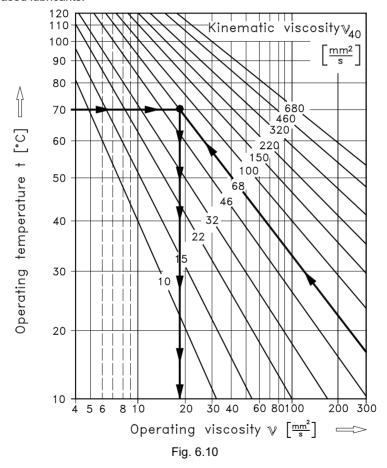
Determine the viscosity ratio κ for a deep groove ball bearing type **6210** (bore Ø 50 mm, outer Ø 90 mm)

Operating conditions: Speed n = 1000 rpmOperating temperature $t_{max} = 70^{\circ}\text{C } (158^{\circ}\text{F})$

Grease lubrication is planned, kinematic viscosity $v_{40} = 68 \text{ mm}^2/\text{s}$, normal cleanliness

_

Step 1: Pitch circle diameter $d_m = (d + D) / 2 = (50 + 90) / 2 = 70 \text{ mm}$


Step 2: Strike a line in the diagram fig. 6.9 from the X-axis starting at a pitch diameter of $d_m = 70$ mm (see arrows). Go straight upwards until the line crosses the required speed, in this example the line of 1000 rpm. From this cross point go straight to the scale located at the left diagram border where the (required) rated viscosity v_1 for the individual operating conditions can be found. In the actual example v_1 amounts to approximate 16 mm²/s.

ν- t-Diagram

The dynamic viscosity of a lubricant varies considerably with its actual temperature. Mineral oils get thinner at higher temperatures, this means the viscosity decreases. At low temperatures, however, lubricants get stiffer this means that their viscosity increases relative to their kinematic viscosity ν_{40} . Therefore as the base oils react differently to temperature and other variations, the viscosity of oils and greases also are affected differently.

The v-t-diagram (fig. 6.10) shows the correlation of the most common grades of nominal viscosity v_{40} for mineral oil based lubricants.

Step 3: Follow the line of the kinematic oil viscosity v_{40} = 68 mm² / s in diagram fig. 6.10 until crossing the line representing the operating temperature t = 70°C (158°F). Strike a line downwards to the horizontal axis to get the viscosity v for this operating temperature. In this example the (actual) operating viscosity v is approximately 18 mm² / s.

Viscosity ratio

With the values for v_1 and v_1 the **viscosity ratio** v_2 may be determined using formula Eq. 6.17. This figure indicates the ratio of **operational viscosity** v_2 to the (**required**) **rated viscosity** v_3 .

$$K = \frac{v}{v_1}$$
(Eq. 6.17)

where

\(\kappa = \text{Viscosity ratio} \)

v = (Actual) operating viscosity anticipated for the given conditions [mm² / s] (see evaluation in fig. 6.10)

 v_1 = For the actual bearing size and speed (**required**) **rated viscosity** [mm² / s] (see evaluation in fig. 6.9)

A "κ"-value of ≥ 1 indicates good or even very good lubrication. If "κ" is below 1, pure separation will not occur and lubricants with additives should be used.

Further information is provided in the chapter "Lubrication of Rolling Bearings" (page 330).

Step 4:

In the given example the viscosity ratio κ is:

$$K = \frac{v}{v_1} = \frac{18}{16} = 1,125$$
 (Eq. 6.18)

This shows that the selected lubricant is in terms of its viscosity a good choice for the anticipated operation conditions.

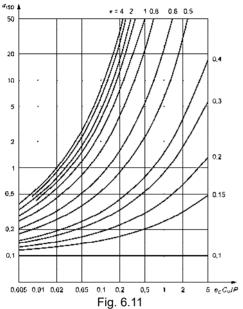
The viscosity anticipated should enable sufficient separation of the bearing surfaces.

Step 5:

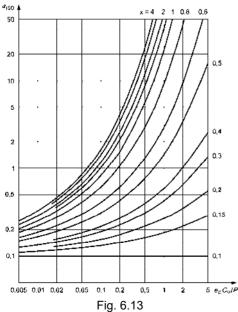
Determination of factor a_{ISO}

With the K-value obtained in Step 4 the right curve selection has to be made for the right product.

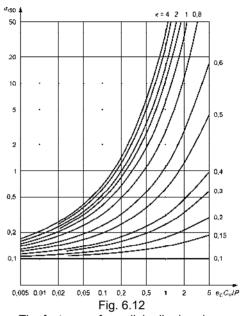
- Fig. 6.11 for radial ball bearings

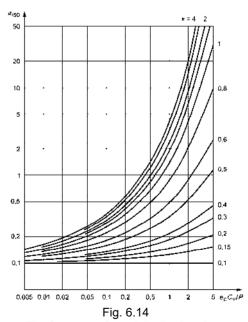

- Fig. 6.12 for radial roller bearings

- Fig. 6.13 for axial ball bearings


- Fig. 6.14 for axial roller bearings

The intersection of the quotient ($\frac{e_c^* C_u}{P}$) with the curve of corresponding κ gives the desired coefficient a_{ISO} .




The factor a_{ISO} for radial ball bearings

The factor a_{ISO} for axial ball bearings

The factor a_{ISO} for radial roller bearings

The factor a_{ISO} for axial roller bearings

Further Parameters to be Considered at Bearing Selection

Required Minimum Load

Rolling bearings may fail not only due to overloading but due to underloading, too.

A certain minimum load is required to force the rolling elements to rotate along and around the raceways in an optimum way, without generating excessive sliding friction.

For applications where the bearings do not attain this required minimum load the probability of sliding friction will occur resulting in excessive wear.

When excessive sliding friction occurs, the lubrication layer between the bearing components may be sheared through and metallic contact will occur

Such metal to metal contact causes wear and material smearing to the contacting partners. Subsequently this bearing damage will give noticeable high running noise, rough running and high vibrations. Additionally the operating temperature will rise quickly until eventually the bearing will fail. The fatigue based rating life is not capable of taking these effects into account.

The minimum magnitude of load for satisfactory running performance depends on the bearing type used and the individual operation speed.

In the vast majority of applications the required minimum load will already be satisfied by the weights of shaft and other assembled associated part.

Certain bearing types, particularly thrust bearings, however, are more sensitive to few load conditions due to their kinematic characteristics.

Specific information regarding the minimum load required for **thrust bearings** is given in the individual product information.

For **radial bearings the** following reference values of minimum loads may be applied as long as not stated otherwise in the relevant product chapter.

Bearing type	Required minimum load P _{min}
Radial ball bearing Bearings with cages Full complement types	≥ 1 % * C _r ≥ 4 % * C _r
Radial roller bearing Bearings with cages Full complement types	≥ 2 % * C _r ≥ 4 % * C _r

Table 6 10

Influence of Operating Temperature

The dynamic load rating of rolling bearings is is standardised in accordance with **DIN ISO 281:2009**. This calculation assumes a certain hardness of the bearing rings and rolling elements usually made of chromium steel.

For all NKE rolling bearings the required hardness is granted by the standard heat treatment of rings and rolling elements up to 150 °C (302 °F).

If the bearing is exposed to permanent high operating temperatures some structural changes within the bearing steels grain structure will occur. Such circumstances may cause changes in the dimensional and geometrical accuracy of bearing rings, including the loss of component hardness. Subsequently the bearing load rating will also decrease.

For these operating conditions NKE offers on request special bearing steel heat treatment designated with:

- S1 for temperatures up to 200 °C
- S2 for temperatures up to 250 °C
- S3 for temperatures up to 300 °C

Friction of Rolling Bearings

Very low friction is one of the major characteristics of rolling element bearings. The frictional moments of rolling bearings are usually so small that they can almost always be neglected in practice, although for some applications even small frictional resistance must be considered.

The frictional resistance for all rolling bearings is dependent not just upon the bearing type and size, but includes specific application data like speed, load and lubrication.

According to their internal contacting geometry deep groove ball bearings in general perform with very low friction which makes them suitable for high speeds. A comparatively high friction, however, is generated with bearing types like cylindrical roller thrust bearings etc.

Contacting seals (suffixes -RS, -2RS, -RSR, -2RSR etc.) always generate additional friction due to the preloading of their sealing lips, unlike shields (suffixes -Z, -2Z), that build a non-contacting gap seal to the inner ring and subsequently do not generate additional friction.

An estimation of the frictional moment providing results of sufficient practical accuracy is possible by applying the following formula:

$$M = \frac{\mu \quad * \quad P_{max} \quad * \quad d}{2}$$

(Eq. 6.19)

where

M = frictional moment [Nmm]

μ = frictional coefficient(see table 6.10)

P = equivalent bearing load [kN]

D = bore diameter [mm]

Bearing types	Frictional coefficient µ
Deep groove ball bearing, open	0.0010 ÷ 0.0015
Angular contact ball bearing, single row	0.0020
Angular contact ball bearing, double row	0.0025
Four-point contact ball bearing	0.0025 ÷ 0.0040
Self aligning ball bearing, sealed	0.0010 ÷ 0.0020
Cylindrical roller bearing	0.0015 ÷ 0.0020
Cylindrical roller bearing, full complement	0.0020 ÷ 0.0040
Spherical roller bearing	0.0020 ÷ 0.0025
Tapered roller bearing, single row	0.0015 ÷ 0.0020
Tapered roller bearing, paired	0.0025 ÷ 0.0040
Thrust ball bearing	0.0010 ÷ 0.0020
Cylindrical roller thrust bearing	0.0050 ÷ 0.0070
Spherical roller thrust bearing	0.0020 ÷ 0.0030

Table 6.11

Friction of Sealed Bearings

Bearings with **contacting seals** (suffixes -RS, -2RS, -RSR, -2RSR etc.) always have high friction due to the preloading of their sealing lips touching the inner ring.

This additional friction is estimated using the following formula:

$$M_D = \left(\frac{d + D}{f_3}\right)^2 + f_4$$
 (Eq. 6.20)

where

M_D = additional frictional moment due to contacting seals [Nmm]

d = bore diameter of bearing [mm]
 D = outer diameter of bearing [mm]
 f₃ = type related factor (see table 6.12)
 f₄ = type related factor (see table 6.12)

Pooring types	Factors	
Bearing types	f ₃	f ₄
Deep groove ball bearing	20	10
Angular contact ball bearing, double row	20	10
Self aligning ball bearing	20	15
Cylindrical roller bearing, full complement	10	50

Table 6.12

The estimated total friction of a sealed bearing equates to approximately:

$$\mathbf{M}_{\text{total}} = \mathbf{M} + \mathbf{M}_{\text{D}}$$
 (Eq. 6.21)

The accuracy of calculated values by using the formula mentioned above is sufficient in practical use.

For more accurate calculations please contact our application engineering department.

The crossing point of the κ curve with the value of ($\eta c * Cu/P$) on the horizontal axis determines the factor $a_{\rm ISO}$ for system consideration of lubrication, contamination and bearing material

Selection of Specific Bearing Features

General

After the selection of a suitable bearing type and the determination of its size requirements, several more specific bearing features have to be considered to satisfy the application requirements.

Suitability for Speeds

Bearings can be operated safely to a certain limiting speed. This limiting speed is determinded by the type of bearing, its size, the internal bearing design, the external load, the lubrication conditions, etc.

Two rotational speeds are displayed in the product tables:

- the (thermal) speed rating and
- the (kinematic) limiting speed.

Thermal Speed Rating

The calculation of the thermal speed rating $n_{\theta r}$ is standardized in ISO 15312. It is the rotational speed at which a bearing equilibrium temperature of 70°C is reached under reference conditions. The speed rating is an auxiliary term for calculation of the permissible thermal rotational speed $n_{\theta r}$.

Reference Conditions

The reference conditions reflect common operating conditions of the most important types of bearings and sizes. ISO 15312 defines:

- reference ambient temperature $\theta_{Ar} = 20^{\circ}C$
- reference temperature (on outer ring)
 θ_c = 70°C
- load for radial bearings P_{1r} = 0.05 C_{0r}
- reference load for axial bearings
 P_{1a} = 0.02 C_{0a}
- kinematic oil viscosity at reference temperature
 - for radial bearings: 12 mm²s⁻¹ (ISO VG 32)
 - for axial bearings: 24 mm²s⁻¹ (ISO VG 68)
- the heat flow q_r via the heat emitting reference surface area A, for
 - · radial bearings

o
$$A_r \le 50~000~mm^2$$
, then
 $q_r = 0.016~W/mm^2$ (Eq. 6.22)

o $A_r > 50\,000\,\text{mm}^2$, then

$$q_r = 0.016* \left(\frac{A_r}{50000} \right)^{-0.34} W / mm^2 \text{ (Eq. 6.23)}$$

axial bearings

o $A_r \le 50\ 000\ \text{mm}^2$, then $qr = 0.020\ \text{W}\ /\ \text{mm}^2$ (Eq. 6.24)

o $A_r > 50 000 \text{ mm}^2$, then

$$q_r = 0.020 * \left(\frac{A_r}{50000} \right)^{-0.16} W / mm^2$$
 (Eq. 6.25)

Limiting Speed

The (kinematic) limiting speed n_G is based on practical experience and considers additional criteria such as mechanical strength, running behaviour, sealing and centrifugal forces.

Caution!

The limiting speed shall not be exceeded, even at favourable operating or cooling conditions.

For grease lubricated bearings the limiting speed listed in the product tables must be reduced by 25%. An exception are the thrust cylindrical roller bearings, for which the limiting speed must be reduced by 60%.

For sealed and progressed bearings, the reduction in limiting speed was already taken into consideration in the applicable product tables.

Permissible Thermal Rotational Speed

The permissible thermal rotational speed n_{θ} is calculated in accordance with DIN 732. It is based on the equilibrium of the heat generated by bearing friction and the heat dissipation through the bearing seating, thus resulting in a constant temperature.

The acceptable operating temperature determines the thermal rotational speed n_{θ} .

Correct mounting, normal radial operating internal clearance and constant operationg conditions are a necessary precondition for the calculation.

The calculation is not applicable for

- sealed bearings with contact seals, because the maximum rotational speed is limited by the maximum relative gliding of the seal lip,
- track rollers.
- axial ball bearings und axial angular contact ball bearings.

Calculation of Permissible Thermal Rotational Speed

The permissible thermal rotational speed n_{θ} is the product of the thermal reference rotational speed $n_{\theta r}$ multiplied with the speed ratio f_n :

$$\mathbf{n}_{\mathrm{\theta}}$$
 = $\mathbf{n}_{\mathrm{\theta r}}$ * \mathbf{f}_{n} (Eq. 6.26)

Caution!

Check limiting rotational speed n_G!

The rotational speed ratio is calculated by solving the equation (see fig. 6.15)

$$k_L * f_n^{5/3} + k_p * f_n = 1$$
 (Eq. 6.27)

For common use in the range of $0.01 < k_L < 10$ and $0.01 < k_P < 10 f_n$ can be appproximated by:

$$f_n = \frac{490,77}{1+498,78 * K_c^{0.559} + 852.88 * K_o^{0.963} - 504,5 * K_c^{0.055} * K_o^{0.832}}$$

(Eq. 6.28)

Heat dissipation via bearing seating areas Q_s , (see fig. 6.16)

$$Q_s = k_q * A_r * \Delta 9_A$$
 (Eq. 6.29)

Heat dissipation via lubrication Q_L:

$$Q_L = 0.0286 * \frac{KW}{I / min * k} * V_L * \Delta \theta_L$$
 (Eq. 6.30)

Total heat dissipation Q:

$$Q = Q_S + Q_L - Q_E$$
 (Eq. 6.31)

Lubrication parameter k_L:

$$k_L=10^{-6}*\frac{\pi}{30}*n_B*$$
 $\frac{10^{-7}*f_0*(V*nB)^{\frac{2}{3}}*d_{M^3}}{Q}$ (Eq. 6.32)

Load parameter kp:

$$k_p = 10^{-6} * \frac{\pi}{30} * n_B * \frac{f_1 * P_1 * d_M}{Q}$$
 (Eq. 6.33)

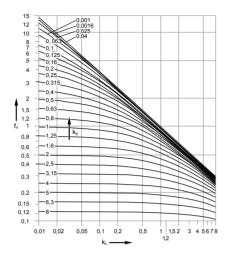


Fig. 6.15

 f_n = rotational speed ratio k_L = lubrication parameter

k_n = load parameter

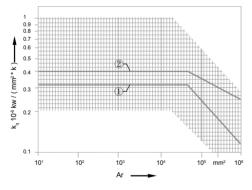


Fig. 6.16

k_α = thermal transmission coefficient

 A_r = heat emmiting reference surface area thermaltransmission coefficient K_q, dependant on heat emmiting reference surface area A_r

- ① standard conditions for radial bearings
- 2 standard conditions for thrust bearings

Designations, Units, Definitions

Heat emmiting reference surface area

- for radial bearings:

$$A_r = \pi^* B^* (D + d)$$

(Eq. 6.34)

- for axial bearings:

$$A_r = \pi/2*(D^2 - d^2)$$

(Eq. 6.35)

- for tapered roller bearings:

$$A_r = \pi^* T^* (D + d)$$

(Eq. 6.36)

- for axial self aligning roller bearings:

$$A_r = \pi/4*(D^2 + d_1^2 - D_1^2 - d^2)$$

(Eq. 6.37)

Adjustment of Adjacent Parts

For bearings running at high speeds the adjacent parts must also be of higher precision.

Bearing seats for shafts or housings also require a dimensional and geometrical accuracy which meets the requirements of high-speed applications.

Additionally, all out-of-balance forces of rotating parts must be seriously considered.

Running Noise

NKE rolling bearings run smoothly and therefore have low running noise levels. Some customer applications require varying levels of quiet running within their equipment (e.g. domestic appliances, electric motors, etc.) and subsequently require additional design features.

Bearings with Reduced Running Noise

For increase requirements concerning running noise the application of bearings with higher accuracy class (P6, P5, ...) with reduced tolerances is recommended.

These bearings feature closer geometric tolerances, such as reduced radial run-out value, therefore having higher component accuracy with less vibrations and subsequently noise levels.

Many of these applications run with light preload which dampens vibration and increases the rigidity of the whole bearing arrangement.

Special attention should also be taken to ensure optimum selection of the bearing's clearance.

A proven method to achieve quiet running bearing arrangements is to preload the bearings slightly by use of springs.

This method is often applied in small electric motors (fig. 6.17).

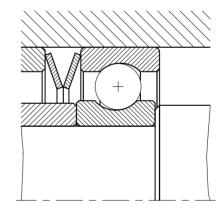


Fig. 6.17

Cage Designs

The vast majority of rolling element bearings has cages. The exception are full complement bearing types which are assembled without a cage.

Despite the fact that a cage is not directly involved in a transmission of forces it has to fulfill several functions:

Selection of Bearing Type and Size

- to retain rolling elements
- to guide the rolling elements
- to reduce friction
- to prevent the rolling elements contacting each other

Furthermore, the cage also affects the speed suitability of a bearing, its vibrating behaviour and its lubrication.

Depending on their type, size and design all NKE rolling element bearings feature a cage design that once established is defined as standard. When a cage is defined as standard the overall bearing description will not include a separate cage suffix.

Some examples of standard cages being used in NKE bearings are:

Pressed steel cage:

Standard cage for deep groove ball bearings and tapered roller bearings.

Polyamide cages:

Standard cage due to its optimum shape accuracy and ease of mounting, especially when dealing with double row bearings. Polyamide cage material is often reinforced with glass-fibres to strengthen its mechanical properties.

Solid cages:

Solid cages are machined from materials such as brass, bronze, steel, light metal alloys or non-metallic materials such as wound resincoated fabric etc.

Solid brass cages are generally fitted to large bearing sizes, particularly cylindrical and spherical roller bearings.

The individual standard cage of a certain bearing type has been carefully defined and fulfills the overall requirements of general machinery.

All standard cage designs have been proven in countless applications over many years.

In certain circumstances special cage designs may be necessary for specific running conditions, e.g.

strong vibration
shock loads
high speeds
chemical influences
special operating conditions

The production of bearings with special cages may be to customer orders only and consequently extended delivery time and restrict availability.

In such cases we kindly ask you to consult our technical and commercial departments for detailed information.

Misalignments

For each bearing arrangement a certain amount of misalignment between the bearing seats on both shaft and housing must be taken in consideration

Such misalignments are caused by manufacturing tolerances including shaft bending under external load.

In many applications misalignment may be eliminated by correctly defined manufacturing tolerances or alternative manufacturing procedures. In cases where this is neither practical nor economical, (e.g. large heavy machinery, long transmissions or multi-shaft transmissions) some compensation for assembly misalignment must be considered during the bearing selection and design stage.

According to their internal design each bearing type features different abilities to compensate misalignments.

A particularly good compensation of misalignments is allowed by the self aligning bearing types, such as self aligning ball bearings, spherical roller bearings and thrust ball bearings with spheroid housing washers. Single row deep groove ball bearings, for example, allow according to their individual operating clearance, angular misalignments up to 10 angular minutes.

In case of single row cylindrical roller bearings the maximum permissible amount of angular misalignment is limited from 2 up to 4 angular minutes.

Several bearing types do not permit any misalignment.

In all these cases a misalignment generates higher bearing internal forces on rolling elements and raceways, thus reducing bearing fatigue life.

For more detailed information on the individual capacity of each bearing type to accommodate misalignments see specific product information pages.

Rigidity

This term describes the magnitude of (elastic) displacement of a rolling bearing under load.

The elastic deformation is very small and therefore will not play any role in the majority of applications.

Only in specific applications, such as machine tool applications which demand a very stiff, rigid bearing arrangement, such displacement requires consideration.

In general, bearings with line contact such as roller bearings provide higher rigidity compared to ball bearings. The stiffness of a bearing arrangement can be improved by applying preload to the bearings.

The most frequently used bearing types in preloaded bearing arrangements are angular contact ball bearings (fig. 6.18) and tapered roller bearings.

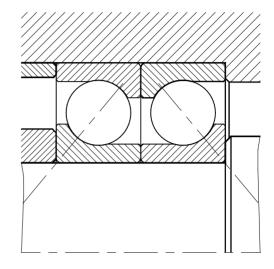


Fig. 6.18

For detailed information see chapter "Bearing Clearance" page 319.

General

Each bearing application has to be understood as a complex system that consists of several interacting factors.

The most important in fluencing parameters are:

- type and size of bearing.
- choice of specific bearing characteristics in accordance to actual operation conditions.
- bearing quality.
- correct mounting and ease of adjustment.
- proper design of bearing location.
- proper bearing fits.
- adequate dimensional and geometric accuracy of adjacent parts.
- efficient and effective lubrication.
- adequate sealing of bearing arrangement.
- effective heat dissipation.

This system must also be actioned collectively, objectively and equally for each influencing parameter, otherwise, the application design and bearing arrangement may result in premature failure.

Bearing Arrangements

At the design stage of bearing arrangements and locations proven designs may be used for reference.

Floating and Locating Bearings

Basic consideration for the arrangement of the single bearings within their locations to accommodate the specific function of the bearing as a **locating bearing** or **non-locating (floating) bearing**:

- locating bearings are those bearings that hold the position of the shaft axially.
 - Locating bearings always have to take thrust loads.
- Unlike the locating bearings, a shaft may have a non-locating bearing to accommodate

applied loads and to guide the rotating machine element precisely in the radial direction.

The non-locating bearings also compensate for any variation in length due to thermal movement. This compensation may occur either within the bearing (e.g. in case of needle roller bearings) or by suitable designed seats that allow the bearing to float.

Usually in each bearing arrangement one **locating** bearing guides the shaft in axial direction, all other bearings have to be nonlocating bearings.

A special configuration is embodied by socalled "cross-locating" bearing arrangements and by bearing arrangements that are mounted with preload.

These arrangements do not have defined locating or floating bearings. The axial location of the shaft is by one of the bearings based on the direction of load

Suitability of Different Bearing Types for Locating or Non-Locating Positions

In principle all types of radial bearings that may accommodate thrust loads can be used as locating bearings.

Examples are deep groove ball bearings, angular contact ball bearings (always used in pairs or sets), tapered roller bearings (to be used in sets), spherical roller bearing etc.

Also thrust bearings are suitable locating bearings, but do not accommodate radial loads in all most cases.

The ideal **non-locating bearings** are bearing types that allow axial displacement inside the bearing such as cylindrical roller bearings having one ring without flanges (N, NU, NN.., RNU, RN.. types), needle roller bearings, needle roller and cage assemblies.

Almost all other bearing types may be used as non-locating bearings, too, but the possibility to

accommodate length changes due to thermal expansion must be enabled by means of design measures, (e.g. by loose fits).

For "cross-locating" bearing arrangements all types of radial bearings are suitable that will accommodate thrust loads in at least one direction.

Examples are cylindrical roller bearings (types NJ, NF,..), also deep groove ball bearings, angular contact ball bearings and spherical roller bearings etc.

Examples of Bearing Arrangements

There are many different possibilities to design bearing arrangements of rotating machine components, which may be considered according to the particularly given circumstances.

For possible design solutions of locating and nonlocating bearing arrangements used for rotating machine components, see fig. 7.1.

Note:

"F" means position of locating bearing

"L" indicates the non-locating bearing

Explanation to fig. 7.1

Fig. 7.1a)

Simple arrangement with two deep groove ball bearings, one acting as a locating bearing while the other one sits axially free in the housing to accommodate length changes.

A frequently used arrangement for small machines, gearboxes and electric motors.

Fig. 7.1b)

Arrangement similar to fig. 7.1a. However, in this arrangement the non-locating bearing has slight axial preload by means of **springs**.

This measure enables the elimination of the residual bearing clearance which results in very smooth running of the shaft.

Often used for small electric motors.

Fig. 7.1c)

Bearing arrangement comprising of a deep groove ball bearing as the locating bearing and a NU-type cylindrical roller bearings as the non-locating bearing.

Because the inner ring has no flanges, the cylindrical roller bearing enables length changes within itself.

Such an arrangement is adequate where tight fits on all bearing rings are required, e.g. for large electric motors or generators.

Examples of Locating and Non-Locating Bearing Arrangements

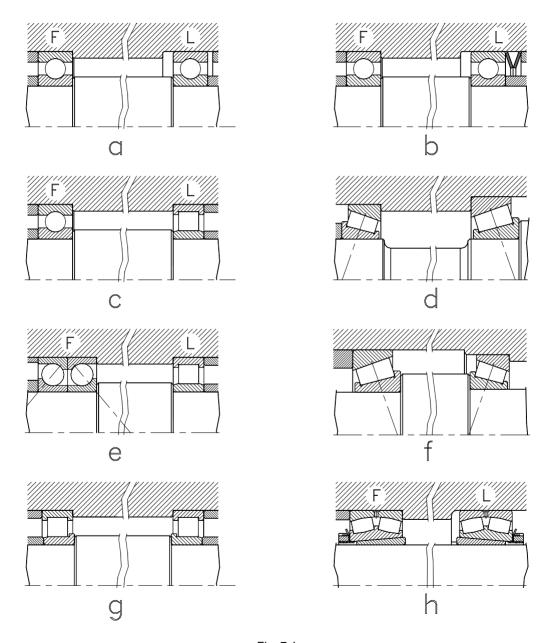


Fig. 7.1

Fig. 7.1d)

Assembly of two tapered roller bearings, located in back-to-back arrangement.

Due to the back-to-back arrangement the **support width**, that indicates the effective acting distance of bearing positions, will be enlarged which allows a very rigid bearing arrangement.

Such bearing arrangements enable a transmission of high forces within a limited space but require careful adjustment for the required clearance or preload.

Frequently angular contact ball bearings are also used in backtoback auctioned arrangements.

Typical application examples are pinion bearings and wheel bearing arrangements for motor vehicles.

Fig. 7.1e)

Bearing arrangement is for running under combined loads where high axial running accuracy is required.

A pair of angular contact ball bearings in back to back arrangement acts as the locating bearing, a NU-type cylindrical roller bearing is used in the non-locating bearing position.

Such a bearing arrangement is suitable to accommodate thrust forces of medium size, even under high speeds.

Fig. 7.1f)

A pair of tapered roller bearings in face-toface arrangement.

By arranging tapered roller bearings this way, the support width will become smaller than their nominal centre distance. Bearings arranged **face-to-face** provide less rigidity and thus a more flexible bearing arrangement which is not so sensitive to misalignments compared to back-to-back arrangements.

This equally applies to angular contact ball bearings frequently used in this way.

When bearings are mounted face-to-face, they require careful adjustment.

Typical fields of applications are gearboxes.

Fig. 7.1g)

Cross locating arrangement with two NJ-type cylindrical roller bearings.

With this arrangement the axial location of the shaft is supported by both bearings alternating, as this bearing type allows for length change of shaft within the bearings. Thus tight fits are possible to both the bearing seats of shaft and housing.

Such arrangements are preferably used for vibrating shafts and some small gearboxes.

Fig. 7.1h)

shows two **spherical roller bearings** enabling the transmission of very heavy radial loads; additionally, they will support limited thrust loads.

This bearing arrangement also allows misalignments and shaft deflections or bending.

When arranging spherical roller bearing in this way, care must be taken to allow axial movement of the non-locating bearing by using a loose fit in the housing.

It is also possible for bearings with tapered bores to be mounted onto shafts using adapter or withdrawal sleeves; this allows shaft seats of less accuracy to be used.

Typical applications for such bearing arrangements are: the agricultural industry, for long transmissions and heavy machinery.

Selection of Bearing Fits

Rolling bearing rings have extremely thin sections when compared to their potential load ratings.

This is why bearing rings have to be supported sufficiently on their circumferences for optimum use of their capabilities.

This support and the correct selection of shaft and housing fits will ensure effective radial location at the bearing seating.

Therefore the correct choice of fits is significant for the optimum function of all bearing arrangements.

The pure axial location of a bearing is not a suitable substitute for a proper fit!

In the case of loose fits relative moment may occur between the bearing rings and the contacting faces of shaft or housing. This may lead to bearing ring rotation causing damage to all contacting surfaces and premature failures. Heavy interference fits, however, could cause outer ring diameter contraction and inner ring expansion this resulting in residual radial clearance reduction leading to potentially cracked rings and bearing failure.

It is now seen that all dimensions, tolerances and geometric values must be clearly defined to obtain an effective and optimum bearing seat.

To determine the correct fit for bearing shafts and housings the following criteria must be considered.

- a) type and magnitude of applied load
- b) type and size of bearing
- c) required running accuracy of total bearing arrangement
- d) materials of shaft and housing
- e) possibilities of mounting and dismounting the bearing arrangement, when necessary

We distinguish between the **two base fit types** as follows:

Interference fits

are very **tight contacts** of mating parts which cause stresses within the bearing material structure. Additionally, the bearing outer ring will contract and the inner ring will expand. This will have an influence on the remaining actual running clearance.

Loose fits

enable axial **displacement** of bearing rings relative to the bearing seats.

Furthermore bearing rings that have loose fits are usually easier to mount or dismount than rings with interference fits.

Type and Magnitude of Applied Loads

Type and magnitude of the load applied to a bearing are the most significant factors that determine the required bearing fit.

The main criterion is the **direction** of the load acting relative to the motion of a bearing ring.

Accordingly, three main features distinguish how a force acts relative to the bearing rings:

- as a point load
- as circumferential load
- with indeterminate load direction

Point load

Point loading occurs when either the load or bearing ring is stationary, or if both are rotating with the same angle speed.

In both cases a **point** is loaded on the circumference of the bearing raceway while the other areas are not affected.

Bearing rings exposed to **point loading** do not have a tendency to rotate. This is why loose fits are suitable for point loaded rings.

Circumferential load

In the case of **circumferential load**, however, each single point on the circumference of the raceway will be loaded. This occurs, if the bearing ring is stationary while the load rotates or, if the load is stationary on the rotating ring.

Bearing rings under circumferential load have a

tendency to rotate together with the shaft.

To prevent the rings from moving, all rings running under circumferential load should have tight fits.

Indeterminate load direction

This applies, when **both point loading and circumferential loading** occurs as in the case of the bearings used for crankshaft drives.

A more precise view of this topic can be seen from the examples shown in table 7.1

Examples of	Inner	ring	Outer	Application	
loading	Type of loading	Fit	Type of loading	Fit	examples
- shaft rotates with inner ring - stationary loading - outer ring stands still	circum- ferencial load on inner ring	tight shaft fits required	point load on outer ring	loose housing fits permissible	electric motors spur gear
- housing and outer ring rotate - constant direction of load	point load on inner ring	loose shaft fits permissible	circum- ferencial load on outer ring	tight housing fits necessary	track wheels rope sheaves wheel bearings
- shaft and inner ring stand still	point	loose	circum-	tight	oscillating
- shaft rotates with inner ring - load rotates with inner ring	load on inner ring	shaft fits permissible	ferencial load on outer ring	housing fits required	screens vibrating compactors
- indeterminate load direction	in- determinate	tight fits required	in- determinate	tight fits required	crankshaft drives

Table 7.1

Magnitude of Loading

Along side its type, the magnitude of the applied load also has a significant role in the selection of bearing seating fits.

The higher the load the tighter the fit must be. This also applies if vibrations or heavy shock loads are to be expected.

The relative magnitude of load is defined in DIN 5425 part 1 as a ratio of the acting forces relative to the load capacity of a radial bearing (table 7.2).

	ding in % of capacity C,	Classification of the bearing for
>	≤	the bearing for
	7 %	low loaded
7 %	15 %	medium loaded
15 %		high loaded

Table 7.2

Following this classification the tolerance fields of bearing fits are chosen from the empirical values stated in the tables 7.7 to 7.10.

Bearing Type and Size

In general the larger the bearing the tighter the interference fit must be

Fits for the mounting of roller bearings are usually tighter than those used for ball bearing applications.

The rings of cylindrical roller bearing types, which allow an internal compensation of length change of the shaft (**N**, **NU**, **NN**, etc.), may be mounted with interference fits on both rings, even if they are used as non/locating bearing.

Shaft and Housing Materials

Shafts and axles that require machined bearing seats are usually made from solid round stock of mild steel.

This is why the following values and recommendations for the selection of bearing fits refer to solid steel shafts and housings made either from steel, cast iron or cast steel.

In some cases **hollow shafts** are also used, which require tighter fits than comparable solid shafts.

When housings are made from light metal alloys, such as aluminium or magnesium tighter housing fits must be considered.

Housings made from light metal alloys have a much higher coefficient of expansion than bearing outer rings made from steel.

This causes a loss of clamping forces, the housing fit will become loose, allowing the outer ring to rotate in the housing.

Adjustment, Mounting and Dismounting

In the definition of bearing fits the requirements of mounting, adjusting and, when applicable, the dismounting of the bearings must be taken into consideration

This applies particularly to bearing arrangements that require adjustment after bearing mounting.

Fits of Split Bearing Housings

For split housings the tolerance field of the housing seat should not be tighter than "H" or "J".

This is due to the risk of roundness deformations of the bearing outer rings due to possible geometrical failures of the split housing.

Shaft Fits for Bearings on Adapter or Withdrawal Sleeves

Usually the required running accuracy of bearings that are mounted using adapter or withdrawal sleeves is not too high.

Small and medium sized bearings are frequently mounted using adapter or withdrawal sleeves directly onto bright drawn bars.

When mounting the bearings by adapter or withdrawal sleeves on solid **machined shafts** the following tolerances for dimensional and form accuracy of the bearing seats is to be used, see table 7.3:

Field of tolerance	Form tolerance
h 7, h8	<u>IT 5</u>
h 9	IT 6 2

Table 7.3

Required Running Accuracy of Bearing Seatings

The relatively thin walled bearing rings always adopt the form of their shafts and housing seats.

Therefore the **form accuracy** of the bearing seatings must correspond to the required running accuracy of the bearing itself.

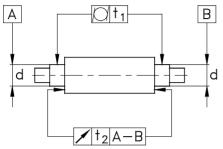
The tolerances of **running and form accuracy** of the bearing seats have to be smaller than the diameter tolerances in the corresponding tolerance fields.

Values of more common ISO tolerance grades are shown in **table 7.4**.

For bearings of normal tolerance (**PN**) shaft seats should correspond to IT grade **5**.

Housing seats for less critical applications have to be machined according to ISO grade **IT6**.

ISO tolerance grades (IT-qualities)


Dimensions are given in [mm], tolerance values are given in microns [µm]

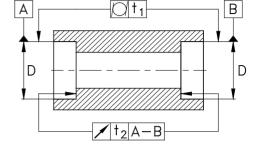

over	1	3	6	10	18	30	50	80	120	180	250	315	400	500	630	800	1000	1250
incl.	3	6	10	18	30	50	80	120	180	250	315	400	500	630	800	1000	1250	1600
IT 0	0,5	0,6	0,6	0,8	1	1	1,2	1,5	2	3	4	5	6					
IT 1	0,8	1	1	1,2	1,5	1,5	2	2,5	3,5	4,5	6	7	8					
IT 2	1,2	1,5	1,5	2	2,5	2,5	3	4	5	7	8	9	10					
IT 3	2	2,5	2,5	3	4	4	5	6	8	10	12	13	15					
IT 4	3	4	4	5	6	7	8	10	12	14	16	18	20					
IT 5	4	5	6	8	9	11	13	15	18	20	23	25	27	29	32	36	42	50
IT 6	6	8	9	11	13	16	19	22	25	29	32	36	40	44	50	56	66	78
IT 7	10	12	15	18	21	25	30	35	40	46	52	57	63	70	80	90	105	125
IT 8	14	18	22	27	33	39	46	54	63	72	81	89	97	110	125	140	165	195
IT 9	25	30	36	43	52	62	74	87	100	115	130	140	155	175	200	230	260	310
IT 10	40	48	58	70	84	100	120	140	160	185	210	230	250	280	320	360	420	500
IT 11	60	75	90	110	130	160	190	220	250	290	320	360	400	440	500	560	660	780
IT 12	100	120	150	180	210	250	300	350	400	460	520	570	630	700	800	900	1050	1250

Table 7.4

Form Tolerances of Shaft and Housing Seats

tolerance of cylindricity

Bearing tolerance class	Location of bearing seat	Recommended tolerance field	Required cylind circumferential loading t ₁	lricity in case of point loads t₁	Tolerance for rectangularity t ₂
	shaft	IT 6 (IT5)	$\frac{\text{IT4}}{2} \left(\frac{\text{IT3}}{2} \right)$	$\frac{IT5}{2} \left(\frac{IT4}{2} \right)$	IT 4 (IT3)
Normal, P6X	housing ØD ≤ 150 mm	IT 6 (IT7)	$\frac{IT4}{2} \Big(\frac{IT3}{2} \Big)$	$\frac{IT4}{2} \left(\frac{IT5}{2} \right)$	IT 4 (IT5)
	housing ØD > 150 mm	IT 7 (IT6)	$\frac{\text{IT5}}{2} \left(\frac{\text{IT4}}{2} \right)$	$\frac{IT6}{2} \Big(\frac{IT5}{2} \Big)$	IT 5 (IT4)
P6	shaft	IT5	$\frac{\text{IT3}}{2} \left(\frac{\text{IT2}}{2} \right)$	$\frac{\text{IT4}}{2} \left(\frac{\text{IT3}}{2} \right)$	IT3 (IT2)
Po	housing	IT6	$\frac{\text{IT4}}{2} \left(\frac{\text{IT3}}{2} \right)$	$\frac{\text{IT5}}{2} \left(\frac{\text{IT4}}{2} \right)$	IT4 (IT3)
P5	shaft	IT5	<u>IT2</u> 2	<u>IT3</u> 2	IT2
F3	housing	IT6	<u>IT3</u> 2	<u>IT4</u> 2	IT3

Table 7.5

Form Accuracy of Bearing Seats

The **form accuracy** of bearing seats is defined by the **cylindricity** of a bearing seat (roundness of bore or shaft diameter, respectively, parallelism and rectangularity) and by the perpendicularity of abutments like shaft shoulders etc.

With increasing expectations in the running accuracy of bearing arrangements and for bearings of higher precision classes, tolerances of cylindricity and rectangularity of bearing seats must be decreased accordingly.

Table 7.5 shows some empirical values for a simple selection of the tolerances of **form accuracy** (\mathbf{t}_1) and the **rectangularity** (\mathbf{t}_2) depending on the tolerance class of the bearing used.

The tolerance values given are for **cylindricity** (t₁) and refer to half the nominal diameter.

For measurements of shaft diameter or housing bores by **two-point measurement** the tolerance values have to be doubled, thus **2** * **t**₁.

As a rule of thumb it is observed, that the value of the **cylindricity tolerance** (t₁) must not exceed half of the dimensional tolerance.

Surface Roughness of Bearing Seats

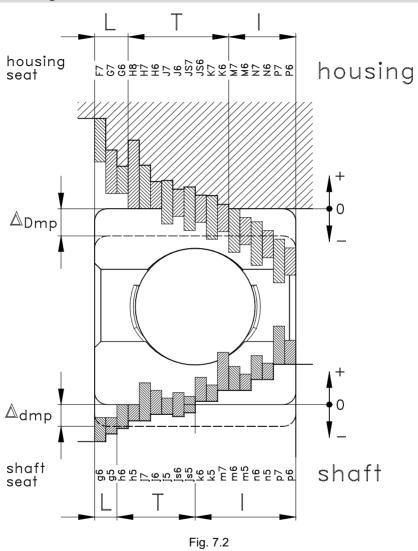
Along side the dimensional and form accuracy of bearing seats the **surface roughness** of a bearing seat may influence the function of a bearing arrangement.

The rougher the bearing seat surface the less effective is the surface of the abutting face, initial surface roughness is smoothed between contacting surfaces.

Such a smoothening causes a loss in interference which may affect the general characteristics of a bearing seat.

Bearing seats that have rougher surfaces are more affected by fretting corrosion than smooth surfaces.

Where high running accuracy is required it is particularly important that all abutment surfaces around the bearing arrangement are manufactured accordingly.


Table 7.6 contains some recommendations for the selection of surface roughness of bearing seats and shaft diameters for applications general machinery.

Nominal of bearing			curacy of dian		,	. 5	
>	≤	R _z	R _a	R _z	R _a	R_z	R _a
	80	10	1,6 (N7)	6,3	0,8 (N6)	4	0,4 (N5)
80	500	16	1,6 (N7)	10	1,6 (N7)	6,3	0,8 (N6)
500	1250	25	3,2 (N8)	16	1,6 (N7)	10	1,6 (N7)

Table 7.6

Shaft and Housing Fits

Explanation:

 $\Delta_{\scriptscriptstyle \mathsf{Dmp}}$ Tolerance of bearing outer diameter

 $\Delta_{ ext{ iny dmp}}$ Tolerance of bearing bore

L Loose fit

T Transition fit

I Interference fit

Fig. 7.2 shows schematic values of the most frequently used ISO tolerance fields, for metric radial bearings of normal tolerance class PN, experienced in general machinery applications.

Metric bearings, with some exceptions, generally have minus tolerances for bore diameter, outside diameter and width

Please note:

Tolerances of inchsized bearings follow different rules compared metric bearings.

Therefore, for shafts and housing fits these different rules must be considered.

Three different categories of fit may result this is dependant on the individual fits selected for the bearing seats.

Loose fit:

This enables axial displacement of the respective bearing in either direction.

Transition fit:

This is where the respective bearing has either slightly loose or tight bearing seat contact.

Interference fit:

This ensures a very tight fit on the respective bearing seat without axial displacement.

The use of heavy interference fits affects the residual radial clearance of a mounted bearing by expanding the inner ring and by contracting the outer ring.

Therefore, for some bearing applications this phenomenon must be considered at the bearing selection and design stage. It may be necessary to compensate for the clearance reduction by using a greater initial bearing clearance band, (i.e. **C3**, **C4**, **C5** or a **special clearance**).

Excessive interference on bearing inner shaft fits can, in extreme cases, result in inner rings cracking.

If in doubt, please contact the NKE technical department.

The simple solution for fits of bearing shaft and housing seats are listed in **tables: 7.7**, **7.8**, **7.9** and **7.10** these recommendations consider bearing type, size and the relative bearing load, (see also **table 7.2**).

Fits of Thrust Bearings

Generally, thrust bearings must not accommodate radial loading, the exception to this rule being for cylindrical roller thrust bearings or needle roller and cage thrust assemblies. To achieve this stationary washer normally will have a very loose fit whilst the rotating washer will be a close fit.

For thrust bearing washers special attention must be paid to the rectangularity of the supporting surfaces, to ensure uniform load distribution within the bearing, this tolerance should correspond to ISO tolerance field IT 5 or better.

For thrust bearings designed to accommodate radial and axial loads (e.g. spherical thrust roller bearings) the tolerance values for shaft and housing seats must be selected in the same way as the fits for radial bearings.

Recommended Shaft Fits for Radial Bearings with Cylindrical Bore

Loading of	Bearing type	_,	ore eter d	Relative loading axial displaceability	ISO tolerance
inner ring		>	≤	axiai dispiaceability	fields
	Ball bearings Roller bearings	all diameters		non-locating bearing, inner ring displaceable	g6
Point load	Needle roller bearings			adjusted tapered roller bearings adjusted angular contact ball bearings	h6, j6
			40	normal load	j6 (j5)
		40	100	slightly loaded	j6 (j5)
	Ball bearings	40	100	normal and high loads	k6 (k5)
		100	200	slightly loaded	k6 (k5)
				normal and high loads	m6 (m5)
Circum-		200		normal loaded	m6 (m5)
ferential load				high loads, shock load	n6 (n5)
or indeterminate			60	slightly loaded	j6 (j5)
direction of roller		_	00	normal and high loads	k6 (k5)
bearings loading				slightly loaded	k6 (k5)
	Roller bearings including	60	200	normal loads	m6 (m5)
	needle roller			high loads	n6 (n5)
	bearing	200	500	normal loads	m6 (n6)
		200	300	high loads, shock loads	р6
		500		normal loads	n6 (p6)
		300		high loads	р6

Table 7.7

Recommended Fits for Shaft Washers of Thrust Bearings

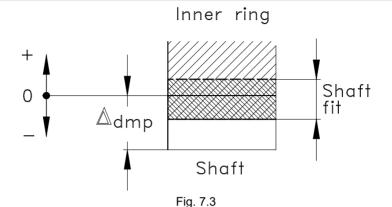
Type of loading	Bearing type	Loading of shaft washer	_^	ore eter d	ISO tolerance fields
	Thrust ball bearing, single direction		all dia	meters	j6
	Thrust ball bearing, double direction	all dia	meters	k6	
Pure thrust load	Cylindrical roller thrust bearings Needle roller and cage thrust ass shaft washer	embly with	all dia	meters	h6(j6)
	Cylindrical roller and cage thrust Needle roller and cage thrust ass LS-raceway washer or AS-thrust w	embly with	all dia	meters	h10
	Cylindrical roller and cage thrust Needle roller and cage thrust ass	all dia	meters	h8	
		Point load	all dia	meters	j6
Combined load	Spherical roller thrust bearings	Circumferential		200	j6(k6)
		load	200		k6(m6)

Table 7.8

Recommended Housing Fits for Radial Bearings

Loading of outer ring	Relative loading, axial displaceability	Remarks	ISO tolerance fields
		normal running accuracy	Н8
	Non-locating bearing, outer ring may be moved easily	if high running accuracy is required	H7
Point		if very high running accuracy is required	Н6
load	Displaceable outer rings of	normal running accuracy	H7, J7
	paired tapered roller bearings and angular contact ball bearings	if high running accuracy is required	H6, J6
In the case of additional heat fed via		ia the shaft	G7
		normal running accuracy	K7
	Slightly loaded only	if high running accuracy is required	K6
Circumferential		normal running accuracy	M7
load or	Normal load, some shock loading	if high running accuracy is required	М6
Indeterminate		normal running accuracy	N7
load direction	High loads, shock load	if high running accuracy is required	N6
	Ligh loads high shocks	normal running accuracy	P7
	High loads, high shocks or thin-walled housings	f high running accuracy is required	P6

Table 7.9


Recommended Housing Fits for Thrust Bearing

Type of Loading	Bearing types	Remarks	ISO - tolerance- felder
		for normal running accuracy	E8
	Thrust ball bearing	if higher running accuracy is required	Н6
Pure	Cylindrical roller thrust bearing Needle roller and cage thrust asse	H7 (K7)	
thrust load only	Cylindrical roller and cage thrust a Needle roller and cage thrust asso LS-raceway washer or AS-thrust	H11	
	Cylindrical roller and cage thrust a Needle roller and cage thrust asset	H10	
	Cultivational mallion them set has a visual	for normal loads	E8
	Spherical roller thrust bearings	for high loads	G7
Combined loading, in the case of point loaded housing washer	Spherical roller thrust bearings	Н7	
Combined loading, as for circumferentially loaded housing washer	Spherical roller thrust bearings		К7

Table 7.10

Tables of Fits

For general machinery applications the most frequent bearing shaft and housing fits are tabulated on following pages inclusive.

To determine the theoretical tolerance fields and whether the results indicate loose or interference fit at the bearing seat each appropriate table lists the nominal shaft or housing diameters and their diameter size tolerance range, $\Delta_{\mbox{\tiny dmp}}$ for shafts and Δ_{Dmn} for housings, to be used in conjunction with a bearing of equal size and to tolerance class (PN) normal tolerance.

The following example shows:

Shaft nominal diameter	Ø 75 mm
ISO tolerance field j5	+0.006 mm - 0.007mm
Bearing nominal bore diameter	Ø 75 mm
Bearing bore diameter tolerance $\Delta \textbf{d}_{\text{mp}}$	(PN) +0.000 mm - 0.015 mm

Shaft fit Ø 75 j5:

	-21
+6	-12
-7	7

If these meet, the following values occur (please refer to fig. 7.3):

a) A maximum interference will occur when the largest allowed shaft diameter meets the smallest permissible bearing bore.

In the above example: $|+6 + (-15)| = 21 \mu m$ (upper value)

b) The smallest interference will occur when the smallest allowed shaft diameter meets the largest permissible bearing bore.

In the above example:

$$|-7+0| = 7 \mu m$$
 (lower value)

c) The **probable** interference assumes the actual dimensions to lie 1/3 of the toler-ance value apart from the tolerance go side. In the above example:

12 µm (centre value)

Bold negative figures in the each right half of a field denote interference fit!

298 www.nke.at

Shaft Fits

Nominal shaft diameter [mm] Tolerances are in [µm]

Nominal over shaft diameter incl.	3 6		6 10		10 18		18 30		30 50		50 80		80 120		120 180	
Deviation Δ_{dmp}	0 -8		0 -8		0 -8		0 -10		0 -12	,	0 -15		0 -20)	0 -25	,
g5	-4 -9	-4 0 9	-5 -11	-3 2 11	-6 -14	- 2 3 14	-7 -16	- 3 3 16	-9 -20	-3 5 20	-10 -23	- 5 4 23	-12 -27	-8 4 27	-14 -32	-11 3 32
g6	-4 -12	-4 1 12	-5 -14	- 3 3 14	-6 -17	-2 4 17	-7 -20	-3 5 20	-9 -25	-3 6 25	-10 -29	- 5 6 29	-12 -34	- 8 6 34	-14 -39	- 11 6 39
h5	0 -5	-8 -4 5	0 -6	-8 -3 6	0 -8	- 8 - 3 8	0 -9	- 10 - 4 9	0 -11	- 12 - 4 11	0 -13	- 15 - 6 13	0 -15	-20 -8 15	0 -18	- 25 - 11 18
h6	0 -8	-8 -3 8	0 -9	-8 -2 9	0 -11	-8 -2 11	0 -13	- 10 - 2 13	0 -16	-12 -3 16	0 -19	-15 - 4 19	0 -22	-20 -6 22	0 -25	-25 -8 25
j5	+3	-11 -7 2	+4 -2	-12 - 7 2	+5 -3	- 13 - 8 3	+5 -4	-15 -9 4	+6 -5	-18 -10 5	+6 -7	-21 -12 7	+6	-26 -14 9	+7 -11	- 32 - 18 11
j6	+6 -2	-14 -8 2	+7 -2	-15 -9 2	+8 -3	-16 -10 3	+9 - 4	-19 -11 4	+11	-23 -14 5	+12 -7	-27 -16 7	+13 -9	-33 -19 9	+14 - 11	-39 -22 11
js5	+2,5 -2,5	- 11 - 6 3	+3 -3	-11 -6 3	+4	-12 -6 4	+4,5 -4,5	- 15 - 9 5	+5,5 -5,5	-18 -10 6	+6,5 -6,5	-22 -13 7	+7,5 -7,5	- 28 - 16 8	+9 -9	- 34 - 20 9
js6	+4	-12 -7 4	+4,5 -4,5	- 13 - 7 5	+5,5 -5,5	-14 -8 6	+6,5 -6,5	-17 -9 7	+8	-20 -11 8	+9,5 -9,5	- 25 - 13 10	+11	-31 -17 11	+12,55 -12,5	- 38 - 21 13

Example:

Shaft Ø 75 j5

upper limit ("go - side")

+6 µm

lower limit ("no - go side")

-7 µm

Bearing with standard tolerances (**PN**), deviation $\Delta_{dmp} = 0$ / -15 µm

For shaft Ø 75 j5:

go-side no-go side +6 -12 -7 7

interference or clearance if the **go-sides** meet probable interference or clearance interference or clearance if the **no-go sides** meet

The bold negative figures in the right hand column denote interference!

Design of Bearing Location

Shaft Fits

Nominal shaft diameter [mm] Tolerances are in [µm]

over incl.	180 250	250 315	315 400	400 500	500 630	630 800	800 1000	1000 1250
Deviation	0	0	0	0	0	0	0	0
$\Delta_{ m dmp}$	-30	-34	-40	-45	-50	-75	-100	-125
g5		5 -18 2 -17 1 5 -40 40	-18 0	-20 1	-28 -22 -1 -51 51	- 51 -24 -15 -56 56	- 74 -26 -29 -62 62	- 97 -28 -41 -70 70
g6	-15 -44 4	5 -17 4	-18 3	-20 3	-28 -22 4 -66 66	-24 -9 -74 74	- 74 -26 -24 -82 82	- 97 -28 -33 -94 94
h5	0 -1 -20 2	3 0 -16	0 -18	0 -21 -27 27	0 -23 -29 29	0 -39 -32 32	0 - 55 -36 36	0 -69 -42 42
h6	0 -1 -29 2	0 0 -13	0 -15		0 -18 -44 44	- 75 0 - 33 -50 50	0 -48 -56 56	0 - 61 -66 66
j5	+7 -2 -13 1		+7 -25					
j6	+16 -2 -13 1	6 +16 -29	+18 -33	+20 -37	+22 -40 -22 22	+25 - 58 -25 25	+28 - 76 -28 28	+33 - 94 -33 33
js5	+10 -2 -10 1	3 +11,5 -27	+12,5 -32	+13,5 -35		+16 - 55 -16 16	+18 - 73 -18 18	+21 -90 -21 21
js6	+14,5 -14,5 1		+18 -33	+20 -37	+22 -40 -22 22	+25 -58 -25 25	+28 - 76 -28 28	+33 -94 -33 33

The bold negative figures in the right hand column denote interference!

Shaft Fits

Nominal shaft diameter [mm] Tolerances are in [µm]

Nominal over shaft diameter incl.	3 6		6 10		10 18		18 30		30 50		50 80		80 120)	12 18	
Deviation	0		0		0		0		0		0		0		0	_
$\Delta_{ m dmp}$	-8		-8		-8		-10		-12		-15		-20		-2)
k5	+6 +1	-14 -9 -1	+7 +1	-15 -10 -1	+9 +1	-17 -12 -1	+11 +2	-21 -15 -2	+13 +2	-25 -17 -2	+15 +2	-30 -21 -2	+18 +3	-38 -26 -3	+21 +3	-46 -32 -3
k6		-17 -11 -1	+10	-18 -12 -1	+12	-20 -14 -1	+15 +2	-25 -17 -2	+18 +2	-30 -21 -2	+21	-36 -25 -2	+25	-45 -31 -3	+28 +3	-53 -36 -3
m5		-17 -13 -4	+12 +6	-20 -15 -6	+15 +7	-23 -18 -7	+17 +8	-27 -21 -8	+20 +9	-32 -24 -9	+24 +11	-39 -30 -11	+28 +13	-48 -36 -13	+33 +15	-58 -44 -15
m6		-20 -15 -4	+15 +6	-23 -17 -6	+18	-26 -20 -7	+21 +8	-31 -23 -8	+25 +9	-37 -27 -9	+30 +11	-45 -34 -11	+35 +13	-55 -42 -13	+40 +15	-65 -48 -15
n5		-21 -17 -8	+16 +10	-24 -19 -10	+20 +12	-28 -23 -12	+24 +15	-34 -28 -15	+28 +17	-40 -32 -17	+33 +20	-48 -39 -20	+38 +23	-58 -46 -23	+45 +27	-70 -56 -27
n6		-24 -19 -8	+19 +10	-27 -21 -10	+23 +12	-31 -25 -12	+28 +15	-38 -30 -15	+33 +17	-45 -36 -17	+39 +20	-54 -43 -20	+45 +23	-65 -51 -23	+52 +27	-77 -60 -27
р6	+20	-28 -23 -12	+24 +15	-32 -26 -15	+29 +18	-37 -31 -18	+35 +22	-45 -37 -22	+42 +26	-54 -45 -26	+51 +32	-66 -55 -32	+59 +37	-79 -65 -37	+68 +43	-93 -76 -43
р7	+24	-32 -25 -12	+30 +15	-38 -30 -15	+36 +18	-44 -35 -18	+43 +22	-53 -43 -22	+51 +26	-63 -51 -26	+62 +32	-77 -62 -32	+72 +37	-92 -73 -37	+83 +43	-108 -87 -43

Example: shaft Ø 100 m5

upper limit ("**go-side**") +28 μm

lower limit ("**no-go side**") +13 μm

Bearing with standard tolerances (**PN**), deviation $\Delta_{dmp} = 0 / -20 \mu m$

For shaft Ø 100 m5:

go-side no-go side +28 -36 +13 -13

interference or clearance if the **go-sides** meet probable interference or clearance interference or clearance if the **no-go sides** meet

The bold negative figures in the right hand column denote interference!

Shaft Fits

Nominal shaft diameter [mm] Tolerances are in [µm]

over incl.	180 250		25 31	-	31 40		40 50		50 63	-	63 80		80 100	-	100	-
Deviation	0		0		0	_	0	_	0	-	0	1	0	-	0	_
Δ _{dmp}	-30		-34	1	-40		-4		-50		-75	,	-10		-12	
k5	+24 +4	-54 -37 -4	+27	-62 -43 -4	+29	-69 -47 -4	+32	-77 -53 -5	+29	-79 -53 0	+32	-107 -71 0	+36	-136 -91 0	+42	-167 -111 0
k6	+33	-63 -43 -4	+36	-71 -49 -4	+40 +4	-80 -55 -4	+45 +5	-90 -62 -5	+44	-94 -62 0	+50	-125 -83 0	+56	-156 -104 0	+66	-191 -127 0
m5	+37 +17	-67 -50 -17	+43 +20	-78 -59 -20	+46 +21	-86 -64 -21	+50 +23	-95 -71 -23	+55 +26	-105 -78 -26	+62 +30	-137 -101 -30	+70 +34	-170 -125 -34	+82 +40	-207 -151 -40
m6	+46 +17	-76 -56 -17	+52 +20	-87 -65 -20	+57 +21	-97 -72 -21	+63 +23	-108 -80 -23	+70 +26	-120 -88 -26	+80 +30	-155 -113 -30	+90 +34	-190 -138 -34	+106 +40	-231 -167 -40
n5	+51 +31	-81 -64 -31	+57 +34	-92 -73 -34	+62 +37	-102 -80 -37	+67 +40	-112 -88 -40	+73 +44	-123 -96 -44	+82 +50	-157 -121 -50	+92 +56	-192 -147 -56	+108 +66	-233 -177 -66
n6	+60 +31	-90 -70 -31	+66 +34	-101 -79 -34	+73 +37	-113 -88 -37	+80 +40	-125 -97 -40	+88 +44	-138 -106 -44	+100 +50	-175 -133 -50	+112 +56	-212 -160 -56	+132 +66	-257 -193 -66
р6	+79 +50	-109 -89 -50	+88 +56	-123 -101 -56	+98 +62	-138 -113 -62	+108 +68	-153 -125 -68	+122 +78	-172 -140 -78	+138 +88	-213 -171 -88	+156 +100	-256 -204 -100	+186 +120	-311 -247 -120
р7		-126 -101 -50	+108 +56	-143 -114 -56	+119 +62	-159 -127 -62	+131 +68	-176 -139 -68	+148 +78	-198 -158 -78	+168 +88	-243 -199 -88	+190 +100	-290 -227 -100	+225 +120	-350 -273 -120

The bold negative figures in the right hand column denote interference!

Nominal diameter of housing bore [mm] Tolerances are in [μ m]

Nominal over housing borer incl.	6 10		10 18		18 30		30 50		50 80		80 120	,	120 150	-	15 18	
Deviation	0		0		0		0		0	,	0		0	,	0	_
Δ_{Dmp}	-8		-8		-9		-11		-13	3	-15		-18	3	-25	
F7	+28 +13	13 21 36	+34 +16	16 25 42	+41 +20	20 30 50	+50 +25	25 37 61	+60 +30	30 44 73	+71 +36	36 53 86	+83 +43	43 62 101	+83 +43	43 64 108
G6	+14 +5	5 11 22	+17 +6	6 12 25	+20 +7	7 14 29	+25 +9	9 18 36	+29 +10	10 21 42	+34 +12	12 24 49	+39	14 28 57	+39 +14	14 31 64
G7	+20 +5	5 13 28	+24 +6	6 15 32	+28 +7	7 17 37	+34 +9	9 21 45	+40 +10	10 24 53	+47 +12	12 29 62	+54 +14	14 33 72	+54 +14	14 36 79
Н6	+9 0	0 6 17	+11	0 6 19	+13 0	0 7 22	+16 0	0 9 27	+19 0	0 11 32	+22	0 12 37	+25	0 14 43	+25	0 17 50
Н7	+15	0 8 23	+18	0 9 26	+21	0 10 30	+25 0	0 12 36	+30	0 14 43	+35	0 17 50	+40	0 19 58	+40	0 22 65
Н8	+22	0 10 30	+27	0 12 35	+33	0 14 42	+39	0 17 50	+46 0	0 20 59	+54 0	0 23 69	+63	0 27 81	+63	0 29 88
J6	+5 -4	- 4 2 13	+6 -5	-5 1 14	+8 -5	-5 2 17	+10 -6	- 6 3 21	+13 -6	- 6 5 26	+16 -6	- 6 6 31	+18 -7	- 7 7 36	+18 -7	- 7 10 43
J7	+8 -7	- 7 1 16	+10	-8 1 18	+12	-9 1 21	+14	- 11 1 25	+18	-12 2 31	+22 -13	-13 4 37	+26 -14	-14 5 44	+26 -14	-14 8 51
JS6	+4,5 -4,5	-4,5 2 12,5	+5,5 -5,5	-5,5 1 13,5	+6,5 -6,5	-6,5 0 15,5	+8 -8	-8 1 19	+9,5 -9,5	-9,5 0 22,5	+11 -11	-11 1 26	+12,5 -12,5	-12,5 1 30,5	+12,5 -12,5	- 12,5 3 37,5

Example:

Housing Ø 120 H6

upper limit ("no - go side") lower limit ("go - side") +22 μm 0 μm

Bearing with standard tolerances (PN), tolerance of outer Ødeviation $\Delta_{Dmp} = 0$ / -15 μ m

Housing Ø 120 H6:

no-go side go-side +22 | 12 0 | 37

interference or clearance if the **go-sides** meet **probable interference or clearance** interference or clearance if the **no-go sides** meet

Nominal diameter of housing bore [mm] Tolerances are in [µm]

over incl.	180 250	250 310	310 400	400 500	500 630	630 800	800 1000	1000 1250	1250 1600
Deviation	0	0	0	0	0	0	0	0	0
Δ _{Dmp}	-30	-35	-40	-45	-50	-75	-100	-125	-160
F7	+96 75 +50 126	+108 85	+119 94 +62 159						+235 205
G6	+44 35 +15 74	+49 39	+54 43 +18 94	+60 48 +20 105	+66 54 +22 116	+74 66 +24 149	+82 78 +26 182	+94 93 +28 219	+108 109
G 7	+61 40 +15 91	+69 46	+75 50 +18 115	+83 56 +20 128	+92 62 +22 142	+104 76 +24 179	+116 89 +26 216		+155 125
Н6	+29 20 0 59	+32 22 0 67	+36 25 0 76	+40 28 0 85	+44 32 0 94	+50 42 0 125	+56 52 0 156	+66 64 0 191	
H7	+46 25 76	+52 29 0 87	+57 32 0 97	+63 36 0 108	+70 40 0 120	+80 52 0 155	+90 63 0 190	+105 77 0 230	+125 95
Н8	+29 20 0 59	+32 22	+36 25 0 76	+40 28 0 85	+44 32 0 94	+50 42 0 125	+56 52 0 156	+66 64 0 191	+78 79 0 238
J6	+22 13 -7 52	+25 15	+29 18 -7 69	+33 21 -7 78					
J7	+30 9 -16 60	+36 13	+39 14 -18 79	+43 16 -20 88					
JS6	+14,5 5 -14,5 44,5	+16 7	+18 6 -18 58	+20 8 -20 65	+22 10 -22 72	+25 17 -25 100	+28 24 -28 128	+33 31 -33 158	+39 40

The bold negative figures in the right hand column denote interference!

Nominal diameter of housing bore [mm] Tolerances are in [µm]

Nominal over housing borer incl.	6 10		10 18		18		30		50 80		80 12		120 150		150 180	
Deviation	0		0		0		0		0		0		0		0	
Δ_{Dmp}	-8		-8		-9		-1	1	-13		-15	5	-18		-25	
JS7	+7,5	-7,5 1 15,5	+9 -9	-9 0 17	+10,5 -10,5	- 10,5 - 1 19,5	+12,5 -12,5	-12,5 -1 23,5	+15 -15	- 15 - 1 28	+17,5 -17,5	-17,5 -1 32,5	+20 -20	-20 1 38	+20 -20	-20 1 45
K6	+2	-7 -1 10	+2 -9	-9 -3 10	+2	- 11 - 4 11	+3 -13	- 13 - 4 14	+4 -15	-15 -4 17	+4 -18	- 18 - 6 19	+4 -21	-21 -7 22	+4 -21	-21 - 4 29
K7	+5 -10	-10 -2 13	+6 -12	-12 -3 14	+6 -15	-15 -5 15	+7 -18	-18 -6 18	+9 -21	- 21 - 7 22	+10 -25	-25 -8 25	+12 -28	-28 -9 30	+12 -28	-28 -6 37
M6	-3 -12	-12 - 6 5	-4 -15	-15 -9 4	-4 -17	-17 -10 5	-4 -20	-20 -11 7	-5 -24	- 24 - 13 8	-6 -28	-28 -16 9	-8 -33	-33 -19 10	-8 -33	-33 -16 17
M7	0 -15	- 15 - 7 8	0 -18	-18 -9 8	0 -21	- 21 - 11 9	0 -25	- 25 - 13 11	0 -30	-30 -16 13	0 -35	-35 -18 15	0 -40	-40 -21 18	0 -40	-40 -18 25
N6	-7 -16	-16 -10 1	-9 -20	-20 -14 -1	-11 -24	-24 -17 -2	-12 -28	-28 -19 -1	-14 -33	-33 -22 -1	-16 -38	-38 -26 -1	-20 -45	-45 -31 -2	-20 -45	-45 -28 5
N7	-4 -19	-19 -11 4	-5 -23	-23 -14 3	-7 -28	-28 -18 2	-8 -33	- 33 - 21 3	-9 -39	-39 -25 4	-10 -45	- 45 - 28 5	-12 -52	- 52 - 33 6	-12 -52	-52 -30 13
P6	-12 -21	-21 -15 -4	-15 -26	-26 -20 -7	-18 -31	-31 -24 -9	-21 -37	-37 -28 -10	-26 -45	-45 -34 -13	-30 -52	-52 -40 -15	-36 -61	-61 -47 -18	-36 -61	-61 -44 -11
P 7	-9 -24	-24 -16 -1	-11 -29	-29 -20 -3	-14 -35	-35 -25 -5	-17 -42	-42 -30 -6	-21 -51	-51 -37 -8	-24 -59	-59 -42 -9	-28 -68	-68 -49 -10	-28 -68	-68 -46 -3

Example:

Housing Ø 160 M6

upper limit ("no-go side")

- 8 µm

lower limit ("go-side")

-33 µm

Bearing with standard tolerances (PN), tolerance of outer Ødeviation $\Delta_{Dmp} = 0 / -25 \mu m$

Housing Ø 160 M6:

no-go side go-side

	-33
-8	-16
-33	17

interference or clearance if the **go-sides** meet probable interference or clearance interference or clearance if the **no-go sides** meet

Nominal diameter of housing bore [mm] Tolerances are in [µm]

over incl.	180 250	25 31		31 40	-	40 50		50 63	-	63 80		80 10	-	100		12: 16:	
Deviation	0)	0		0		0		0	,	C)	0		C)
Δ_{Dmp}	-30		5	-40	0	-4	5	-5	0	-7	5	-10	00	-12	25	-16	30
JS7	+23	23 +26 53 -26		+28,5 -28,5		+31,5 -31,5	-31,5 4 76,5	+35 -35	-35 5 85	+40 -40	-40 12 115	+45 -45	-45 18 145	+52 -52	-52 24 177	+62 -62	- 62 32 222
K6	+5	24 -4 +5 35 -27	-27 - 5 40	+7	-29 - 4 47	+8 -32	-32 - 4 53	0 -44	-44 -12 50	0 -50	-50 - 8 75	0 -56	-56 -4 100	0 -66	- 66 - 2 125	0 -78	-78 1 160
K7	+13	33 -8 +16 -36	- 36 - 7 51	+17	-40 - 8 57	+18 -45	- 45 - 9 63	0 -70	- 70 - 30 50	0 -80	- 80 - 28 75	0 -90	- 90 - 27 100	0 -105	- 105 - 28 125	0 -125	-125 -30 160
M6	-8 -1	37 7 -9 -41	-41 -19 26		-46 -21 30	-10 -50	- 50 - 22 35	-26 -70	-70 -38 24	-30 -80	- 80 - 38 45	-34 -90	- 90 - 38 66	-40 -106	- 106 - 45 85	-48 -126	- 126 - 47 112
M7	0 -2	16 21 0 30 -52	- 52 - 23 35	0	- 57 - 25 40	0 -63	- 63 - 27 45	-26 -96	-96 -56 24	-30 -110	- 110 - 58 45	-34 -124	- 124 - 61 66	-40 -145	- 145 - 68 85	-48 -173	- 173 - 78 112
N6		61 81 -25 8 -57	-57 -35 10	-26	-62 -37 14	-27 -67	-67 -39 18	-44 -88	- 88 - 56 6	-50 -100	-100 -58 25	-56 -112	-112 -60 44	-66 -132	- 132 - 67 59	-78 -156	-156 -77 82
N7	-14 -3	50 35 -14 6 -66	-66 -37 21	-16	- 73 - 41 24	-17 -80	-80 -44 28	-44 -114	-114 -74 6	-50	-130 -78 25	-56 -146	-146 -83 44	-66 -171	-171 - 94 59	-78 -203	-203 -108 82
P6	-41 - 5	70 50 -47 11 -79	-79 -57 -12	-51	-87 -62 -11	-55 -95	-95 -67 -10	-78 -122	-122 -90 -28	-88 -138	-138 -96 -13	-100 -156	-156 -104 0	-120 -186	-186 -121 5	-140 -218	-218 -139 20
P7	-33 - 5	79 54 -36 -3 -88	-88 -59 -1	-41	-98 -66 -1	-45 -108	-108 -72 0	-78 -148	-148 -108 -28	-88	-168 -126 -13			-120 -225	-225 -148 5	-140 -265	-265 -159 20

The bold negative figures in the right hand column denote interference!

Design of Bearing Seats as Raceways

In several applications it may be advantageous to use roller and cage assemblies only instead of complete bearings.

Typical examples for such application are needle roller bearings without inner rings (RNA-type needle roller bearings), cylindrical roller bearings without inner rings (RNU-type) or without outer rings (RN-type), needle roller and etc., cage assemblies including full complement type arrangements where separate rolling elements such as rollers or bearing needles run directly onto the contacting surfaces of shafts or housings.

It can be seen that such bearing arrangements allow maximum utilisation of available design space. Additionally, the omission of the inner or outer rings enables the maximum shaft or housing sections ensuring a more rigid design arrangement.

In these cases the rolling elements run directly onto the contacting surfaces of the shaft or housing which must fulfil the functions of the omitted bearing ring. Therefore, in order to fulfil these functions correctly the dimensional, geometrical and surface finish accuracy, including the surface hardness values must be to the required bearing standards.

To provide an optimum use of the potential capacity of a bearing the running surfaces must have a hardness of **58** to **64 HRC**.

Also all surfaces supporting axial guidance to the bearing, such as shaft shoulders or contacting surfaces on adjacent parts, have to be similarly heattreated.

Therefore suitable materials for such direct bearing arrangements are hardening steels, (see examples listed in **table 7.11**).

Following the individual specifications of each application either a suitable through hardening steel, case hardening steel or steels for flame or induction hardening with high core tenacity may be selected to manufacture the shafts or housings.

In the case of steels suitable for flame or induction hardening a partial hardening of the running surfaces only is possible which enables economic cost solutions.

But when applying such surface hardening, a certain minimum case depth must be considered. As the case depth is dependant upon the application and its operating conditions no specific rules apply to determine this depth, although, it is generally accepted the minimum case depth must be 10% minimum of the rolling element diameter.

Steel type	DIN material number	Remark
100Cr6	1.3505	through hardening bearing steel
100CrMn6	1.3520	through hardening bearing steel
100CrMo73	1.3536	through hardening bearing steel
17MnCr5	1.3521	case hardening steel
19MnCr5	1.3523	case hardening steel
16CrNiMo6	1.3531	case hardening steel
42CrMo4-V	1.7225	steel for flame or induction hardening
43CrMo4	1.3563	steel for flame or induction hardening
48CrMo4	1.3565	steel for flame or induction hardening

Table 7.11

Design of Bearing Location

Of equal importance is the **form accuracy** of the running surfaces.

The permissible **roundness deviation** for normal expectation of running accuracy must not exceed **20%** of the diameter tolerance of shaft or housing seat.

The **cylindricity deviation** should be less than half these values.

With increasing requirements in the running accuracy of the bearing application the tolerances of cylindricity and rectangularity have to be restricted accordingly.

The surface roughness of contacting faces designed as bearing raceways must not exceed a surface roughness of $R_a \le 0.2 \mu m$.

If less running accuracy is adequate higher values of surface roughness may be defined.

Diameter Tolerances of Incorporated Raceways

Following the definition of diameter tolerances of bearing raceways, incorporating adjacent machine components the required **bearing clearance** must also be defined.

In the case of separable bearing types, (e.g. needle roller bearings or cylindrical roller bearings) the amount of radial clearance is defined by the raceway diameter of their loose rings.

The diameter tolerance of bearing rings is arranged in such a way that when matched with the tolerance of the diameter under the rollers this gives a certain range of radial clearance values. These values are arranged in clearance groups.

To avoid undesired preloading of the bearings or excessive clearance the tolerances for a certain clearance group must be considered carefully.

Values of clearance groups, including tolerances of diameters under rollers, are listed in the specific product information tables.

Axial Location of Bearing

Whilst rolling bearings, used in various applications, generally have radial location of their shaft and housing seats, they also require certain axial location using the appropriate fits (see **tables 7.7**, **7.8**, **7.9** and **7.10**).

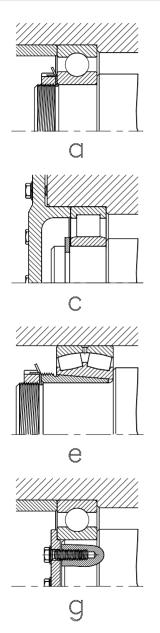
Where heavy interference fits of shafts or housings provide clamping forces on the bearing seats they do not guarantee axial location in all circumstances.

True axial location of the bearings at their seats is best achieved by means of a closed-form arrangement usually by locking nuts and washers, housing cups, shaft shoulders, snap rings etc. (fig. 7.4) complete.

It is necessary to ensure the design of adjacent parts of the bearing arrangement consider the respective functions of both the locating and nonlocating bearings.

For the floating bearing, high thrust loading seldom occurs, however, there is some axial force generated by the shafts thermal expansion. In such cases little effort is required to retain the bearing location axially and a simple solution is to use snap rings etc.

Locating bearings however transmit radial loads, including the acting thrust forces.


As these forces may act in either direction the location and the adjacent parts of the bearing arrangement must be designed accordingly.

Bearings arranged in sets that require adjustment or preloading will take thrust loads alternately, so the shaft is guided in an axial direction by one bearing.

However where the acting thrust force is in one direction only the complete axial location must be for the bearing set.

Examples of Axial Locations of Rolling Bearings

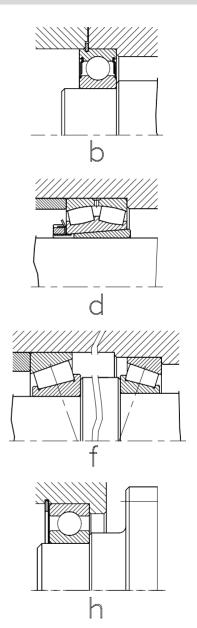


Fig. 7.4

Design of Bearing Location

Fig. 7.4a)

Deep groove ball bearing used as a **locating** bearing. Axial location is provided by the housing shoulder and the shaft shoulder and a lock nut, secured by a **locking washer**.

Fig. 7.4b)

Axial location of a **deep groove ball bearing** by means of a **snap ring groove** in the outer ring and housing, fitted with a snap ring.

A very simple and economic method as the bearing and the snap ring make a unit that provides a quick and easy mounting.

For such applications, however, a certain axial play will occur due to the width tolerances of snap ring groove and the snap ring.

Such a location is suitable to accommodate low thrust forces only.

Fig. 7.4c)

Axial location using **shaft snap rings** enable a quick cheap and simple mounting, for applications of mass production.

Fig. 7.4d)

Location of a spherical roller bearing with tapered bore on a plain shaft. The use of adapter sleeves allows shafts of lower class tolerances including turned or cold drawn bars to be used. Additionally the bearing mounting and arrangement construction is reduced. The maximum permissible thrust loads that may be applied to the bearing, however, is limited when using plain shafts without shaft shoulders.

In such cases the maximum applied load is limited by the friction between the contacting surfaces of adapter sleeve bore and shaft.

This is why a shaft shoulder is required when using bearings with adapter sleeves that are exposed to high thrust loads.

Fig. 7.4e)

Location of a spherical roller bearing with tapered bore, using a withdrawal sleeve.

Such a measure also enables the simplification of bearing seats and provides easier mounting and dismounting of the bearings. This type of location allows the use of lower class tolerances than for bearings mounted directly onto shafts. The bearing inner ring must be supported by an abutment face (i.e. shaft shoulder).

In cases where for strengthening reasons the shafts corner fillet clearance is larger than that of the bearing it may be necessary to fit a distance ring.

In all cases the withdrawal sleeve is secured against axial displacement by using a shaft nut or end plate.

Fig. 7.4f)

Tapered roller bearings located in face-toface arrangement. These bearings take the thrust loads alternately, so axial location is only necessary in one direction.

At the design stage of such arrangements consideration must be taken to allow for adjustment of the bearings.

Fig. 7.4g)

Deep groove ball bearing as locating bearing. The axial location in the housing is secured by the housing shoulder and, on the shaft by the shaft shoulder and an **end plate** bolted onto the shaft end.

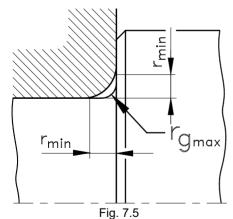
A relative costly arrangement.

Fig. 7.4h)

Cross-located deep groove ball bearings. The axial location in the housing is secured by each housing shoulder and a standardised **locking ring**.

Such a location is suitable for bearing arrangements without special requirements for axial guidance accuracy.

Abutment and Fillet Dimensions

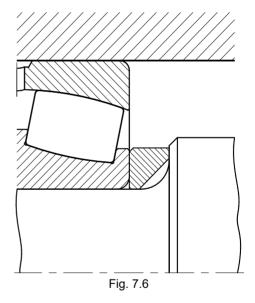

The diameter of connecting parts, such as adjacent shaft collars, housing shoulders and distance rings, must be defined according to the individual guide lines relevant for each bearing type and size.

Recommendations for abutment and fillet dimensions are given in the product information tables.

The consideration of these values guarantees sufficient axial support of bearing rings enabling the bearing load ratings use in an optimum way. These values also consider salient features of each bearing type, such as cage protrusion of some tapered roller bearings.

Bearing ring forces may only contact their axial supporting surfaces.

The bearing corners must always be clear of the shaft and housing fillet radii.



where:

r_{min} = minimum chamfer on bearing ring (see product information tables)

r_{gmax} = maximum fillet radius on shaft or housing If for strength reasons, (e.g. for a reduction of the notch effect on high loaded gearbox shafts,) larger fillet radii become necessary adequate shaped **distance rings** must be used between shaft shoulder and bearing side face, (fig. 7.6).

The diameters for these rings have to be defined in such a way, that sufficient axial support of the bearing is provided.

In some cases the shaft and housing fillet corners may be "undercuts", in each case consideration must be taken to ensure correct face abutments (fig. 7.7).

For recommended "undercut" dimensions and form values (table 7.12).

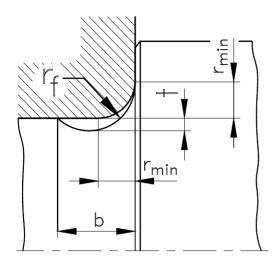


Fig. 7.7

where:

r_{min}= minimum chamfer dimension onbearing ring (see product information tables)

r_f = maximum undercut fillet radius onshaft or housing.

b = width of undercutt = depth of undercut

Minimum chamfer dimension	dim	Undercut ensions [n	nm]
r _{min} [mm]	b	t	r _f
1	2	0,2	1,3
1,1	2,4	0,3	1,5
1,5	3,2	0,4	2
2	4	0,5	2,5
2,1	4	0,5	2,5
3	4,7	0,5	3
4	5,9	0,5	4
5	7,4	0,6	5
6	8,6	0,6	6
7,5	10	0,6	7

Table 7.12

Design Measures for Bearing Monitoring and Dismounting

Depending upon the individual design arrangements for specific bearing applications dismounting may be more or less frequent. It is reasonable to suggest some thought on this matter at the initial design stages.

In many cases mounting or dismounting of rolling bearings may be less complicated with very simple design measures, such as **dismounting threads** or dismounting **holes** drilled into housing shoulders to push out the bearings from their housing seats, or **dismounting slots**, **recesses** or **undercuts** to ease bearing dismounting, using the appropriate mechanical or hydraulic tools (e.g. claw pullers etc.) in this way the machine and plant maintenance is simple and effective.

For larger machines or more important parts of the plant or machines that fulfil key functions, bearing locations sometimes are the subject of a special condition **monitoring**.

Examples for such monitoring include paper mills, power plants and steel mills.

Such monitoring may be done, according to the importance of the machine or plant, either by regular manual measurements in the simplest form or by stationary mounted sensors that have been connected on-line to a central computer that evaluates the data.

Such bearing condition monitoring records operational variations, to specific design parameters, that may indicate changes in the bearing condition arrangement or impending breakdown. These elements of a bearings condition are temperature, vibration velocity, vibration acceleration and running noise.

Irrespective of the methods, the location of measuring points should be applied as close to the bearings as possible.

This usually becomes easier when provision for, if required, threads, holes or connection facilities are already fixed.

Sealing of Bearing Arrangements

General

Rolling bearings are high precision machine elements that are produced with tolerances of close microns [µm].

For an optimum function they have super finished running surfaces featuring surface roughness of some 10th microns (0,1 µm).

This is why rolling bearings are very sensitive to damage caused by solid contaminations and impurities.

The efficient sealing of a bearing arrangement is thus one of the major pre-conditions for the successful performance of a rolling bearing arrangement.

Seal Types

In the field of bearing sealing there are many proven designs and design variations. To provide the optimum solution for each application and specific problems this practical experience should always be considered.

For rotary movement, **dynamic seals** are usually used for sealing bearing arrangements.

To satisfy the specific problems for each application there are in principle two main differences, namely.

- non-contacting seals
- contacting (rubbing) seals

For some applications it may become necessary to combine both types.

Non-Contacting Seals

The principle function of non-contacting seals is based on the sealing effect of narrow gaps between stationary and rotating machine components.

In their simplest form, non-contacting seals are simple, straight gaps as shown in fig. 7.9a. Their effectiveness may be increased by design improvements up to complex shaped labyrinth seals

Gap seals do not have any contacting parts, they generate practically no friction and thus no wear which make this type suitable for high speed operations.

The width of sealing gap should be approximately $0.1 \div 0.3$ mm, according to the accuracy of shaft guidance and dependant upon the bearing size.

Some compensation of alignment errors between shaft and housing may be possible based on the seal arrangement to be used, particularly for self aligning bearing types (e.g. ball bearings and/or spherical roller bearing).

A significant improvement in the effectiveness of a gap seal may be achieved by **grease filling** of the sealing gaps. By this measure the penetration of fine dust particles may be avoided.

A higher efficiency of sealing may also be achieved by a combination of non-contacting seals with sealed or shielded bearings, (suffixes -Z, -2Z, -RS, -2RS, -RS2, -2RS2, - 2LFS).

For variations of non-contacting seals, (see fig 7.8).

Fig. 7.8a)

A straight gap between shaft and housing cover builds the simplest form of a **gap seal**. Suitable for grease lubricated bearing applications running under dry surroundings where less dust may occur.

Examples for Non-Contacting Seals of Bearing Arrangements

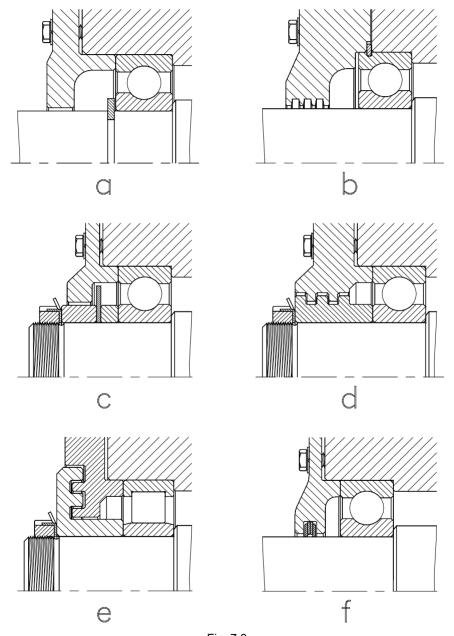


Fig. 7.8

Fig. 7.8b)

Non-contacting seal with additional concentric grooves in housing. A grease filling applied to these grooves prevents penetration of solid contaminations into the bearing position. The efficiency of the sealing is considerably enhanced.

In the case of oil lubrication such grooves may be applied in a helical pattern left hand or right hand depending on the direction of shaft rotation

Due to the design of the grooves emerging oil will be circulated back into the bearing position.

Fig. 7.8c)

Simple **gap seal** with additional **washer**. These disk washers rotate with the shaft and avoid the penetration of larger impurities.

Fig. 7.8d)

Example of a **radially split labyrinth seal**. The labyrinth is filled with grease and reliably avoids contamination of the bearing position.

Generally labyrinth seals perform well where applications are exposed to contamination such as sand and dust, although they have limited success against splashed water.

To improve their efficiency in the presence of water or humidity the labyrinth should be periodically regreased with water insoluble grease.

Fig. 7.8e)

Labyrinth seal, axially split. Other features as described in fig. 7.8d).

Fig. 7.8f)

Sealing by **lamellar rings**. These are ready for use rings made from spring steel that provide good sealing properties when mounted in sets. The rings have a tension against each other to form a gap seal.

Lamellar rings provide efficient and very economic gap seals.

Contacting Seals

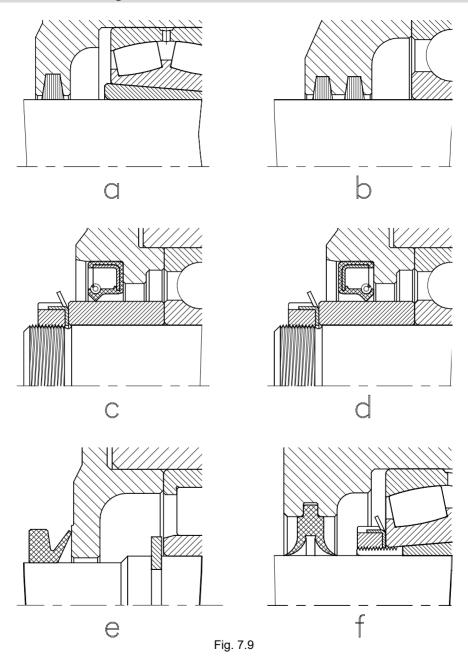
In the case of **contacting seals** (rubbing seals) the sealing effect is achieved by an elastic sealing element touching the mating surface under some preload.

Such contact enables a considerably higher efficiency of sealing compared to non-contacting seals. On the other hand, each contact of rotating components generate some friction and therefore causes additional heat that must been dissipated. All contacting seals depending on the material and their specific design experience wear at differing levels. This has an influence on the permissible speeds and temperature during operational performance.

Please refer to the recommendations supplied by the seal manufacturer.

Fig. 7.9 shows examples of contacting seals:

Fig. 7.9a)


Felt seals provide simple and inexpensive, efficient seals for general application purposes. Felts are commonly used in the form of felt rings and strips that are inserted into the sealing grooves of bearing housings. Before fitting felt strip seals they should be saturated with machine oil. Felt seals provide a good seal for grease lubricated bearing arrangements even in the presence of dust.

To ensure optimum seal function the mating surface must be ground to a surface roughness not exceeding Ra values of 3.2 µm.

The maximum permissible misalignment for felt seals equals approximately 0,5°.

Examples for Contacting Seals

Fig. 7.9b)

Double felt seal. For stronger contamination, especially in the presence of heavy dust, double felt seal arrangement may be used to increase the sealing effectiveness.

Fig. 7.9c) and Fig. 7.9d)

Radial oil seals are standardised machine elements. They are available in a wide variety of different designs and materials to meet the given requirements in an optimum way. In the majority of designs the radial sealing lip is pressed against the sealing surface by a garter belt.

Radial oil seals must be arranged depending on their main purpose. If the radial oil seal is used with the sealing lip facing outwards, as shown in Fig. 7.9c), the entry of contamination particles will be avoided. However, where leaking oil or grease must be avoided the radial oil seal must be mounted with its sealing lip inwards, see fig. 7.9d).

For applications where both are required either a special radial oil seal having double sealing lips may be used or two single radial oil seals located with their sealing lips arranged facing each other outwards

Radial oil seals are suitable - depending on their individual design and material - for circumferential speeds up to 15 metres/ second. They are also produced in several variations, such as special high temperature resistant materials, with garter springs in stainless steel, multiple sealing lips, etc.

For more detailed information please refer to the individual manufacturer's data sheets.

Fig. 7.9e)

V-ring seals are mounted onto the shaft which rotates whilst the long sealing lip contacts under light preload on the mating face of the stationary machine part.

In cases where the design of the housing as a mating face is not possible or uneconomical, a special sealing washer may be used.

V-ring seals provide good sealing for both oil and grease lubrication even under difficult operation conditions and feature simple mounting.

They also permit, depending on each shaft diameter, certain misalignments between bearing shaft and housing:

Shaft d [m	iameter m]	Maximum permissible
>	≤	misalignment
	50	≤ 1,5°
50	150	≤ 1°

Table 7.13

V-ring seals are suitable for circumferential speeds up to 12 m/s without special measures but they should have an axial location if operating at speeds of more than 7 m/s. Such axial location may be achieved by means of locating rings etc.

Where V-ring seals have to operate at circumferential speeds exceeding 12 m/s the lifting of the ring by circumferential forces must be avoided by using supporting rings, such as pressed steel rings etc.

For special applications V-rings are also available in different materials, such as flour fluoropolymer (**FPM**) etc.

Fig. 7.9f)

Split bearing housings are frequently used with two-lip seals as shown in fig. 7.9f).

These seals are available in individual size to fit the split housings. Two-lip seals are made from polyurea and they are radially split which makes their mounting very easy.

The space between their sealing lips has to be filled with grease during mounting.

Two-lip seals are mainly used for the sealing of grease lubricated split pillow block bearing housing.

Two-lip seals also permit certain misalignments depending on their size.

Shaft diameter [mm]		Maximum permissible
>	≤	misalignment
	100	≤ 1°
100	-	≤ 0,5°

Table 7 14

For optimum sealing performance the mating faces should be ground. They should have a surface roughness not exceeding $\mathbf{Ra} \leq 3,2 \ \mu \mathbf{m}$.

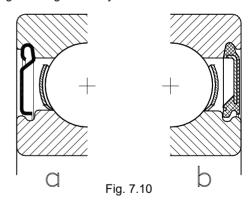
Two-lip seals are suitable for circumferential speeds not exceeding 8 metres/second.

Within the limited space of this catalogue a detailed listing of all possible sealing types and variations is not possible.

Several seal variations are available as stock items offered by specialist manufacturers. Examples for further sealing types are:

- sheet steel seals ("NILOS"-rings)
- slide ring packing
- lamellar ring seals from sheet steel
- labyrinth seals
- O-ring seals
- etc.

Combination of Different Sealing Types

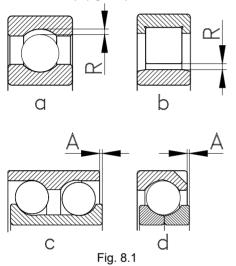

In their practical use different sealing types are often combined to enhance the sealing effectiveness.

According to the existing requirements noncontacting seals are often arranged with additional contacting seals.

A very efficient improvement of the seal is provided by using sealed or shielded bearings in combination with the other seals of the bearing position.

Such bearings which incorporate shields or seals (suffixes **Z**, -2**Z**, **RS2**, -2**RS2**, **RS**, -2**RS**, **RSR**, -2**RSR**, -2**LFS** etc.) enable maintenance-free sealed bearing arrangements that require minimum space (fig. 7.10).

The effort necessary for the sealing of bearing arrangements may be kept relatively small for high sealing efficiency.


- 7.10a) Deep groove ball bearing with Z-shield. The pressed steel shield forms a simple non contacting gap seal around the circumference of inner ring.
- 7.10b) Contacting **RS2**-type seal on deep groove ball bearings. In this variant the sealing lip contacts the ground inner ring around the shoulder circumference.

General

The term "clearance" is briefly described as the distance that bearing components may move relative to each other at physical extremes.

Depending upon the bearing type the bearing internal clearance is defined either in radial direction (radial clearance) or in axial direction (axial clearance), (fig. 8.1).

- 8.1a) radial clearance "R" in the case of deep groove ball bearings.
- 8.1b) radial clearance "R" for NU type cylindrical roller bearing. In the case of separable cylindrical roller bearings the radial clearance is defined by the raceway diameter of their loose ring.
- 8.1c) **axial clearance "A"** of a double row angular contact ball bearing.
- 8.1d) **axial clearance "A"** of four point ball bearings.

Nominal Internal Bearing Clearance and Operational Clearance

In principle, we have to distinguish between the initial **nominal clearance** of a bearing and its **operation clearance**.

Nominal Clearance

The **nominal clearance** is the initial clearance of a new, unfitted without any external load applied.

For the most common bearing sizes clearance values are defined by DIN standard **DIN 620**.

These defined values of standard clearance (clearance group "CN", formerly also called "C0") are defined in such a way that bearings will have sufficient remaining operating clearance when "normal" operating conditions apply and the bearings are mounted with "normal" shaft and housing fits.

haarina tura	bearing fits for	
bearing type	shaft	housing
ball bearing	h5, j5, k5	H6, J6, J7
roller bearing	k5, m5	H7, M7
needle bearing	k5, m5	H7, M7

Table 8.1

"Normal" operating conditions:

- temperature differences between inner and outer ring ≤ 10° C (≤ H 50° C)
- normal quality standard of running accuracy and precision of shaft guidance
- normal loads
- no strong vibrations or shock loads

Bearing Clearance

For specific applications where it is unsuitable to use the recommendations of DIN620 for "normal" class clearances, different clearance groups may be obtained.

To meet the requirements of such applications, rolling bearings are manufactured in different clearance groups.

Clearance groups:

C1 clearance range smaller than C2C2 clearance range smaller than CN

CN (C0) "normal" clearance

This clearance group is defined as the standard. Thus **CN** is not marked on the bearings. Historically the standard clearance was designated as "**C0**".

clearance range larger than CN
 clearance range larger than C3
 clearance range larger than C4

Special clearance:

For applications that have specific demands not covered by the standard clearance groups or where bearings with standard clearances do not perform optimum, specific clearances may be determined and agreed.

To distinguish these special clearances from the standard ones the clearance values are stated in the bearing designation, unless it already has a special quality definition.

Examples:

R80&150 Special Radial clearance of 80 to 150 microns (μm)

A70&110 Special Axial clearance of 70 to 110 microns (μm)

If required, the nominal clearance may also be reduced to a certain part within a clearance group.

Such a restriction is indicated by a letter (H, M) or L, that follows the symbol of the respective clearance group.

Examples:

C2L clearance range reduced to the **Lower** half of the **C2** clearance group.

C3M clearance range restricted to the Middle half of the C3 clearance group.

C4H clearance range restricted to the **Upper** half of the **C4** clearance group.

The nominal values of each clearance group are listed in the specific product data sheets in the product tables.

Operational Clearance

Unlike the manufactured **nominal clearance groups**, the operation clearance is determined by the individual operating parameters.

The term "operational clearance" describes the operational play of a mounted, loaded bearing at operating temperature.

Tight shaft fits (interference fit) may expand the inner ring diameter while interference housing fit may lead to contraction of the outer ring.

Also temperature differences between shaft (inner ring) and housing (outer ring) may result in an additional reduction of the initial clearance.

Therefore, in cases where the operational conditions differ from the standard values, the influence of these other factors on the standard value "CN" must be considered in detail.

Influence of Bearing Fits

Rolling bearings are located in their positions by the bearing fits. Depending upon type and size of the applied load and the individual function of the bearing either as a locating or non-locating bearing the fits may be chosen more or less tight.

For general machinery applications the most frequent bearing fits are tabulated in the chapter "Design of Bearing Arrangements", pages 320 to 327 inclusive.

These tables also contain some additional information about the effect that a certain fit will probably have on a bearing.

For each tolerance both the upper and lower dimensional limits in microns [µm] are stated in the left half of each field. The three figures stated in the right half of each tolerance field, however, show how this tolerance field will affect the bearing seat.

As an example, for a shaft with a nominal diameter \emptyset 75 mm and a fit according to the tolerance field j5 the following data is shown:

	-21
+6	-12
-7	7

<u>Bold negative</u> figures in the each right half of a field mean interference!

The tolerance of a bearing of standard tolerance class (**PN**) and a bore diameter Ø**75**:

$$\Delta_{\rm dmp} = 0 / -15 \,\mu \text{m}$$

If these both meet the following values result:

a) Maximum interference

The maximum <u>interference</u> occurs when the largest permissible shaft diameter meets the smallest permissible bearing bore.

In the above example the value of maximum **interference** is,

$$I(+6) + (-15)I = -21 \mu m$$
 (upper value)

Note: The minus sign indicates interference!

b) Smallest interference

The smallest interference occurs when the smallest permissible shaft meets the largest permissible bearing bore.

In the above example:

$$I-7 + 0I = 7 \mu m play (lower value)$$

c) Probable interference

The **probable** interference assumes the actual dimensions to lie 1/3rd of the tolerance value from the tolerance go-side.

In the above example:

Bold negative figures in the each right half of a field mean interference!

Reduction of Radial Clearance due to Interference Fits

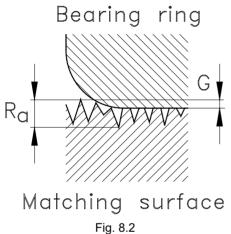
Using the values listed in the tolerance tables the reduction of clearance that must be considered is calculated as follows:

$$\Delta C = \Delta C_L + \Delta C_E$$
 (Eq. 8.1)

where:

ΛC = total clearance loss by interference fits

 ΔC_L = expansion of inner ring as estimation ΔC_L is assumed to be approximately 80% of the probable interference of the shaft fit


 ΔC_E = contraction of outer ring as estimation ΔC_E is assumed to be approximately 75% of the probable interference of the housing fit

Smoothing of Matching Surfaces

Bearing seats usually have ground or fine turned matching surfaces.

During each bearing mounting or dismounting procedure a certain smoothing of the surface roughness of the bearing seats of shaft or housing occur (fig. 8.2).

where:

 R_a = surface roughness before mounting

G = smoothing of roughness peaks during mounting procedure

The smoothing of surface roughness equates to approximately 40% of the initial Ra-values of the respective surface.

In cases of extremely rough surfaces this may even cause a lot of interference.

Additionally bearing fits with high surface roughness are more sensitive to damage by fretting corrosion.

The surface smoothing of the hardened and fine ground bearing surfaces, however, is negligible.

Detailed recommendations for the surface quality of bearing seats is stated in the chapter "Design of bearing location", page 303.

Reduction of Clearance due to Temperature Differences

Additional to the reduction of the initial clearance due to the interference fits, the clearance also reduces due to temperature differences, which occur between inner shafts to outer housing seats.

Usually the operating temperature difference of inner to outer rings is approximately 5 to 10°C (40 to 50°F). This difference is caused mainly by the fact that the heat dissipation on the bearing outer ring is usually more effective due to the larger housing surface compared to the shaft, (fig. 8.3.).

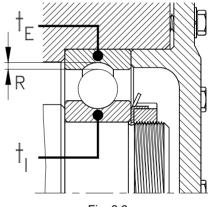


Fig. 8.3

where:

 \mathbf{t}_{E} = operating temperature of outer ring

R = operational clearance

t_i = operating temperature of inner ring

When using steel shafts, in conjunction with either steel or cast iron housings which feature similar coefficients of thermal expansion and the temperature difference is less than 10°C (50°F), the effect of temperature on clearance reduction is negligible.

When housings are produced from steel cast steel or cast iron and higher temperature differences occur the effect on clearance reduction may be estimated using the following formula.

$$\Delta Ct = 1000 * \alpha * \frac{d + D}{2} * \Delta t$$
 (Eq. 8.2)

where:

ΔC_t = reduction of radial clearance due to the temperature difference [μm]

 α = coefficient for thermal expansion, in the case of steel α 12 * 10-6 K⁻¹)

d = bearing bore diameter [mm]

D = bearing outer diameter [mm]

Δt = difference between operating temperatures of inner and outer ring [°C]

In the case of housings made from **light metal alloys**, however, a special care must be taken due to the different thermal expansion properties of light metals when compared to steel.

For such housings, every temperature change will affect the bearing fit even without large temperature differences between bearing shaft and housing seats.

	Coefficient of thermal
Material	expansion
	α [10 ⁻⁶ K ⁻¹]
	a [10 14]
steel	12
light metal	22

Table 8.2

For every deviation in the real operating temperature, from the reference temperature (20°C), the diameter of housing seat will change greater than that of the steel bearing outer ring.

In the event of low temperatures the diameter of the housing seat will shrink more than the bearing outer ring. This generates a stronger interference causing the ring to contract. For the same reason the housing seat will become loose at higher temperature which eventually results in the loss of interference and, respective, increases the bearing clearance.

This may be estimated using the following formula:

$$\Delta C_{t} = 1000 * \Delta \alpha * D * \Delta t$$
 (Eq. 8.3)

where:

 ΔC_t = reduction of radial clearance due to the temperature difference [µm]

 $\Delta \alpha$ = 10 * 10-6 K⁻¹ difference of thermal expansion coefficients. For steel α =12 * 10⁻⁶ K⁻¹ and For light metal α = 22 * 10⁻⁶ K⁻¹

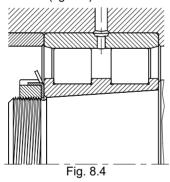
D = outer diameter of bearings [mm]
 Δt = deviation of operating temperature from the reference temperature (20°C/68°F) [°C]

In general, for operating temperatures of **more than** 20°C (68°F) the housing seat will become loose, the bearing clearance will increase, i.e. Δt is **positive** (+).

For operating temperatures **below** 20°C (68°F), however, the housing seat will become tighter, the bearing clearance will reduce, i.e. Δt becomes **negative** (-).

This effect may increase by the additional supply, or dissipation of heat, as in the case of cooled housings or additional heat supplied via the shaft.

Additional heat from the shaft will cause an expansion of inner ring raceway and thus a further reduction of the remaining bearing clearance.


Clearance of Bearings with Tapered Bore

Several bearing types are produced with tapered bores as a standard feature. This applies mainly to bearing types such as self aligning ball bearings, spherical roller bearings, including some high precision cylindrical roller bearing types used in spindles of machine tools.

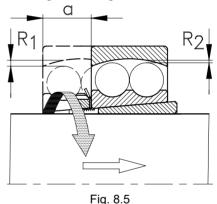
In the majority of applications the mounting of tapered bore bearings is by using either adapter or withdrawal sleeves

In a few cases, such as the double row cylindrical roller bearings for machine tool spindles (series NN 30), the bearings are mounted directly onto tapered journals.

For such high precision spindle bearings the tapered bore is also used to adjust precisely a certain clearance (fig. 8.4).

The amount of initial clearance for tapered bore bearings is larger than that of the identical bearing with a cylindrical bore, even when belonging to the same clearance group.

This is due to the fact that during mounting the rings onto tapered journals an expansion occurs due to the axial displacement of the ring along the taper.


This results in a greater reduction of the initial clearance. In extreme cases these additional pressures can result in the premature failure of the bearing.

The amount of inner ring expansion depends upon the bearing size, the axial displacement during mounting and the taper angle itself.

This angle usually has a ratio of **1:12** (standard tapered), that means the inclination is 1 mm in a measured length of 12 mm. These tapers are designated by the suffix **K**.

Some bearing series with less section have a more flat taper, 1:30. These tapers are identified by the suffix **K30**.

To avoid any unintentional applied preload on the bearing, special attention must be taken ensuring a certain minimum clearance \mathbf{R}_2 (fig. 8.5) remains after mounting the bearing on the shaft.

where:

R₁= radial clearance before mounting

R₂= residual radial clearance after mounting

a = axial displacement

There is a simple linear ratio between taper arc, axial displacement and clearance reduction. These values are listed in Table **8.3**. (see next page).

In each case the bearing mounted onto the shaft must rotate and swivel easily.

Connection between Axial and Radial Clearance

Different bearing types have a certain relationship between their radial and axial clearance.

For example, in the case of single row deep groove ball bearings, the axial clearance a may amount to a multiple of the value of radial clearance, depending on their internal design, angle of contact and the amount of radial clearance (fig. 8.6).

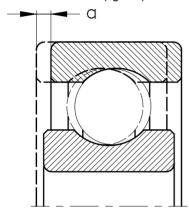
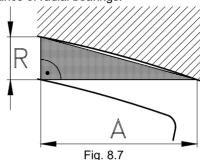


Fig. 8.6


In the vast majority of applications the axial clearance of radial bearings is usually of minor or no functional significance.

In certain cases, however, even for radial bearings certain accuracy of axial shaft guidance or for running noise levels is necessary.

This can be achieved by the selection of suitable bearing types, such as angular contact ball bearings, using adjustable bearing arrangements or by means of preloading the bearing arrangements.

For small and medium sized electric motors and generators that are frequently fitted with deep groove ball bearings, the bearings are often axially preloaded using cup springs to eliminate any axial clearance.

Table 8.3 contains approximate values to estimate the connection between radial and axial clearance of radial bearings:

	ratio
Bearing Type	A/R
Deep groove ball bearings *)	
standard clearance	≈ 9 ÷ 15
clearance group C3	≈ 7 ÷ 10
clearance group C4	≈ 6 ÷ 9
Single row angular contact ball bearing mounted in pairs,	
contact angle 40° (70B, 72B, 73B)	1,2
Angular contact ball bearings, double row **)	
32, 33 (contact angle 35°)	1,4
32B, 33B (contact angle 25°)	2
Four point contact ball bearings	
contact angle 35°	1,4
Self aligning ball bearings	2,3 * Y ₀
Spherical roller bearings	2,3 * Y ₀
Tapered roller bearings	
single row	4,6 * Y ₀
mounted in pairs	2,3 * Y ₀

Table 8.3

Remarks:

- *) Depending on the individual bearing type and design, therefore, only a rough estimation possible.
- **) For double row angular contact ball bearings the axial clearance only is stated.
- Y₀ Static axial factor from product tables

Preloading of Bearings

In the majority of all applications rolling bearings are selected and mounted in such a way that they feature some clearance under operating conditions.

Other applications not requiring an operational clearance, such as machine tool spindles or truck wheel set bearings are produced and mounted with a negative operating clearance (i.e. preload). The bearing types that are most frequently used under preload, are angular contact ball bearings and tapered roller bearings. But some other bearing types like deep groove ball bearings and cylindrical roller bearings may also be used in a preloaded condition.

Depending on its type a rolling bearing may be preloaded either axially or radially.

Preloading influences the following bearing characteristics:

- increasing the stiffness and rigidity of a bearing arrangement
- improved guiding accuracy
- reduction of running noise
- reduction of vibrations under service operation
- optimal use of bearings load rating
- compensation of thermal expansion
- avoiding sliding friction in the bearing
- ensuring minimum loading

Increasing of Stiffness

Like other machine components, rolling bearings are flexible under load. In the case of rolling bearings the term **stiffness** defines the relationship between a load applied to a bearing and the resulting elastic deformation caused by this load. Depending on their internal design each bearing type features a different stiffness.

The stiffness is indicated by the force required to generate a certain deformation $[N / \mu m]$.

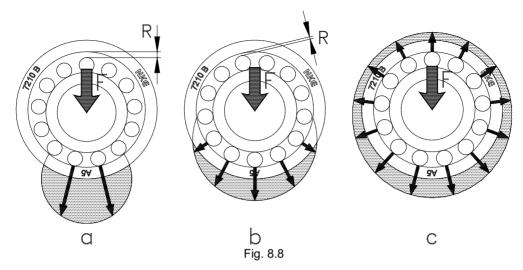
As the course of bearing stiffness is not linear, bearings in a preloaded condition have less deflection under equal load than unloaded bearings.

Due to the applied preload this effect has been anticipated.

Obviously the machine arrangement enclosing the bearing and adjacent parts must be designed to ensure a optimum applied preload to the bearings or the actual bearing assembled and adjusted to a specific preload.

Enhancement of Guiding Accuracy

Due to the elimination of the bearing clearance in both radial and axial direction and the resulting higher stiffness of the bearing assembly, the shaft guidance accuracy will be improved.


This applies especially to applications like machine tools spindles, gearbox shafts and wheel bearing assemblies of vehicles.

Running Noise and Vibration Characteristics

Another feature of the preloaded bearings is less running noise, because of the clearance.

Furthermore, as the shaft guidance is more accurate the vibration characteristics of a whole spindle arrangement may be reduced and in some application totally removed by using preloaded bearings.

Optimum Use of the Potential Load Rating of Rolling Bearings

The transmission of loads within a rolling bearing occurs from one bearing ring through the rolling elements to the other bearing ring.

The more rolling elements supporting in the transmission of forces, the less the specific pressure is in the small contact zone between the rolling element and raceway.

Because of this both the static load rating and the dynamic bearing life depends on the specific pressure applied to the bearing material.

There is a direct relationship between the load that the bearing is exposed to and the number of rolling elements supporting the load transmission.

Fig. 8.8 shows a schematic diagram of the affect of preloading the bearings under the influence of a constant load "F".

Fig. 8.8a:

The bearing shown in **Fig. 8.8a** has a large clearance "**R**" with few rolling elements supporting the load transmission.

Avoidance of Slip and Sliding Friction

Thus, the loaded zone (shaded area) is relatively small, and the specific pressures become relatively high.

Fig. 8.8b:

This bearing shows **no** or **very small** operational clearance.

Under pure radial load, the loaded zone (shaded area) surrounds approximately half the circumference, thus roughly half the number of rolling elements are supporting the load transmission. Therefore, if the load applied has the same magnitude as in Fig. 8.8a, the specific pressure is less.

Fig. 8.8c:

This bearing shows a **negative clearance** (**preloading**). Due to the preloading all rolling elements are involved in the transmission of forces. Thus the specific load per rolling element is less than in either of the other cases.

Rolling bearings require a certain minimum load to be applied for an effective function. Such a minimum load forces the rolling elements to roll over the bearing raceways.

If such a minimum load is not guaranteed, high sliding friction will occur. If this reaches excessive amounts, the smooth bearing surfaces may be damaged.

Some bearing types, particularly, thrust ball and roller bearings are very sensitive to sliding friction. That is why these bearing types need a special care to ensure their minimum loading.

Also for operating conditions such as shock loads or vibrations this may cause increased amounts of sliding friction in the bearing.

In most applications the minimum loading of the bearings is already achieved by the weight of shaft and the rotating machine components, in other cases by the applied external load.

In cases where this is not possible a minimum load may be achieved by **preloading** the bearing assembly.

Such a preload may be applied by means of springs, such as recoil springs or cup spring pads.

Applied Amount of Preloading

The amount of preload applied to a bearing arrangement should be determined very carefully. Various different influences must be taken into account, such as the required stiffness of bearing assembly, bearing life, characteristic features of each bearing type and all relevant operational parameters.

Also external influences like magnitude and type of load, possible shock loads and operating temperature must be considered. Thus in such cases no general valid guidelines may be applied. Practical experiences with the same or similar applications should also be considered.

Because of the many influences accurate calculations sometimes is not possible. Therefore, in such cases it may be necessary to initiate practical run-testing of new machine design arrangement under operating conditions. In this way precise values can be determined.

Reduction of Running Noise by Preloading

The armature of small and medium sized electric motors or generators are frequently fitted with deep groove ball bearings.

As a preventive measure to avoid possible bearing failures caused by false brinelling, these bearing arrangements are often mounted with zero clearance or light preload. This is achieved by mounting a cup spring or spring pad acting against the stationary bearing ring, thereby, eliminating any axial play and assists in the reduction of running noise (fig. 8.9)

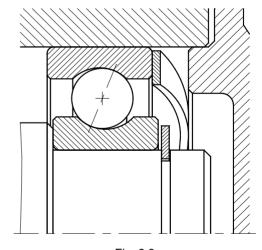


Fig. 8.9

This is also commonly applied in bearing assemblies of high speed grinding spindles to provide a quiet and smooth running.

The amount of applied preloading force depends on the bearing size and the reason for preloading:

As a rule of thumb, the following recommendations should be considered:

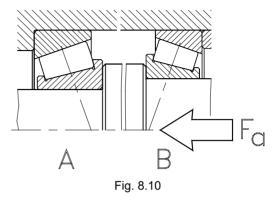
- to eliminate any residual clearance:
 F [N] ≈ 5 * d [mm]
- to reduce the running noise: F [N] ≈ 5 to 10* d [mm]
- to prevent bearing damage due to false brinelling:
 F [N] ≈ 15 to 20* d [mm]

where:

F = spring force [N]

d = bearing bore diameter [mm]

To ensure a certain minimum load:


The spring force has to be adjusted according to each bearing type for recommendations (see the specific product information sheet).

Determination of Preload Force

In the case of preloaded or adjusted bearing arrangements, as shown in fig. 8.10, the load distribution is a central acting, pure radial acting load to both bearings. For bearings having contact angles $\approx 0^{\circ}$, such as angular contact ball bearings and tapered roller bearings, each applied external radial load generates an internal thrust force.

When additional external thrust forces $(\mathbf{F_a})$ occur, as in the case of wheel bearings of motor vehicles driving around corners, this will cause, providing the external forces are larger than the internal thrust forces, the unloading of outer bearing (\mathbf{B}) .

The opposite bearing, located at inner position (A), however, has to accommodate the additional force.

In extreme cases this may lead to the total unloading of the bearing (B), whilst the opposite bearing (A) even may become overloaded.

In these cases the amount of preload to be applied must be defined in such a way, that the permanent unloading of one of the two bearings will be avoided, on the other hand the preload must not cause any overloading of the bearing assembly.

Preloading can also be used to increase the stiffness of a bearing arrangement. In this case the magnitude of the applied preload force must not exceed half of the external thrust loads.

A higher value of preload is no longer necessary, because excessive preloading would shorten the bearing life not increase it.

General

One of the most important elements required for the effective function of bearing arrangements is correct lubrication.

The **lubricant** separates the metallic bearing surfaces and thereby reduces friction, preserves the steel parts and acts as an additional barrier against the entry of contaminations or impurities into the bearings.

For each of these reasons the lubrication fulfils a key function in each bearing application. A malfunction of the lubrication usually causes an immediate bearing failure.

Methods of Lubrication

Normally three different lubrication methods are used:

Grease Lubrication

The vast majority of all rolling bearings, some 90%, are grease lubricated.

The main advantages of grease lubricating are:

- very simple application
- less maintenance required
- additional sealing effect
- pregreased sealed or shielded bearing
- simple sealing of bearing positions
- large number of different lubricants available
- greased "for-life" bearing arrangements possible

Oil Lubrication

Oil lubrication is generally used when oil is available normally within the respective machine, or where special operating conditions apply (e.g. high speeds and/or loads) that require effective heat dissipation at specific positions or areas.

In some high speed applications accurate applied lubrication to specific areas (e.g. guiding surfaces of

cages) may be necessary. The disadvantage of oil lubrication is the relatively high effort required to provide an effective and efficient seal at each bearing position.

Solid and Dry Lubrication

Where applications do not allow the use of oil or grease lubrication for various reasons, other materials, including some metals that are suitable in separating the bearing surfaces.

Some examples are:

Graphite

- used as a powder or press formed as a cage.

Molybdenum disulphide (MoS2)

- in the form of powders, with additives.

Polytetraflourethylene (PTFE)

- in the form of powders, with additives.

Metallic coatings

These are usually very thin coatings applied by a galvanising process (e.g. extremely thin layers of gold or silver).

Such metallic coatings are used for example where bearings run under vacuum, i.e. X-ray equipment or other special applications.

Sliding varnish

A solid lubricant in the form of fine powder is dissolved in a suitable solvent or other medium. After applying the mixture, the solvent will vaporise leaving the solid lubricant as a fine film on the surfaces.

Surface treatments

Such surface treatments are usually applied as a protective measure against corrosion, in addition to the normal lubrication, where bearings are exposed to extreme conditions.

The most commonly used surface treatment for rolling bearings is bonderizing.

Selection of Lubricating Method

The decision to select the most suitable lubricating method to be used for any application should be made at the early stage of design as this has an influence or the design of adjacent parts.

The lubricating method to be used for a particular application is always dependant on individual operating conditions, including the anticipated operating speeds, temperature range and environment.

The product tables list recommendations for speed ratings of each individual bearing under grease or oil lubrication.

Speed Ability of Lubricants

The speed capability of a bearing and the ability of the lubrication used to attain these specific speeds are equally important.

A significant equation to evaluate the ability of a lubricant or a certain lubricating method is provided by the so called **speed characteristics**, $(n * d_m)$.

n * d_m
$$\left[\frac{mm}{min}\right]$$
 (Eq. 9.1)

where:

n bearing operating speed [min⁻¹]

 \mathbf{d}_{m} bearing pitch diameter [mm]

Note: this may be estimated as follows:

$$d_{m} = \frac{d + D}{2}$$
 [mm] (Eq. 9.2)

where:

d bearing bore diameter [mm]

D bearing outer diameter [mm]

Examples for Typical n * d_m-Values:

Lubricating method	n * d _m
Grease lubrication	
standard - bearing greases	≤ 500.000
special greases	≤ 1.000.000
Oil lubrication	
oil bath lubrication	≤ 500.000
circulating oil lubrication	≤ 750.000
splash oil lubrication	≤ 800.000
oil mist lubrication *)	≤ 1.500.000
minimum quantity lubrication *)	≤ 3.000.000

Table 9.1

*) For characteristics of > 1.000.000 practical experience is also of major importance. Special appliances such as oil intercoolers, additional pumps or a separate compressed air system for oil and air lubrication may become necessary.

The values listed in table 9.1 are for as guidance only.

To obtain detailed and accurate values for a specific lubricant please contact your lubricant supplier.

Tasks of Lubricants

All lubricants used in rolling bearings have to fulfil the following main tasks:

- separation of metallic surfaces
- reduction of friction in the loaded zones
 (i.e. both the rolling contact and in the areas having sliding friction)

- reduction of wear
- preservation of bearings parts
- avoid the entry of pollution into the lubricating gap
- heat dissipation with oil lubrication

Significant Values of Lubricants

Viscosity

Viscosity indicates the individual layers flowing characteristics of a liquid when in motion.

It is one of the most important features when selecting oils. In the case of lubricating **greases** the viscosity of each **base oil** is indicated.

In principle, distinction is made between the **nominal viscosity** of a lubricant which is a specific reference value and the **operating viscosity** that results under given operating conditions at the bearings operating temperature.

Because the viscosity of a lubricant is highly dependant on its actual temperature, the **nominal viscosity** is always indicated together with a defined reference temperature. Usually the indicated **nominal viscosity** refers to 40° C (ν_{40}), sometimes other reference temperatures are also stated, such as (ν_{50}) or (ν_{100}).

Consistency

The grade of consistency indicates the "stiffness" of grease to defined NLGI-scales according to DIN 51818.

Very soft greases, used for high speeds, have low NLGI-grades; stiffer greases have higher NLGI-grades.

For lubricating rolling bearings a grease lubrication to NGLI scales 2 and 3 is normal, occasionally, grease to scales 0 and 1 are also used.

Separation of Metallic Bearing Surfaces

The most significant feature of any lubricant is to achieve a complete separation of the bearing metallic surfaces in the "loaded zone".

Also, the standardised calculation of nominal bearing life (L10) according to **DIN ISO 281** assumes a **sufficient separation** of the metallic bearing surfaces, (fig. 9.1).

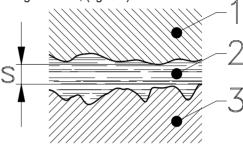


Fig. 9.1

Effective separation of the metallic bearing surfaces is reached when the thickness (s) of the **lubricating film** (2), which builds up in the contact area between the rolling element surfaces (1) and the bearing rings (3), is large enough to separate them completely.

Therefore the film thickness (**s**) must be larger then the total amount of surface roughness deviations of the contacting parts.

The film thickness (s) depends on the operating viscosity of the base oil and the operational speed.

Furthermore no solid pollution or foreign particles with grain sizes of more than the thickness of **lubricating film (s)** may be present in the lubricant.

When these pre-requisite conditions are fulfilled the so-called "hydrodynamic" lubrication is attained.

In practice, however, the conditions of such a hydrodynamic lubrication will not be attained on all occasions.

In many applications the so called "**limited lubrication**" occurs, where a complete separation of the metallic bearing surfaces is not always guaranteed, (see fig. 9.2).

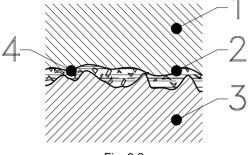


Fig. 9.2

In practice slow speeds, high temperatures, the use of lubricants with low operating viscosity, pollution in the lubricating gap or old lubricants may lead to a to lower thickness of lubricating film allowing the metallic bearing surfaces to contact each other, as shown in fig. 9.2.

Selection of Viscosity of Lubricant

The actual **operating viscosity** of a lubricant is determined by the following factors:

- nominal viscosity of lubricant
- bearing size
- operating temperature
- speed

A simple and for the majority of applications accurate estimation of the operating viscosity of a lubricant under operational conditions is provided in the procedure as described in the chapter "Selection of Bearing Type and Size" (see page 255).

The following steps are required;

- 1) calculation of bearing, pitch diameter, d_m
- 2) estimation of required operating viscosity v_1
- 3) determination of actual operating viscosity ν
- 4) build the ratio of required to actual operating viscosity $\boldsymbol{\kappa}$

There is a close relationship between the existing lubrication situation in a bearing application and the service life that may be forecast.

This relationship is considered in the modified method of rating life of a rolling bearing by the use of several calculation factors.

See the chapter "Selection of Bearing Type and Size" page 267.

Additives in Lubricants

To obtain specific characteristics in lubricants one or more agents may be used, the so called "additives".

The more important additives are **anti-oxidants** that lengthen the ageing behaviour of a lubricant, **EP-additives** provide better load carrying performance (**EP** = **E**xtreme **P**ressure), and various other compounds and components.

These agents undergo a chemical reaction, in the case of EP-additives with the bearing steel.

Especially for applications with limited lubrication, where the lubricating film will not be of sufficient thickness under all operating conditions, a suitable lubricant additive becomes of particular importance.

In the case of lubricants having many additives the compatibility of the lubricant with materials of seals however must be clarified

Lubricating Greases

Lubricating greases principally comprise of a base oil and thickener and activating agents, called additives.

Base oil

The base oil determines substantially the lubricating behaviours of lubricating grease. The most common base oils are mineral oils, and for special applications synthetic oils.

When determining the required operating viscosity of lubricating greases the **viscosity of the base oil** must be considered.

Thickener

The activating agent or thickener in grease holds the base oil. The thickeners are generally metallic soaps (e.g. lithium, calcium or sodium soaps), although bentonite, polyurea and some other components (i.e. PTFE) are used.

There are also **lubricating greases with mixed soaps** that have thickeners consisting of two different soaps. Commonly used are mixtures of sodium / calcium, or lithium / calcium, etc.

Another grease type is represented by the so called "complex soap" grease, featuring a thickening agent consisting of a metallic soap and a metal salt.

Based on which thickeners are used the grease types are commonly classified as **lithium soap**, **mixed soap** and **complex soap**.

The **thickener also** substantially determines the consistency (stiffness) of grease, its mechanical and chemical resistance, the temperature range possible and the resistance of the lubricating grease to repel moisture.

Consistency grades

The consistency of lubricating greases is determined by measuring the penetration depth of a standardised "test" cone into the grease at a temperature of 25°C (77°F) for a period of 5 seconds.

Before the penetration test begins, the grease sample is prepared to a defined procedure.

Depending on the stiffness of the grease the deeper the test cone penetration the softer the grease is, also the NLGI classification is lower.

The values obtained using these methods are called "worked penetration". The classification of grease values for worked penetration is defined as consistency grades: (table 9.2).

NLGI-classes consistence grade (DIN 51818)	worked penetration [0.1 mm] 445 to 475 400 to 430				
000	445 to 475				
00	400 to 430				
0	355 to 385				
1	310 to 340				
2	265 to 295				
3	220 to 250				
4	175 to 205				
5	130 to 160				
6	85 to 115				

Table 9.2

Depending on the bearing type, size and known individual operating conditions greases of different consistency grades may be used.

Soft greases are optimum for use in small and miniature bearings, at low temperatures or high speeds, when a central lubrication system is used.

Stiffer greases are suitable for large bearings running at low speeds or high temperature application.

Additionally, stiffer bearing grease also has a better sealing effect.

Some significant values for the more common bearing greases are listed in the table 9.3:

Thickening	Rase Tomporation of the State o		Domonico	
agent soap base	oil	>	≤	Remarks
	mineral oil	-30°C (-22°F)	+120°C (+122°F)	normal rolling bearing grease
Lithium	ester oil	-60°C (-76°F)	+130°C (+266°F)	low temperatures / high speed grease
	silicon oil	-40°C (-40°F)	+170°C (+338°F)	high and low temperature grease
Sodium	mineral oil	-30°C (-22°F)	+100°C (+122°F)	poor water resistance
Bentonite	mineral oil	-20°C (-4°F)	+150°C (+302°F)	high temperature grease for low speeds
Polyurea	mineral oil	-20°C (-4°F)	+150°C (+302°F)	high temperature grease for high speeds
Calcium	mineral oil	-20°C (-4°F)	+60°C (+140°F)	superior water resistance (i.e. sealing grease)
Calcium complex	mineral oil	-30°C (-22°F)	+150°C (+302°F)	high temperature grease, also for higher loads
Sodium complex	mineral oil	-20°C (-4°F)	+130°C (+266°F)	also for higher loads
Aluminium	mineral oil	-20°C (-4°F)	+70°C (+158°F)	good water resistance
Aluminium complex	mineral oil	-40°C (-40°F)	+150°C (+302°F)	high temperature grease for high speeds, also for higher loads
Barium	mineral oil	-20°C (-4°F)	+150°C (+302°F)	high temperature grease for high speeds, also for higher loads
complex	ester oil	-60°C (-76°F)	+130°C (+266°F)	low temperature grease for high speeds; good resistance against vapour

Table 9.3

Lithium soap greases

are the most common standard bearing greases. Lithium based greases are normally the standard grease in sealed or shielded bearings.

Calcium base greases

have a very good water resistance, but have limited and low temperature range.

Calcium complex greases

also have good water resistance, with higher temperatures and range.

Calcium complex greases have a tendency to harden when cooled rapidly.

Sodium base greases

enable good protection against corrosion because of their ability to emulsify with a limited amount of water. The consistency of the grease, however, becomes more liquid(i.e. thinner or flowing).

Polyurea greases

outstanding temperature resistance, suitable for low or medium loads.

PTFE-greases

special lubricant for extreme operating temperatures, very good resistance against chemical influences.

Miscibility of Greases

In general, the mixing of **different** lubricating greases should be avoided where ever possible.

Even when blending greases that have theoretically the same or similar characteristics unforeseen effects may occur caused by chemical reactions between certain components of the lubricants or their additives.

Only lubricating greases that have the same thickener and identical or similar base oils may be blended (e.g. lithium and calcium soaped greases).

In cases where change of the grease used becomes necessary, all remaining old grease must be removed. Also the remaining lubricant in housing cavities, lubrication pipes or grooves must be carefully removed.

Especially in the changer over period, special attention should be paid to the lubrication situation in the bearing arrangement.

If required, the defined relubrication intervals should be shortened during such a conversion period.

Grease Quantity

The amount of grease required for lubricating a bearing is only very small.

Following the initial grease fill and the start up period some volume of grease is expelled from the bearing by the rotating elements. This grease volume creates a reserve supply for the bearing. In this way the bearing, impart, automatically controls the correct volume of grease into the bearing.

The grease displacement during the running-in of a bearing arrangement can generate additional friction that leads to higher operating temperatures during this period; this is normal.

In extreme cases where grease displacement from the bearing is not possible, the heat generated can cause a hot-run of the bearing. The lubricating grease fill volume is determined mainly by the bearing design and its operating speed.

The free space within the bearing itself has to be fully filled with lubricating grease in all cases.

The grease fill volume applied to the housing cavities should be determined following the recommendations given in table 9.4:

Speed	ratio *)	Grease filling **)			
>	≤	[%]			
-	20	80 to 90			
20	75	30 to 50			
75		25			

Table 9.4

*) in % of the speed ratings with grease lubrication

**)in % of bearing housing cavities

Under very special operating conditions, such as pulley bearings running at very low speeds, the housing cavities may be fully packed with grease to avoid any formation of condensing water (i.e. creating a seal).

Grease Service Life and Relubrication Intervals

Bearing lubricants undergo permanent mechanical stressing caused by the over rolling of the rolling elements. Additionally, lubricants change their characteristics, particularly when operating at high temperatures which generate some oxidation, the presence of humidity, pollution and other elements also bring about certain chemical reactions.

For these reasons the service life of lubricants is limited.

In the case of greased "for-life" rolling bearings, mainly bearings that have shields or seals on both sides, the service life of the lubricating grease inside the bearing is expected to be longer than the probable bearing life rating.

When maintaining bearing applications it is essential to be able to estimate the **service life** of a lubricant realistically.

This becomes evident where regular relubrication is necessary.

The duration of the grease service life depends on the individual operating conditions, particularly on the operating temperature and bearing speeds

A realistic evaluation of the **service life of lubricating grease** is possible according to the following equation:

$$t_n = \frac{a * 10^6}{n * \sqrt{d}} - b * d [h]$$
(Eq. 9.3)

where:

a and b bearing type and series coefficients (Table 9.5)

n bearing operating speed [min⁻¹]

d bearing bore diameter [mm]

t_n service time (operating hours)

For safety reasons the **relubrication intervals** of new machines or plants, where no practical experience yet exists should not exceed approximately 50 to 60% of the initial calculated **service life** of lubricant.

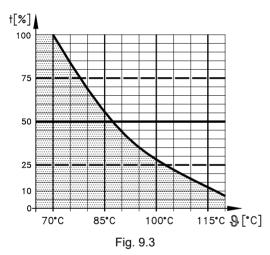
The duration of relubrication intervals may be adjusted to suit the criteria.

Although in the first instance very careful observation of the lubrication condition and effective monitoring of the bearing positions is recommended.

Bearing types	Coeffi	cients
and series	а	b
Deep groove ball bearings		
160, 60, 62	75	18
63	65	18
64	55	18
Angular contact ball bearing		
72 B	65	18
73 B	55	18
32	55	18
33	55	18
Four-point contact ball bearing	s	
QJ 2	65	18
QJ 3	55	18
Self aligning ball bearings		
12, 22	75	18
13, 23	65	18
Cylindrical roller bearings		
N.10, N.2, N.2 E	75	18
N. 3, N. 3 E	65	18
N. 4	55	18
Taper roller bearings		
302, 320, 322,	20	7
303, 313	18	7
323,	15	7
Spherical roller bearings		
222	20	7
223	15	7

Table 9.5

Influences to the Duration of Relubrication Intervals


The relubrication intervals that are calculated according to formula eq. 9.3 may be adjusted under certain circumstances.

The values obtained are only valid for constant operating temperatures not exceeding 70°C (158°F). Above 70°C (158°F) the mineral oil based lubricants undergo extremely accelerated ageing.

When the lubricant is exposed to constant operating temperatures above 70°C (158°F) the calculated value for **relubrication intervals**, using the equation eq. 9.3 must be halved for each 15°C (59°F) increase in operating temperature.

The course of this reduction is shown graphical in fig. 9.3:

where:

- t relubricating interval [%]
- Second temperature (°C)

If grease lubricating the bearing also acts as a seal against entry of pollution, or where the bearing outer ring rotates, the relubrication intervals must be further reduced. This also applies with the presence of moisture, dust, chemicals and vibrations etc.

Alternatively, where bearings run at low speeds and moderate operating temperatures the relubricating intervals may be extended.

In every case practical experience of relubricating intervals under known operating conditions for the same or similar machines and plant, must be considered.

Additional information on specific characteristics of lubricants, their chemical reactions with some elements and the anticipated service life of lubricant under certain operating conditions are available from the lubrication manufacturer.

Relubricating Quantity

The applied volume of new grease must be charged in such a way that a complete replacement of the old, used grease is guaranteed.

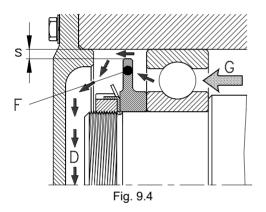
The grease volume required for **relubrication purposes** may be calculated using the following equation:

$$m = \frac{D * B}{1000} * i$$
(Eq. 9.4)

where:

m	grease volume	[g]
D	bearing outer diameter	[mm]
В	bearing width	[mm]
i	factor for relubricating fre	equency
	according to table 9.6	

Relubricating frequency	i
weekly	2
monthly	3
yearly	4


Table 9.6

Grease Circulation

At the initial design stage the discharge of old used lubricant from the bearing position must always be considered, such as escape holes and ducts, or cavities in the underside of the housing or castings to accept and eject the old used lubricant, including the discharge of any surplus due to excessive relubrication which must be avoided.

A simple and effective method to protect the bearing against excessive lubricating is to install grease valves, as shown in fig. 9.4.

- s gap between grease valve outer diameter and housing bore
- F grease valve
- G fresh grease supply
- D discharge of used grease

Grease valves are discs (F) that fit alongside the rolling bearings. Their outer diameter is defined in such a way that a gap (s) of approximate 1 to 3 mm between the housing bore is provided. The supply of fresh grease (G) during relubrication must be injected from the opposite side to the grease valve.

Relubrication of the bearing creates high pressure in the housing when injecting fresh grease (**G**).

This pressure causes the old grease (**D**) to discharge from the bearing position providing the pressure is maintained.

To ease the supply of fresh grease, several bearing types have lubrication holes and grooves. Typical examples are, supporting rollers, truck runner bearings, double row taper roller bearing and most spherical roller bearing and types where lubrication holes and grooves in the outer ring are a standard feature. (fig. 9.5).

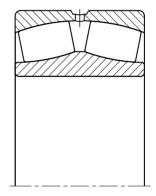


Fig. 9.5

Lubrication holes, grooves, grease valves and lubricating pipes etc. must be dimensioned in such a way that no extreme back pressure may build up during relubrication.

The supply of fresh grease should be actioned as close to the bearing as possible.

In the case of bearing housings having different or asymmetric voids the grease supply must always be in a direction from the smaller cavity towards the larger one.

Contamination of the grease channels due to dust, for example, may be avoid easily by fitting grease nipples.

Oil Lubrication

The design requirement for bearing arrangements with oil lubrication is considerably higher than for grease lubrication.

For the lubrication of rolling bearings mineral oils, with or without additives are generally used, synthetic oils are normally used for special applications.

The determination of the required oil viscosity for lubrication of a rolling bearing should be completed following the guidelines shown in chapter "Selection of Bearing Type and Size", page 270.

In practice the selection of oil viscosity is often determined by other influences such as in the case of rolling bearings used in gearboxes.

Lubricating Methods

Depending on the individual application requirements the following methods of oil lubrication may be used:

Oil Bath Lubrication

This is the simplest form of oil lubrication. This method is usually used where the oil is also used for lubricating other machine components. With oil bath lubrication no additional equipment such as pumps etc. are required.

Typical applications are gear boxes, where the oil is primarily used for the lubrication of gear wheels.

In the case of oil bath lubrication the bearing usually stands directly in the lubricating oil, (fig. 9.6).

When the bearing rotates, oil is carried by both the cage and the rolling elements and is distributed by centrifugal force to all areas of the bearing to be lubricated.

On the other hand the constant displacement of oil, by the bearing, causes additional friction and thus generates heat.

This is why the maximum oil level(s) should not, where the speed exceeds 40% of the listed speed rating for oil lubrication, be higher than approximately half the diameter of the lowest rolling element (see fig. 9.6).

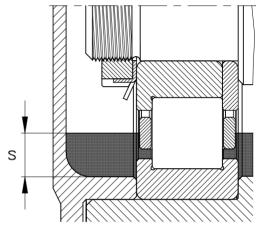


Fig. 9.6

Circulating Oil Lubrication

With this method the oil required for lubricating the bearings is collected in a sump. From this sump the oil is fed by pipes and pumps to the various bearing positions.

This method is very effective when heat dissipation is necessary. Both the oil and oil sump volumes must be adjusted to the requirements of heat dissipation

If necessary, additional oil coolers may be intearated in the oil circuit.

In every case the size of oil sump should be large enough to allow the wear particles in the lubricating oil to settle.

Before the oil recirculates in the lubrication system, it should be filtered to prevent the entry of any contaminations into the bearings.

Asymmetrical bearings, (i.e. angular contact ball bearings and taper roller bearings), generate a certain pumping action due to their internal design.

This effect may also be used to support the oil circulation in the lubricating system.

In the case of circulating oil lubrication the drain holes and the oil return pipes must be dimensioned to prevent the build-up of some back pressure.

Splash Oil Lubrication

With this method the oil splash or spray, from the rotating gear wheels immersed in the oil, is used for bearing lubrication.

Some simple gearbox applications use splash rings, which rotate loosely on the shaft, creating an oil distribution to the bearings within the gearbox casing. Where necessary, auxiliary features (i.e. oil grooves, ducts and voids) should be provided to ensure satisfactory oil volumes.

The effective lubrication of bearings must be guaranteed for all operating conditions.

Oil Injection Lubrication

This lubricating method is suitable for bearings running at high speeds, (e.g. spindle bearings).

The oil injection method provides an oil jet, via a nozzle, directly into the gaps between the outer, cage and inner ring shoulders.

The pressure of the oil jet, however, must be strong enough to penetrate the air turbulence caused by the fast rotating bearing.

This is achieved if the injection velocity is greater than 15 m/s. The nozzle bore diameter should be larger than 1 mm.

In the case of larger rolling bearings additional nozzles may be located around the bearing circumference

Due to the relatively large oil volumes circulating all oil holes and feed pipes have to be sized correctly.

Due to the very precise lubrication system and large oil volumes circulating, this method normally attains excellent operating perform and outstanding temperature cooling and control.

Oil Mist Lubrication

This method is also suitable for bearings operating at high and very high speeds, but a compressed air system is required.

With oil mist lubrication the lubricating oil is vaporised into minute drops by an atomiser. Then the air-oil mixture is fed to the bearing position where a continuous flow lubricates and cools the bearing.

Oil Quantities, Oil Ageing

There are no valid rules or conclusive equations for the determination of the optimum oil volumes to be used in a specific application or machine.

This is due to variable influences of a number of different parameters. The optimum is only found through specific field tests and reliable practical experiences, particularly for totally new design projects where experience gained with other "similar" applications or machines etc., could be used as a base for test runs and field trials to determine optimum oil volumes.

Additionally, major changes or modifications, even small changes to the internal design may influence the oil flow and thus heat dissipation, required oil volumes, oil service life etc., it is advised practical test runs are completed.

Handling, Mounting and Dismounting Rolling Bearings

General

NKE rolling bearings are high precision machine elements that are produced in modern plants using the latest high technology equipment, machining to close tolerances of some few microns (e.g. 1 micron = $1\mu m = 0.001 \text{ mm}$).

Extensive quality assurance procedures and systems throughout the whole manufacturing process combined with continuous inspection of product quality ensuring even the most exacting demands in operating reliability, running accuracy and bearing service life are met.

But, to guarantee the optimum function of a bearing arrangement, special care and attention must be given to simple basic rules concerning storage, handling and bearing mounting.

Bearing Storage

All NKE rolling bearings supplied are protected by a high quality preservation oil and are optimum packed either single boxed, bulk or cassette packed or to customer requirements.

The **anticorrosion agent** applied at the factory enables an effective function of the products even following long storage providing correct storage in their original undamaged packaging is maintained.

In principle bearings should always be stored in their **original packaging**. They should only be unpacked prior to their fitting.

The **storage** of bearings should be in a clean environment at normal room temperature, such temperatures being 15°C - 25°C (59°F - 77°F).

The relative air humidity must not exceed 60%. Under no circumstances should rolling bearings be stored in immediate proximity to water, humidity or any other aggressive chemical matters.

Also the storage of bearings or associated parts close to any metal removing or dust producing machines must be avoided.

Bearings also should not be exposed to any long lasting vibrations or shocks during handling or

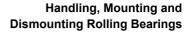
storage, because in this way the bearings may be mechanically damaged permanently.

Bearings in a packed condition must not be exposed to strong temperature variations or direct sun light because of the danger of water condensation (i.e. humidity) in the packaging.

In principle all bearings, most particularly the larger ones must be stored **flat** (i.e. axially).

This is necessary because the individual weight of the larger bearings may deform the bearing rings if they are stored vertically (i.e. radially) additionally, storage of bearings directly on the on the ground or a floor must also be avoided.

Gross mishandling must be avoided at all times, particularly, shocks caused by insecure stacking and carelessness during stock utilisation and rotation. If for any reason the original packaging is damaged the product inside must be closely examined for its condition.


Shelf Life

Some bearing types, especially those having shields or seals on both sides, which are supplied grease filled (suffixes -2RS, -2RSR, -2Z, -2LFS...) a change in grease consistence must be considered during a long-term storage.

Over long storage periods the grease becomes stiffer and some grease have a tendency to secret small amounts of their base oil. In this way the shelf life of such bearings is reduced. The duration of shelf life differs according to the grease used and the individual storage conditions.

In the case of stiffened grease a somewhat higher temperature and running noise is to be expected during the starting phase of the bearing.

Only careful consideration of all the relevant stated points is the bearing available for mounting in good condition on demand.

Presuppositions for Mounting

The correct mounting of a bearing is one of the most important basic requirements to ensure the bearing arrangement will work correctly.

Any bearing damage during mounting may have fatal consequences and cause accumulative losses. In such a case the value of the bearing is negligible when compared to the potential total consequential damage.

Cleanliness

When dealing with rolling bearings, maximum cleanliness is a paramount basic requirement.

The rolling bearing running surfaces of rings and rolling elements usually have a surface finish roughness of some tenths of microns (1/10 μ m = 0,0001 mm). Such very smooth surfaces, however, are very sensitive to damage.

Rolling bearings are able to transmit large forces via very close contact areas (fig. 10.1). In between the rolling elements (1) and the rings (3) a lubricant film (2) builds up which separates the metallic bearing parts.

Due to the applied loads, extremely high lubricant pressure develops which causes some elastic deformation in the hardened steel bearing surface.

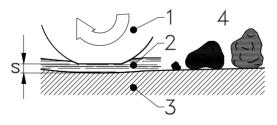


Fig. 10.1

The **thickness** (s) of such a lubricating film which builds up in the bearing depends on the operating conditions but usually amounts only to some tenth of microns ($1/10 \ \mu m$), up to a thickness of about 1 micron ($1 \ \mu m$).

Normal environment dust that surrounds us has a grain size (4) that is not visible without enlargement. The grain size of such dust particles is up to **10 \mu m**. Thus, even fine dust particles are larger than the thickness of lubricating film.

Other contaminates, such as sand or metal chips, have even larger particle sizes.

All such particles easily stick to greased or oiled surfaces, (e.g. bearing rings being prepared for mounting). In this way such impurities may enter the bearings.

When the bearing rotates these particles are over rolled and can damage the raceway surfaces seriously.

Where particles have a grain size greater than the lubricating film thickness, localised stresses will occur, causing material fatigue. This may dramatically reduce the bearing service life.

In extreme cases the bearing may be seriously damaged, even before mounting, caused by the penetration of major contaminates.

In the optimum case bearings should be fitted by experienced and qualified personnel, using the correct tools and auxiliary equipment, in a workshop which is a clean and dry environment.

The assembly area must not be located near to any metal removing or dust generating machines or plants, such as grinding, milling, drilling or wood working machines etc.

If the ideal workshop conditions are neither possible nor practical, as in the case of field installations or repair, then the mounting and assembly area must be suitably prepared.

Handling, Mounting and Dismounting Rolling Bearings

Preparations

Prior to mounting, careful preparation is necessary.

In principle it must be distinguished between the conditions of volume mounting and the needs of repairing or maintenance works.

During volume mounting (i.e. production assembly) the conditions and environment are normally well prepared and organised. With the correct tools and auxiliary equipment provided.

In the case of repairs and maintenance the circumstances are different as each case is individual.

Furthermore, when volume mounting new parts and components are used whilst in case of repairs some used or worn parts have to be recycled. Unfavourable working conditions may apply with maintenance work, sometimes in dirty and dangerous locations that have access difficulties. Therefore, particularly in the latter cases, preparation and meticulous planning is paramount for easy work completion.

Thus the following recommendations are for guidance only and must be adjusted to every individual application or circumstance.

- Before bearing mounting commences one should be familiar with the relevant details of each application. Careful study of all available documentation such as drawings, maintenance manuals, notices, including the clarification of lubricant requirements for the specific machine.
- All components of the bearing arrangement, such as shafts, distance rings, spacers, housing components, cups, flanges etc. must be cleaned very carefully. The whole assembly and all adjacent areas must also be clean, dry and free from foreign bodies and contaminates. Also all lubricating facilities (i.e. grease holes, oil pipes, grooves etc.) must be careful cleaned and clear.

- In the case of repairs any exposed machine components and housing cavities should be covered to protect them from pollution. Optimum suitable for this is to cover or to wrap the parts with plastic film or clean, fibre-free cloths. Also in the event of longer breakdowns or discontinuation of the mounting or dismounting sequences the machine parts should be totally covered.
- To clean adjacent parts a cleaning paper or suitable fibre-free cloth should be used.
 Never use waste cotton or cleaning wool.
- Bearing seats on shafts and housings, seals and the contacting surfaces of seals including all adjacent machine parts and components should be carefully checked for their condition, especially when dealing with repairs.
- Special attention must be paid to worn bearing seats or seals, burrs, scratches or any other damage to the machine components.
- In the case of maintenance or repair work a thorough inspection of dimensional and geometric accuracy of bearing seats or the adjacent parts may be necessary.
- An additional check of the adjustment of bearing positions may also be necessary in the case of field installations of large machines or plant. In this way undesired stresses and misalignments of the bearings can be avoided. During repairs any contacting seals such as radial oil seals or V-ring seals should in principle be exchanged.
- To avoid fretting corrosion the adjacent parts especially the bearing seats may be lightly oiled or be sprayed with a suitable matter. This applies particularly to loose fits.
- The bearing should only be unpacked prior to mounting to protect it from contamination.

Selection of Mounting Method

Rolling bearings are generally mounted to their adjacent parts by means of either sliding or interference fits.

The decision whether a bearing should be mounted either in warm or cold conditions depends mainly on the bearing type, its size and the individual fits that are used for each application.

In the event of volume mounting, some economic considerations should be undertaken. This is why there are no valid general rules to be applied.

In the majority of applications the bearing inner ring is located by a more tight fit than the outer ring. For this reason, rolling bearing **outer rings** are usually pressed into the housing bore in a cold condition. Generally, the mounting of outer rings is by means of either mechanical or hydraulic press.

In the case of very tight interference fits for housings mounting may be made easier, as far as it is practical, by heating up the housing.

To mount bearing **inner rings** onto their shaft seats there are many more possibilities:

Small bearings are normally mounted on their seats in a **cold condition**, this also includes medium-sized bearings with sliding fits or even transition fits.

A **warm mounting** is preferred in the case of large bearings, particularly if the bearings have to be mounted with heavy interference fits.

Larger and very large size rolling bearings are frequently mounted and dismounted with the help of hydraulic devices. Typical are adapter or withdrawal sleeves, frequently used featuring oil ducts. Hydraulic nuts are tools for mounting and dismounting larger rolling bearings.

Large-sized NKE bearings are rolling bearings having bore diameters above 250 mm.

Note:

The following basic rules are of extreme importance and must be obeyed when mounting bearings (fig. 10.2):

1) Never apply mounting forces via the bearing rolling elements!

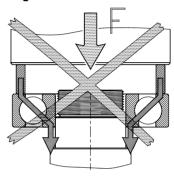


Fig. 10.2

It can easily lead to localised overloading in the contact area between the rolling elements and raceways; this overload damage is not visible and will cause premature bearing failures.

Never hit the bearing a surface directly with any hardened tools such as hammers, cotter pin drives etc.

This can cause a breakage or fragmenting of parts of the hardened bearing rings.

For correct fitting recoil free hammers should be preferably used.

Hammers with lead or plastic heads that may split, however, are not appreciated due to the risk of particles coming off and getting into the bearing.

Mounting of Bearings in Cold Condition

Small and medium sized bearings are usually mounted in a cold condition as they do not normally have tight fits.

The bearings are mounted using either presses or by hammer strikes.

In principle the bearing that has the tighter fit must always be mounted first.

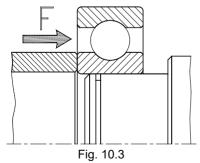
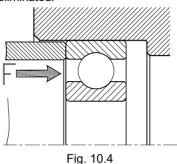
Impact sleeves and impact bushes

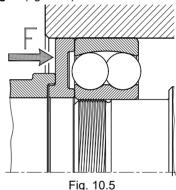
For mounting small and medium-sized bearings **impact sleeves** and **impact bushes** have been proven to be satisfactory tools. These are sets of discs and rings made from a special impact-proof plastic and lengths of aluminium tubes that fit to them.

These tool sets used fit the standardised bearing ring sections.

Impact bushes provide a quick and simple method of mounting small bearings, even when volume mounting bearings.

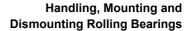
In repair shops complete sets of **impact bushes** have proven to be optimum universal devices when frequently dealing with different bearing types and sizes, particularly in electric motor rewinding shops.


Fig. 10.3 shows the press mounting of a radial deep groove ball bearing on a **tight shaft fit** using an appropriate **impact sleeve**.

The use of an effective **impact sleeve** enables the transfer of the mounting force via the bearings inner ring only.

This ensures damage of the bearing or the shaft is reliably eliminated.


Press mounting of the same bearing into a **tight housing fit** (fig. 10.4).

If non-separable bearings are to be mounted simultaneously on to the shaft and into the housing seat, both bearing rings have to be supported by a satisfactory **mounting washer** (fig. 10.5).

Note:

In the case of some bearing types, certain parts such as rolling elements or cages may protrude beyond the bearing side faces. This must be carefully checked when selecting such a mounting washer.

Press Mounting of Bearings

The mounting of small and medium sized rolling bearings may be completed quickly and simply by using either mechanical or hydraulic presses.

For such cases the bearing seats of shaft and housing should be prepared by lightly oiling.

Also when applying this method the general rules that the introduction of forces via the rolling elements must be avoided. For these reason satisfactory auxiliary sleeves, washers or mounting bushes have to be used.

When using presses misalignment of parts particularly must be avoided (fig. 10.6).

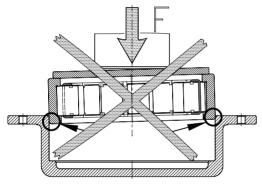


Fig. 10.6

In the case of applying mounting forces to misaligned bearing rings, localised damage to the housing seat may occur at the marked areas.

Such damage may appear as ridges and result in sheared material contaminating the bearings and causing serious damage.

Because misalignment is possible even in the case of loose bearing fits, the bearings have to be centred and aligned very carefully, for reference (fig. 10.7).

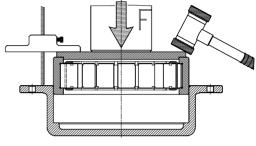


Fig. 10.7

When hydraulic presses are used, the setting of a certain pressure relief has to be recommended to avoid choking caused by defects on the bearing or in the housing.

As any additional and unnecessary dismounting and removal of the bearing from its position is time consuming, uneconomical and interrupts the mounting process, good mounting practise is paramount.

Simplification of Bearing Mounting by Constructive Measures

The mounting of bearings may be completed effectively and efficiently using good design practise.

Such measures are justified in the case of applications that only require minor maintenance.

Examples of such aids are screw threads on shafts and housings, which may also be used for mounting purposes.

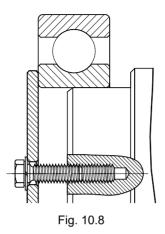
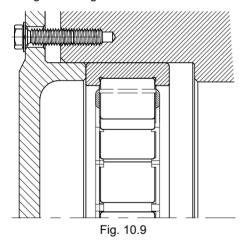



Figure 10.8 shows how pilot holes or even other tapped holes may be used to support the mounting of bearings onto shaft seats.

Also necks and fastening threads of cups and housings must be used additionally to assist the mounting of bearing outer rings, (fig. 10.9).

Insertion of Shafts in the Case of Separable Bearings

When mounting separable bearing types, such as needle roller bearings, tapered roller bearings or cylindrical roller bearings, their outer and inner rings may be fitted separately.

This is a considerable advantage with volume assembly mountings. So, for example, when mounting gearboxes or electric motors, the bearing inner rings may be pressed onto the shafts or the armature, respectively, whilst the associated outer rings may be mounted in their housings later.

Although during the final assembly of the whole unit special care must be taken when the preassembled shaft is inserted into the housing to avoid any possible misalignments of the respective parts (fig. 10.10).

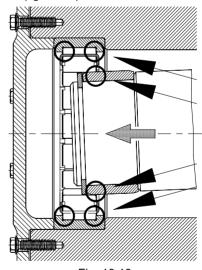
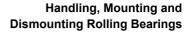



Fig. 10.10

A misaligned mounting as shown in fig. 10.10 will inevitably cause scratches, indentations and plastic deformations to the bearing raceways or their flanges; such damage is not normally visible and will result in material fatigue in the affected areas and premature bearing failure.

This damage risk can be easily avoided at mounting by rotating the shaft with care, during assembly, as shown in fig. 10.11.

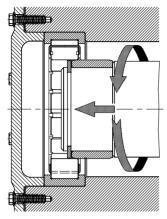
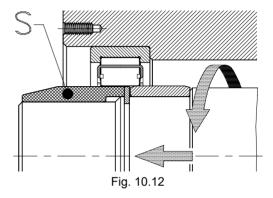


Fig. 10.11

Roller Drop in Cylindrical Roller Bearings

When mounting separable cylindrical roller bearings, fitted with cages, special attention must be paid to the looseness of the rollers. This specific behaviour is unique and is caused by the internal design of the bearing cages.


All cylindrical rollers retained by a cage require a certain clearance, the so-called "pocket clearance". The pocket allows the roller to drop and hang when it is not guided by the ring. Depending on the specific cage type this pocket clearance may be large or small.

When the associated inner or outer ring is in its final position the pocket clearance is negated. But when a bearing inner ring is removed or the bearing outer ring with roller set is fitted into the housing seat separately, the upper rollers will drop and hang.

That is why special care must to be taken when assembling the shaft in this way.

The hitting of roller end faces by the shaft must be avoided at all times

A cheap, simple and very effective solution of this potential problem is provided by the use of **mounting sleeves**, as shown in fig. 10.12:

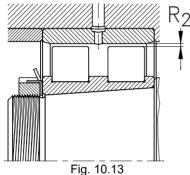
Mounting sleeves (S) are simple-shaped hollow tubes made from various materials (e.g. plastic, nylon and card board etc.).

The sleeve has to be designed in such a way that it is able to guide and centre the shaft during assembly and to lift the loose rollers.

Mounting of Bearings Having Filling Slots

There are several bearing types which have a filling slot in one of their faces to accept the maximum amount of balls.

Examples for such types are the so-called "Max-Type" deep groove ball bearings, and some double row angular contact ball bearings fitted with cages.

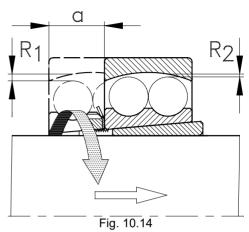

In the case of these bearing types it must be noted that the direction of the major thrust load must be opposite to the side that has the filling slot.

Mounting of Bearings with Tapered Bore

Several different bearing types are frequently used with tapered bores mainly self aligning ball bearings and spherical roller bearings. These bearings are mounted usually by means of adapter or withdrawal sleeves directly onto fine turned shaft seats, bright drawn bars or simple round stock.

In the case of high precision cylindrical roller bearings of the series **NN 30**, that are mounted directly onto tapered journals, the tapered shaft is also used for very accurate adjustment of the bearing operating clearance, \mathbf{R}_2 , (fig. 10.13).

When mounting bearings that have tapered bores on a tapered journal, considerable expansion of inner ring can occur (fig. 10.14).


Such an expansion can reduce the initial normal bearing clearance.

If this effect is overlooked, undesired radial preloading of the bearing may result. For this reason bearings with tapered bores have, in principle, a larger initial clearance compared to bearings with the same cylindrical bore, even for the same clearance group.

Example:

Self aligning ball bearing **1210**, "normal" clearance group:

for **cylindrical** bore: 14 to 31 μ m for **tapered** bore: 22 to 39 μ m

where:

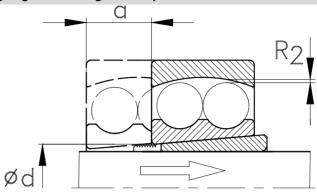
R₁ = initial radial clearance before mounting

R₂ = remaining radial clearance after mounting

a = axial displacement

The magnitude of inner ring expansion depends upon the bearing size, the axial displacement during mounting (a) and the angle of the taper.

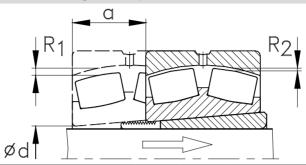
The standard taper, indicated by suffix "K" amounts to **1:12**, which means an inclination of 1 mm of each 12 mm gauge length.


Several bearing types with less sectional height have less taper inclination, **1:30**. These tapers are identified by the suffix "K30".

To avoid any potential undesired preloading to the bearing, the remaining bearing play (\mathbf{R}_2) after mounting must be checked.

Because of the fact that there exists a simple relationship between the taper angle, the axial displacement and the resulting clearance reduction please see the recommendations for values of remaining bearing clearance (\mathbf{R}_2) listed on Table 10.1 for self aligning ball bearings and Table 10.2 for spherical roller bearings.

Mounting of Self Aligning Ball Bearings with Tapered Bore



Bore Ø d [mm]	А	xial displace for bearing		1]	learance R ₂ [mm] nce group	
u [iiiiii]	12K	22K	13K	CN (normal)	C3	
20	0,22	-	0,23	-	0,010	0,020
25	0,22	0,22	0,23	0,23	0,010	0,020
30	0,22	0,22	0,23	0,23	0,010	0,020
35	0,30	0,30	0,30	0,30	0,010	0,020
40	0,30	0,30	0,30	0,30	0,010	0,020
45	0,31	0,31	0,34	0,33	0,015	0,025
50	0,31	0,31	0,34	0,33	0,015	0,025
55	0,40	0,39	0,41	0,40	0,015	0,030
60	0,40	0,39	0,41	0,40	0,015	0,030
65	0,40	0,39	0,41	0,40	0,015	0,030
75	0,45	0,43	0,47	0,46 0,020		0,040
80	0,45	0,43	0,47	0,46	0,020	0,040
85	0,58	0,54	0,60	0,59	0,020	0,040
90	0,58	0,54	0,60	0,59	0,020	0,040
95	0,58	0,54	0,60	0,59	0,020	0,040
100	0,58	0,54	0,60	0,59	0,020	0,040
105	0,67	0,66	-	-	0,025	0,055
110	0,67	0,66	0,70	0,69	0,025	0,055
120	0,67	-	-	-	0,025	0,055

Table 10.1

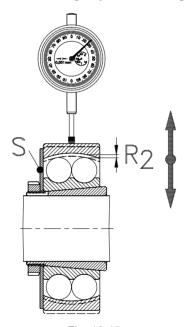
Mounting of Spherical Roller Bearings with Tapered Bore

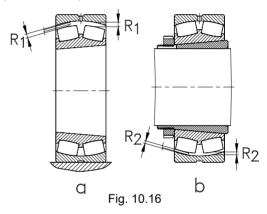
Bore di	ameter	Clearance	reduction	Axial displacement a [mm]			Minimum mounted clearance R ₂			
d [n	nm]	[mm] ∆R	$(R_1 - R_2)$	for tap	er 1:12	for tap	er 1:30	for bearing	s of clearai	nce group
>	≤	min	max	min	max	min	max	CN (Normal)	C3	C4
24	30	0,015	0,020	0,3	0,35	-	-	0,015	0,020	0,035
30	40	0,020	0,025	0,35	0,40	-	-	0,015	0,025	0,040
40	50	0,025	0,030	0,4	0,45	-	-	0,020	0,030	0,050
50	65	0,030	0,040	0,45	0,6	-	-	0,025	0,035	0,055
65	80	0,040	0,050	0,6	0,75	-	-	0,025	0,040	0,070
80	100	0,045	0,060	0,7	0,90	1,7	2,2	0,035	0,050	0,080
100	120	0,050	0,070	0,75	1,1	1,9	2,7	0,050	0,065	0,100
120	140	0,065	0,090	1,1	1,4	2,7	3,5	0,055	0,080	0,110
140	160	0,075	0,100	1,2	1,6	3,0	4,0	0,055	0,090	0,130
160	180	0,080	0,110	1,3	1,7	3,2	4,2	0,060	0,100	0,150
180	200	0,090	0,130	1,4	2,0	3,5	5,0	0,070	0,100	0,160
200	225	0,100	0,140	1,6	2,2	4,0	5,5	0,080	0,120	0,180
225	250	0,110	0,150	1,7	2,4	4,2	6,0	0,090	0,130	0,200
250	280	0,120	0,170	1,9	2,7	4,7	6,7	0,100	0,140	0,220
280	315	0,130	0,190	2,0	3,0	5,0	7,5	0,110	0,150	0,240
315	355	0,150	0,210	2,4	3,3	6,0	8,2	0,120	0,170	0,260
355	400	0,170	0,230	2,6	3,6	6,5	9,0	0,130	0,190	0,290
400	450	0,200	0,260	3,1	4,0	7,7	10,0	0,130	0,200	0,310
450	500	0,210	0,280	3,3	4,4	8,2	11,0	0,160	0,230	0,350
500	560	0,240	0,320	3,7	5,0	9,2	12,5	0,170	0,250	0,360
560	630	0,260	0,350	4,0	5,4	10,0	13,5	0,200	0,290	0,410
630	710	0,300	0,400	4,6	6,2	11,5	15,5	0,210	0,310	0,450
710	800	0,340	0,450	5,3	7,0	13,3	17,5	0,230	0,350	0,510
800	900	0,370	0,500	5,7	7,8	14,3	19,5	0,270	0,390	0,570
900	1000	0,410	0,550	6,3	8,5	15,8	21,0	0,300	0,430	0,640
1000	1120	0,450	0,600	6,8	9,0	17,0	23,0	0,320	0,480	0,700
1120	1250	0,490	0,650	7,4	9,8	18,5	25,0	0,340	0,540	0,770

Table 10.2

In every case it is extremely important that after locking the shaft nut which secures the bearing, the **final bearing clearance** (R₂) must be rechecked to confirm the correct value.

Depending on the relevant mounting situation and the individual features of the specific application such inspection is completed either in a **direct** or **indirect** way. The indirect method is possible by a measurement of the **axial displacement**. A **direct** method of the final bearing clearance is completed using **dial gauges**, (fig. 10.15) or, for larger spherical roller bearings, by use of **feeler gauges**.




Fig. 10.15

When using dial gauges they must be adjusted to the outer ring of the mounted bearing (see fig. 10.15).

In the case of self aligning bearings, (i.e. self aligning ball bearings and spherical roller bearings), the use of **auxiliary supporting washers** (S) is recommended to prevent the outer ring skew (fig. 10.15).

To measure the **final bearing clearance** (R_2) the outer ring of the mounted bearing must be moved to the extremes of its position in a radial direction. For larger bearings, (e.g. large spherical roller bearings), such a procedure is normally impossible.

In these cases, however, a cross check of the remaining clearance is completed using **feeler gauges** with consideration to the recommended minimum values for the final bearing clearance (\mathbf{R}_2 , table 10.2).

For such a measurement the **initial clearance** (R₁) of the unmounted bearing must first be determined.

This may be done according to the specific circumstances either by using **dial gauges** or, for larger bearings using feeler gauges which are for practical purposes sufficiently accurate.

For this, place the bearing upright on a flat, clean base and rotate its inner ring by hand several times to provide an optimum contact of the rolling elements on the raceways.

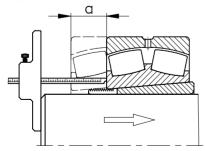
When the bearing stands upright on its base, the **actual clearance** R_1 (i.e. gap) between the outer ring raceway and the uppermost rolling element on a fixed axial centreline is easily measured using feeler gauges of various thickness (fig. 10.16a).

Handling, Mounting and Dismounting Rolling Bearings

The thickest feeler gauge that can be inserted indicates the actual amount of initial bearing clearance

The remaining bearing clearance should be frequently checked during the mounting.

Because of the fact the bearing already sits on its shaft at this stage of mounting, the actual bearing clearance is determined by measuring the final gap between the roller and the outer raceway on a fixed radial centreline (fig. 10.16b).

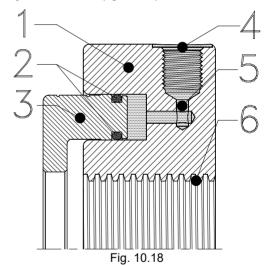

The minimum values of **final bearing clearance** (**R**₂) stated in table 10.2 are based on clearance values that lie on their lower limits.

The minimum values listed in table 10.2 must not be undercut.

In many cases a reliable measurement of the remaining bearing clearance using the above procedure may cause some difficulties.

Furthermore, under certain conditions of mounting this procedure may be time-consuming and impractical.

In such cases the remaining final bearing clearance (\mathbf{R}_2) may be determined using the indirect method (i.e. axial displacement measurement "a").


The actual distance of displacement "a" is measured using effective measuring instruments such as dial gauges, depth gauges or even simple calliper rulers. This may depend on the particular application.

In this way volume production mounting may be organised in a very efficient and economic way by using the recommendations in tables 10.1 and 10.2. It must also be considered, however, that these values apply to solid steel shafts only. The mounted bearing has to allow for easy rotation and skewing of the outer ring in all cases.

Mounting Bearings by Using Oil Injection Method

Larger and very large rolling bearings may be mounted in a much simpler way by using oil to force the bearing either on or off its seat.

To fit bearings by the oil injection method, called "hydraulic nuts", (fig. 10.18), are used.

They consist of a solid body piece (1) that features appropriate threads (6). The body piece has a circular groove in one face that accepts an annular piston ring (3).

Via the connecting threads (4) and oil ducts (5) oil is injected into the groove at a high pressure forcing the piston outwards. Two O-rings, (2) sitting in circumferential grooves on the piston effect the sealing of the oil groove against the abutting surfaces.

When mounting bearings, in conjunction with adapter and withdrawal sleeves or taper seatings, the hydraulic nut must be fully screwed and secured to the appropriate abutment face. It is important the annular piston is located correctly and secure prior to assembling the hydraulic nut.

To provide easier screw rotation, hydraulic nuts normally have 2 or 4 blind holes equally spaced in their outside face and for the larger sizes 4 to 8 blind holes around the outside circumference. These features allow the use of mechanical equipment (i.e. tools, drifts, levers, hook or impact spanners.) for securing the nuts.

The piston stroke for most hydraulic nuts is designed in such a way that the correct mounting of a bearing is completed in a single stage. To mark the maximum permissible piston stroke most hydraulic nuts have two narrow circumferential grooves formed into the piston outer diameter.

When charging the hydraulic nut with oil the piston is displaced axially and creates a considerable thrust force which presses the bearing either onto or off its seat position. Please bear in mind the clearance reduction caused by that axial displacement and check the residual clearance after each mounting.

When the bearing is located on its seat correctly the return valve on the oil pump should be opened. The pressure inside the hydraulic nut will then drop immediately.

Following mounting and rechecking the bearings final clearance the hydraulic nut must be replaced by a "normal" lock nut

Note:

When mounting or dismounting bearings using the oil injection method huge pressures are applied, please read the operating instructions carefully and consider the recommendations and safety instructions provided by the supplier of the hydraulic equipment.

Mounting of Bearings by Heating

In cases where mounting of bearings in the cold condition is not possible or where the oil injection method is not practical heating of the bearing or even individual bearing rings may be of advantage.

This method is widely used for ease of mounting the bearings or even other machine components on interference fits, particularly on tight shaft seats (i.e. heavy interference).

When heated the bearing rings expand, due to the thermal coefficients, and thus the diameters increase, which enables easier bearing mounting.

Immediately after the ring sits on its comparatively cold shaft seat it will shrink to its correct diameter by cooling down to the ambient temperature.

The following recommended methods and procedures for mounting rolling bearings are also satisfactory for other machine parts, such as cog wheels, bushes or disks which may also be mounted on interference fits.

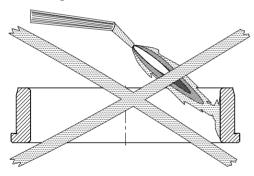
Required Heating

The amount of heat required for a certain application depends on the actual ring sizes and shaft fit. Usually the heating of bearing rings to temperatures between 90°C to 110°C (197°F to 230°F) is sufficient for a totally problem-free mounting.

Note:

When heating rolling bearings there are some basic rules to be strictly adhered to:

a) Never heat standard rolling bearings above 120°C (248°F). Higher temperatures may cause some structural changes in the ring material causing undesired dimensional and geometrical changes with no advantages for mounting the bearing.

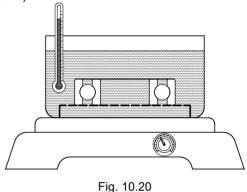


- b) Sealed or shielded bearings (e.g. bearings with suffix RS, -2RS, -2Z, -2LS, LFS,-2LFS...) should never be heated by using the oil bath method.
- c) When heating bearings always ensure there is effective temperature controls to protect the bearing rings from excessive heat.

It is particularly important when mounting bearings that optimum planning and preparation of the work area is undertaken as prolonged handling and badly located mounting equipment and tools can result in premature cooling this obviously negates the object of mounting using the heat method.

Important:

Never heat rolling bearings or even separate bearing rings directly by means of open flames, blow and welding torches or soldering irons


Fia. 10.19

Even with extra special care it is not possible to control the bearing or ring temperature uniformly and consequently localised overheating can never be excluded (fig. 10.19).

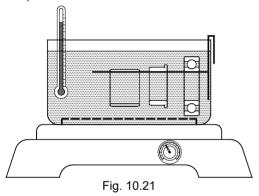
Approved Heating Methods

Heating in Oil Baths

The bearings are placed in an **oil bath** and heated to the required mounting temperature, (fig. 10.20).

This provides a very uniform method heating of the parts to be mounted and allows the parts to be held at specific controlled temperatures, to equalise, by means of a thermostat.

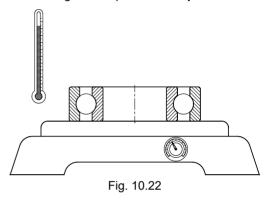
When applying the oil bath heating method some points should be carefully considered:


- Long life thin machine oils should be used.
- Only use machine oils that feature flash points above 250°C (482°F).
- The facility to effectively control oil temperature is paramount.
- If the oil bath is not in use for long periods, the oil tank must be covered to prevent oil contamination and pollution.

All oil undergoes an accelerated ageing due to frequent heating.

This results in the build up of oxidation particles that bind together with the dust that has entered the oil. This sediment sinks onto the oil tank bottom.

To avoid the possible entry of such particles, into the parts to be heated, tank filters should be used (fig. 10.20), or the bearings or rings should be suspended on screens or with simple hooks (fig. 10.21).


Hot Plates and Boxes

Especially when mounting a large number of bearings or when frequently mounting numbers of bearings of different sizes **hot plates** or **heating boxes** may be satisfactory devices. In either case temperature control is very necessary.

Depending on their dimensions, **heating boxes** may also be used to heat up small housings or other different machine components.

Hot Plates

Small and medium sized bearings are frequently heated using electric powered **hot plates**.

These hot plates also require temperature control measurements, or at least the actual temperature of the heated part must be carefully checked.

Optimum devices for production mounting of bearings are special heating plates that feature temperature selection and automatic thermostatic controls

Generally, they incorporate a cover to protect the bearings from cooling down to quickly.

Thermo Rings

Another auxiliary device for the mounting of separate needle roller or cylindrical roller bearing inner rings is represented by the so-called **thermo rings**.

Handling, Mounting and **Dismounting Rolling Bearings**

Thermo rings are simple slotted rings made from solid aluminium with thermal insulated handles (fig. 10.23).

The bore diameter of the thermo rings is adjusted to the raceway diameter of the ring type which is to be heated.

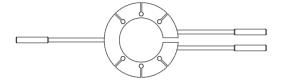


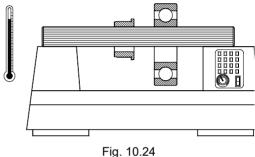
Fig. 10.23

Normally these rings are designed for dismounting bearing rings, although they can be very helpful for removing press-fitted or jammed rings.

When applying the thermo ring method, the raceway of the ring to be fitted has to be lightly oiled with thin machine oil

The heated thermo ring must surround the bearing ring and is clamped by the handles.

The bearing ring expands due to the transfer of heat and, therefore, enables simple mounting, even with tight or interference fits.


The bearing ring must be tightly held on the contact surface until it has totally cooled down.

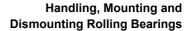
This cooling will occur very guickly because of the comparatively cold shaft. The thermo ring, however, should only be removed when the bearing ring sits on its shaft seat tightly.

The heating temperature of thermo rings or the heat duration has to be specified by practical experience as these parameters are influenced by the individual operational conditions such as ring section, mass of shafts and rings etc.

Induction Heating

Induction heaters (fig 10.24) are the optimum for volume production mounting (e.g. gearboxes, brake discs, electric motors etc.) where tight or interference fits apply. Additionally, they are very efficient and effective particularly when used by maintenance and repair workshop personnel (e.g. motor rewinders).

For this method, the parts to be mounted are heated to the required temperature by using the induction effect


This method is proven to be suitable for all types of rolling bearings providing an economic, quick and uniform heating.

Induction heaters are available in several different designs and performances.

The heater has to fulfil the following minimum requirements:

- automatic demagnetisation after heating
- temperature selection possibility and temperature control
- automatic temperature control

With more modern designs the heating may be optionally controlled either by selecting the temperature or indirectly via the time duration of heating the part.

Depending on the individual manufacturer the basic equipment supplied may vary. For the optimum utilisation of induction heaters it is recommended several yokes with different section be used.

Some types of induction heaters have yokes that allow a skewing sideways. This design feature provides a very simple method of handling the heated parts.

Warning:

All types of induction heater create a very strong magnetic field.

Please read carefully the operating instructions and consider the recommendations and safety instructions provided by the supplier of your induction equipment. Never use inductive acting equipment if you use a pace-maker!

Always wear protective gloves when working with induction heaters.

To mount the heated parts position them carefully and smoothly onto the seat up to and against the abutment face or shoulder, pressing the part firmly against the contacting surface until the part has cooled down to the ambient temperature. This is important to ensure the correct positioning of the bearing.

Mounting of Matched and Adjusted Bearings

Several bearing types, such as tapered roller bearing and angular contact ball bearing, are used in pairs.

These pre-set bearing units, (e.g. tapered roller bearing units or complete spindle bearing sets), are normally precisely matched by the manufacturer to enable a quick and simple mounting thus avoiding the time consuming and skillful adjustment of the required clearance or preload.

When a single bearing or bearings of the universal matched design are used the requisite clearance or preload must be adjusted during mounting according to the individual application and bearing position.

Values for the individual bearing clearance or preload are defined either by design or, in the case of maintenance work the instruction manuals



Fig. 10.25

Fig. 10.25 shows the adjustment of a defined axial clearance of a pair of tapered roller bearings.

In this example the axial clearance is adjusted by the use of a **lock nut**.

Prior to the bearing adjustment it is recommended to rotate the shaft several times by hand to ensure that the tapered rollers sit correctly in the quiding ribs of inner ring.

For a measurement of the actual axial clearance the shaft must be moved axially from one end of the stroke to the other (i.e. extremes).

An alternative method of achieving the necessary bearing assembly adjustment is the use of calibrated master spacers.

These spacers or shims are of predetermined widths which when fitted between the respective bearings determine the correct axial clearance (fig. 10.26).

After the determination of the actual axial clearance the master spacer is removed and replaced by an **appropriate spacer** "R" to become part of the bearing arrangement (fig. 10.26).

In the case of **face-to-face** arranged bearings and loose housing fits the axial play can be adjusted using shims to adjust the clearance, (fig. 10.27).

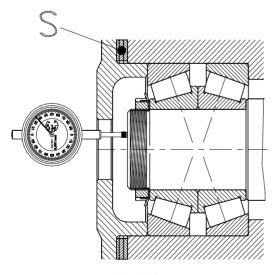


Fig. 10.27

In the initial stage of measurement the width of the required **shims** (**S**) has to be selected greater than required to enable a measurement of axial clearance.

With the resulting clearance value the appropriate shim width for a specific clearance is determined.

For volume **mounting** other adjusting procedures and methods are used, such as adjusting or preload bearings by estimating the angle of rotation of a hook spanner used to tighten the lock nut or tightening of the lock nut by means of a torque wrench.

In several applications, the frictional torque of a bearing unit is used as an indicator of a certain preloading condition.

All the methods commonly used, determine the optimum values empirically, this means by extended trials and field tests.

Mounting of Multi-Row Bearings

Special care and attention must be made when mounting bearing units or multi-row bearings as they can consist of several single components that may be mounted separately (Fig. 10.28).

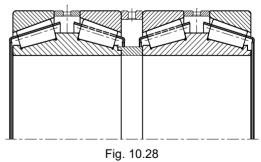
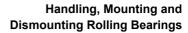



Fig. 10.28 shows a four-row NKE tapered roller bearing for steel rolling mills.

Additional to the general guidelines and recommendations, previously stated, a certain mounting procedure may be necessary for single bearings or in the case of bearing sets and separable bearing components a specific mounting sequence.

For example, the four-row NKE tapered roller bearing shown in fig. 10.28 has rings that have been matched individually. That is why to avoid all possible confusion during mounting under no circumstances should bearings or bearings with separable parts be mixed.

Normally to assist and eliminate the mixing of bearings parts they are etched or marked, particularly in the case of bearing sets and matched tapered roller bearing when each individual separable part is clearly marked.

Greasing of Bearings

In many grease lubricated bearing arrangements their greasing is almost impossible once the bearings are mounted.

That is why the lubricating grease must be applied before inserting the bearings into their housings.

Note:

With frequent contact many people are allergic to mineral oils or greases. Please wear safety clothes and protective gloves always when dealing with lubricants and avoid any excessive skin contact to lubricating oils or greases.

Again, some basic rules must be considered when greasing rolling bearings:

- Only remove the **bearing** from its original package prior to its mounting.
- Grease them as little as possible before mounting to protect the bearings from getting contamination.

- The preservation agent adhering to the bearing may be left if using mineral lubricants as the preservation agent is compatible with all normal mineral lubricating oils and greases.
- When synthetic special lubricants are used the bearings should be washed out thoroughly prior to greasing and mounting.
- To clean the bearings of their preservation, adequate cleaning agents, such as benzine or kerosene should be used.
- Synthetic lubricants are used at very high or extremely low temperature applications, respectively.
- In general the preservation agent which adheres to the bearing bore and outside di-ameter, at least, should be removed prior to mounting. The use of a clean non-fibre cloth or paper is recommended to remove this preservation agent. Never use cotton waste or wool.
- Large rolling bearings are often preserved with a comparatively thick coating of preservation grease, the so-called hot preservation. This grease, however, must be removed in every case.

Note:

The preservation agent itself is not a lubricant and, therefore, it will not perform any lubricating features or behaviours!

- Bearings that are already greased must be carefully protected until they are mounted.
 The use of polythene film or similar material is suggested to protect the bearings from the various contaminates.
- The designated **lubricants** must always be stored in tightly closed containers to avoid any penetration of foreign matters.

Handling, Mounting and Dismounting Rolling Bearings

- The lubricant containers, following the removal of lubricant, must always be immediately closed.
- The lubricant should always be checked for its condition prior to application with particular attention to the presence of any pollution, water or signs of ageing.
- Please be aware the use of old or contaminated lubricants may cause premature bearing failures.

The volume of lubricating grease to be applied depends mainly on the operating speed of the bearing, as already described in the chapter "Lubrication of Rolling Bearings".

For general application in every case the free space within the bearing itself has to be **fully filled** with lubricating grease.

The grease filling volume applied to the housing cavities should be determined using the recommendations given in table 10.3.

Speed	ratio *)	Grease volume **)
>	≤	[%]
-	20	80 ÷ 90
20	75	30 ÷ 50
75		25

Table 10.3

- *) as a percentage of the speed ratings for grease lubrication given in product tables.
- **) as a percentage of the bearing housing cavities.

Under very special operating conditions sheave bearings (e.g. cable car or crane pulleys etc.) which run at very low speeds the housing cavities may be fully grease filled to eliminate the formation of water condensation.

A special care must be taken at all times when dealing with lubricants. As fine particles, (e.g. dust, sand grains, small chips etc.) will adhere to greased or oiled surfaces.

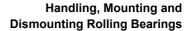
All contamination that is retained by a lubricant will be brought directly into the bearings most sensitive area, its raceways.

Fitting of Seals

On completion of mounting the bearings and their associated components, seals also frequently have to be mounted.

Rubbing seals (i.e. O-rings) or radial oil seals can be difficult to fit due to the relatively high friction between **synthetic rubber (NBR)** on steel.

This is why dry mounting of such seals may lead to some fissures on the seals sensitive sealing lips. This matter is easily overcome by lightly oiling or greasing the sealing surfaces by using machine oil or standard bearing grease prior to fitting.


Many designs of contacting seals, such as the doublelip seals as used in split plummer block housings, require a grease filling of the total free space between their sealing lips to gain optimum sealing performance.

The greasing or oiling of rubbing seals reduces the amount of friction at the initial bearing rotation (i.e. start up).

Commissioning of Bearing Arrangement

Before starting up a bearing arrangement it is recommended to rotate the shaft several times manually, as far as this is possible, to ensure smooth and free running.

If **grease lubrication** is planned, the grease volume to be inserted into the housing cavities is completed after the total bearing arrangement is assembled, but prior to the mounting of enclosure, caps, etc.

In the case of oil lubrication, however, the machine must be fitted completely with all associated machine components and seals prior to applying the lubricating oil according to manufacturer's instructions

In several cases it may be necessary to clean the oil feed pipes using flushing oil.

Appropriate information should be recorded in maintenance manuals or mounting instructions of the specific machine.

Note:

In the case of oil lubrication an adequate oil supply to the bearings must be ensured prior to rotation of the bearings or damages through lack of lubrication at the initial starting-up can occur.

Thus, the oil circulation has to commence prior to rotation of the shafts.

At the **starting-up period** the speed must only be increased slowly up to the projected operating speed.

Every bearing, ideally, requires an initial running-in period.

During this period, the micro roughness of the bearings raceways becomes well distributed.

This **running-in** process can result in a short term increase in running noise, particularly, when dealing with grease lubricated bearing and a somewhat higher operating temperature.

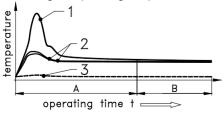


Fig. 10.29

Fig. 10.29 shows a very typical temperature pattern during the run-in period for a grease lubricated bearing arrangement:

where:

- A duration of run-in period
- **B** holding temperature
- 1 temperature course measured on a totally new bearing
- 2 temperature course of regreased bearings that are already run-in
- 3 course of ambient temperature

The duration of run-in period may vary depending on the particular application from few operating hours up to a maximum of 48 hours. Thereafter the operating temperature and the running noise should decrease to a normal level, the so-called **holding temperature**.

As the magnitude of the holding temperature is determined by a number of influencing factors there is no general rule or formula to apply.

Although practical experience gained from the same or similar equipment may be used as a base for the evaluation of the condition of the actual bearing and arrangement.

In every instance the bearing positions must be carefully checked for operating temperature, running noise and running behaviours after the machine or motor is running.

The event of considerably high temperatures or running noise may indicate some misalignment of the bearing, or contaminates in the bearings or lubricant, contacting and affecting adjacent parts.

In the event of any doubts the whole bearing arrangement must be cross checked carefully.

It has been proven that an extensive recheck is always cheaper than any bearing defect.

Handling, Mounting and Dismounting Rolling Bearings

Condition Monitoring

Rolling bearings in many applications are functional critical parts of a machine or plant that may be vital to the process.

These rolling bearings are, generally, extremely reliable although they do not have an indefinite life.

Therefore, for more important applications and arrangements it may be sensible to incorporate at the design stage a bearing condition monitoring feature.

Such monitoring enhances considerably the operational safety of a plant providing the possibility of planned preventive maintenance by recognising potential failure sources in their very early stages.

However, the decision to effectively monitor bearing positions is dependant upon the importance of each individual bearing arrangement and a simple cost analysis.

Bearing monitoring can be applied using very rudimentary methods with some success, such as regular time controlled recording of bearing behaviours and operating temperatures usually actioned by experienced personnel who manually determine and confirm the "normal" running conditions without any sophisticated measuring equipment.

A more reliable method of condition monitoring, however, is provided with permanent supervision of specified parameters, such as operating temperature, or noise vibration levels.

There are also several complex monitoring systems available which provide continual monitoring and online computerized evaluation of the data.

Such equipment and systems are based on the detection of changes in the vibration characteristic of rolling bearings which may indicate a change of their operation conditions, too.

The vast majority of all rolling bearings consist of an outer, an inner ring, a set of rolling elements, and a cage (i.e. retainer or separator). In most applications the inner ring with cage and rolling elements rotate whilst the bearing outer ring is stationary.

In the loaded area of bearing raceways, the so called "**load zone**" shear stresses develop due to the over rolling by the loaded rolling elements.

This continuous change between loaded and unloaded condition in the loaded zone causes a fatigue process to the ring material that leads to the development of micro cracks beneath the ring surface during the course of time.

This again may result in material particles fragmenting off the bearing ring raceways.

This natural mechanism, known as "fatigue-life", has been researched extensively over several years and builds the base for the standardised calculation system of bearing life ratings.

When foreign particles or flaked-off particles of ring material enter the loaded zone of a rotating rolling bearing, some vibrations will occur.

In this way the change in vibration levels of a bearing arrangement may indicate the impending bearing failure.

Dismounting Bearings

The vast majority, about 90 per cent, of all rolling bearings are never removed from their locations, they stay in their machines or plants until the whole machine is scrapped.

This is why the replacement of bearings affects mainly large and larger rolling bearings, and bearings for important machinery where it is part of planned preventative maintenance programmes.

General

The ease of removal of rolling bearings is usually dependent on the dismounting possibilities considered and included in the machine design.

Particularly when dealing with machines or units that are known to require specific maintenance during their service life, including their frequent removal, quite simple and effective design features ease bearing removal significantly.

Such design measures may be pressure screws, dismounting threads and holes, or suitable slots or recesses on housings or shafts.

Preparations for Dismounting

The dismounting of bearings require some basic preparation, similar to when mounting rolling bearings, including careful study of manuals, machine plans and maintenance procedures which give appropriate information.

To ensure the successful replacement of any bearing all machine surfaces surrounding the area to be dismounted must be cleaned to eliminate the entrance of avoidable contamination, including production swarf and waste prior to any dismounting.

Also, all tools and auxiliary equipment to be used must be clean and in a good condition.

It is particularly important that when bearings are frequently dismounted and remounted special care should be taken at all times to avoid damage.

In principle, the dismounting of a bearing position is the opposite way to their mounting. This means bearings with loose fits should be dismounted first (fig. 10.30).

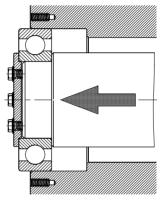


Fig. 10.30

The separable bearing types also present some advantages at removal (see fig. 10.31).

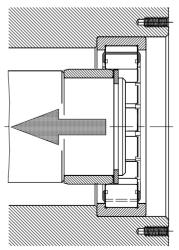


Fig. 10.31

Handling, Mounting and Dismounting Rolling Bearings

Small size rolling bearings may be dismounted easily by mechanical means (fig. 10.32).

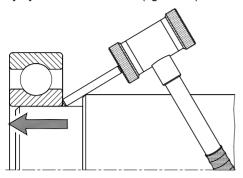
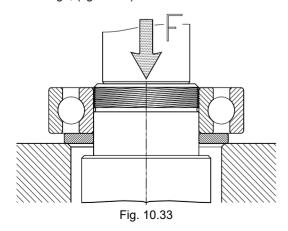



Fig. 10.32

Several special dismounting tools and systems are available to remove bearings additional to the commonly used and proven caw pullers. The claw tools, generally used for medium and large sized rolling bearings, consist of a spindle which acts either mechanically or hydraulically, in conjunction with various different sizes of claw legs and bridges which when assembled into 2 or 3 leg pullers meet the individual application requirements.

In the case of bearings located with interference fits a removal by means of **presses** may be of advantage, (fig. 10.33).

It is restated that when bearings are planned for re-use, and removal is by the "press-method", all transmission forces via the rolling elements must be strictly avoided.

The position of bearings that are mounted on shafts by means of adapter sleeves should be **marked** on the shaft to provide an easy refitting datum.

After marking the position, the fixing tongue of the locking device must to be bent up. The lock nut is loosened but not completely removed.

To dismount the bearing totally, it is driven from the adapter sleeve by hammer blows around its circumference (fig. 10.34).

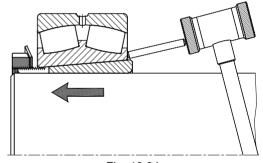
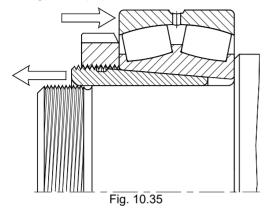


Fig. 10.34

If the bearing is located close to the end of a shaft, the loosening of the bearing may also be completed by applying impact bushings.


It is particularly important that when adapter sleeves are dismounted or mounted special care must be taken at all times to avoid damage.

The bearing can only be removed when it is loose on its seat and the locknut and lock washer is completely removed.

Following the bearing removal the adapter sleeve is easily removed.

In the case of bearings mounted on **withdrawal sleeves** the axial locking of the sleeve must be released first, only then can the removal of the bearing be completed.

The withdrawal sleeve is pulled from its seat using a satisfactory shaft nut, (fig. 10.35).

To minimise the friction between the bearing face and the nut side face the surfaces should be lightly lubricated using oil, bearing grease or a penetrating oil spray.

Dismounting Bearings using the Oil Injection Method

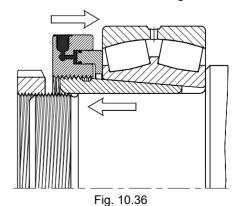
The dismounting of small and medium size rolling bearings is easily completed using simple mechanical tools and equipment.

When dismounting larger bearings, however, the forces required for their removal become large very quickly.

For such applications, the use of **hydraulic dismounting methods** has to be recommended. By applying hydraulic measures even very large and heavy bearings may be dismounted quickly, efficiently and effectively.

Furthermore dismounting bearings using hydraulic tools normally avoids the possibility of damaging either the bearing or adjacent parts, particularly, binding or jamming of heavy components.

Note:


Jammed bearings may suddenly become loose from their seats when removed using the injection oil method. This may lead in extreme cases to a literally jumping-off, even for very heavy bearings or parts.

Please careful consider the safety instructions and the recommendations provided by the manufacturer of your hydraulic tools carefully ensure all parts for dismounting by the hydraulic oil method are secured against accidental dropping or coming off. This is avoidable and for health and safety reasons the associated locknut should only be slightly loose on its thread.

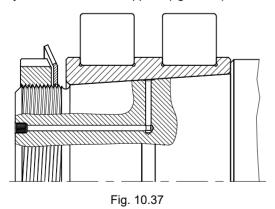
The locknut should only be removed when the bearing is completely free from its locating seat.

A simple and universal tool for both mounting and dismounting of rolling bearings is provided by **hydraulic nuts**, (fig. 10.18).

An example of how this device is engaged for dismounting a large spherical roller bearing seated on a withdrawal sleeve is shown in fig. 10.36.

Handling, Mounting and Dismounting Rolling Bearings

To dismount the bearing, the same procedure as described at fig. 10.35 must be applied, but instead of the standard lock nut an appropriate **hydraulic nut** is engaged.


This is screwed onto the thread of the withdrawal sleeve as far as possible.

When the hydraulic nut is in its position, an additional axial stop (e.g. a shaft nut) is applied to prevent the bearing from coming off, the hydraulic nut is only oil pressure charged when the additional shaft nut is secure.

The withdrawal sleeve will be pulled out from its position by the axial movement of the nut piston.

The main advantage of hydraulic nuts lies in the fact, that they may also be applied to machines or bearing arrangements that are not normally supposed to being removed by hydraulic measures.

In the case of bearings that are mounted directly onto tapered shaft journals the required holes must be provided in the shaft end to allow the oil injection method to be applied (fig. 10.37).

To enable the oil pipe feed connection suitable and competent threads should be provided in the shaft end of the oil injection hole. This also allows the insertion of screw plugs to seal and prevent the entry of pollutants.

Some shallow oil grooves located around the circumference of the bearing seat allows easier distribution of the pressure oil.

To dismount such a bearing the fixing tongue of the locking device must be bend up. The lock nut is then loosened for some revolutions but for safety reasons is not completely removed.

The oil pipe may now be connected to the shaft hole and pressurised oil may be injected.

The bearings inner ring will expand, a little due to the applied pressure, enabling the build up of a very thin oil film between the bearing bore diameter and the shaft seat.

Due to the tapered bore the bearing will release from the shaft seat easily.

Larger adapter and withdrawal sleeves are often produced with oil holes and grooves to allow dismounting of the associated bearing by applying the oil injection method.

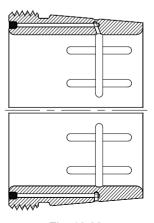


Fig. 10.38

Figure 10.38 shows a **withdrawal sleeve** of the series **AOH** . . which is produced with oil holes as standard. The connection holes and threads are located on the broad side face of the withdrawal sleeve.

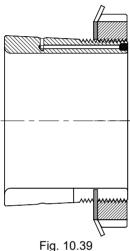


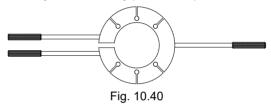
Fig. 10.39 shows an **adapter sleeve** which is produced with oil holes as standard.

On adapter sleeves the connection of oil holes and threads is located on the narrow face side. (i.e. the lock nut is fixed).

Bearings by Heating

When removing bearings, the heating of either the bearing or the housing may ease the process somewhat

Depending on the particularly case, heating the housings may be of advantage.


The mass removal of cylindrical roller bearing inner rings, as happens when overhauling railway axle box bearings, the appropriate tools are, **thermo rings**, see fig. 10.40

Thermo rings are slotted rings from solid aluminium with thermal insulated handles (fig. 10.40).

The bore diameter of the ring is adjusted to the raceway diameter of the ring type that has to be removed.

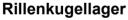
Simple designed thermo rings do not have an integrated heat source and thus they need to be heated by means of hot plates or similar.

The required heating temperature and time is normally determined by practical experience.

A more advanced design of this simple but efficient tool are thermo rings that feature cast integral heating elements.

To remove bearing rings using thermo rings the ring surface has to be lightly oiled with a thin heat-resistant machine oil. The heated **thermo ring** must be placed around the bearing ring and clamped with the handles. The thin-walled bearing ring will quickly accept the heat of the thermo ring.

As soon as the ring expands due to the transferred heat it becomes loose and may be removed from its seat easily, even with heavy interference fits.


Normally it takes only a few seconds before ring removal from its seat is possible.

Because the simple thermo rings must to be reheated following each removal, the use of more than one thermo rings may become necessary.

Deep Groove Ball Bearings

Einreihige Rillenkugellager

Single Row Deep Groove Ball Bearings

Einreihige Rillenkugellager mit Ringnut und Sprengring

Single Row Deep Groove Ball Bearings with Snap Ring Groove and Snap Ring

Einreihige Rillenkugellager

Normen, Hauptabmessungen

Ein- und zweireihige Rillenkugellager

DIN 625

Allgemeines:

Einreihige Rillenkugellager sind starre, nicht zerlegbare Radiallager. Einreihige Rillenkugellager weisen die beste Drehzahleignung aller Lagerarten auf. Sie sind die mit Abstand am häufigsten verwendeten Wälzlager.

Rillenkugellager mit einem Außendurchmesser kleiner als 9,525 mm (3/8") bzw. bis zu einem maximalen Außendurchmesser von 12,7 mm (½") werden als "Miniaturlager" bezeichnet, sofern deren Bohrungsdurchmesser größer ist als die Hälfte des Außendurchmessers.

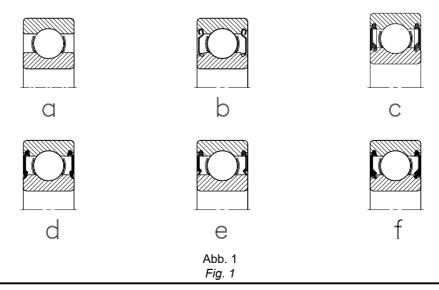
In der Grundausführung sind die einreihigen Rillenkugellager beidseitig offen. Lager, die serienmäßig auch abgedichtet erhältlich sind, können aus fertigungstechnischen Gründen Eindrehungen am Außenring aufweisen.

Single Row Deep Groove Ball Bearings

Standards, Boundary Dimensions

Single and double row deep groove ball bearings

DIN 625


General:

Single row deep groove ball bearings are rigid, non-separable radial bearings. Single row deep groove ball bearings are superior in speed rating to any other type of rolling element bearings. They are by far the most popular rolling bearing type.

Deep groove ball bearings are classified as follows:

- Miniature ball bearings including 3.175 mm inner bore diameter.
- Extra small ball bearings over 3.175 mm including 9.525 mm inner bore diameter.
- Deep groove ball bearings over 9.525 mm inner bore diameter.

Basic design single row deep groove ball bearings are open (unsealed). For manufacturing reasons, those sizes of open bearings that are also produced in sealed or shielded versions may have seal recesses in the outer ring.

Bauformen

Einreihige Rillenkugellager sind standardmäßig in einer Vielzahl unterschiedlicher Grundausführungen verfügbar.

Lager mit Dicht- und Deckscheiben

Zum Standard-Lieferprogramm gehören unterschiedliche Varianten von einreihigen Rillenkugellagern mit integrierten Dicht- oder Deckscheiben

NKE Wälzlager in beidseitig abgedichteter Ausführung (Nachsetzzeichen -2RS2, -2RS, -2RSR oder -2LFS) bzw. Lager mit beidseitigen Deckscheiben (Ausführung -2Z) werden bereits werksseitig mit einem hochwertigen Wälzlagerfett befüllt.

Die standardmäßig verwendete Füllmenge beträgt 25% bis 50% des jeweiligen Freiraums im Lager. Für spezielle Anwendungsbereiche können alle NKE Wälzlager bereits werksseitig mit anderen Schmierstoffen bzw. auch mit anderen Füllmengen versehen werden.

Deckscheiben

Die einseitig (Nachsetzzeichen **-Z**) oder beidseitig (Nachsetzzeichen **-2Z** s.h. Abb.1b) in den Lageraußenring eingepressten Stahlblech-Deckscheiben bilden eine einfache, berührungsfreie Spaltdichtung.

Im Betrieb kann sich durch den Dichtspalt ein Fettkragen am Innenring bilden.

Bei Anwendungen mit rotierendem Außenring ist bei höheren Drehzahlen ein Fettverlust möglich.

Design Variants

Single row deep groove ball bearings are available in a wide variety of different basic designs as standard.

Sealed and Shielded Bearings

Some variations of sealed and shielded single row deep groove ball bearings also belong to the standard product range.

NKE bearings incorporating two seals or shields (suffixes -2RS2, -2RS, -2RSR, -2LFS or -2Z) are supplied grease filled by the factory with approved high quality rolling bearing grease.

The standard applied grease fill is approximately **25%** to **50%** of the free space within the bearing.

For special operating conditions NKE bearings can also be supplied with special grease fillings according to customer's specification or with variable grease fill quantities than the standard.

Shields

Shields represent the most simple form of sealing. The shields are sheet metal shims press fitted into the outer ring groove profile on either one side (suffix -Z) or both sides (suffix -2Z), fig. 1b respectively. During operation a collar of grease may develop around the inner ring outside diameter providing some prevention against contaminate penetration, although grease loss is possible for applications where the outer ring rotates at high speed.

Einreihige Rillenkugellager

Single Row Deep Groove Ball Bearings

Die Betriebsdrehzahl von Lagern der Ausführung -2Z, die mit drehendem Außenring eingesetzt werden, darf 40% der entsprechenden Grenzdrehzahlen nicht überschreiten.

Dichtscheiben

Dichtscheiben bilden berührende Dichtungen zwischen Innen- und Außenring.

Je nach Lagergröße und Lagerbauart werden abgedichtete NKE-Rillenkugellager mit Dichtscheiben der Bauform RS2 (Abb.1c) geliefert. Berührende NKE Dichtungen werden standardmäßig aus einem besonders verschleißfesten synthetischen Elastomer (Nitril-Butadien-Kautschuk, Kurzzeichen NBR) hergestellt und haben zur Versteifung Stahlscheiben einvulkanisiert. Diese Dichtungen sind für Einsatztemperaturen von -30°C bis +120°C geeignet.

Für Sonderanwendungen sind auch Dichtungen aus anderen Werkstoffen lieferbar

Weitere Informationen dazu finden Sie auf Seite 41 im Abschnitt "Lagerdaten allgemein".

Drehzahleinschränkungen bei Lagern mit Dicht- oder Deckscheiben

Lager mit berührenden Dichtungen (Bauformen -RS2, -2RS2, -RSR und -2RSR) weisen durch die vorgespannten Dichtlippen eine zusätzliche Wärmeentwicklung auf, wodurch die maximal zulässigen Drehzahlen für diese Lager um ein Drittel unter den für Fettschmierung empfohlenen Grenzdrehzahlen offener Lager bzw. von Lagern mit Deckscheiben liegen:

$$n_{gRS} = \frac{n_{gFett} * 2}{3}$$

wobei

n_{gRS} = Grenzdrehzahl für das Lager in abgedichteter Ausführung [min⁻¹]

n_{gFett} = Grenzdrehzahl laut Produkttabelle für das Lager bei Fettschmierung [min⁻¹] In the case of **-2Z-shielded** bearings that operate with their outer ring rotating, the maximum operating speed must not exceed 40% of the recommended limited speed ratings.

Seals

Seals form a rubbing contact seal between the bearings inner and outer ring.

Depending upon the bearing design, type and size they are produced with RS2-seals (fig. 1c). These contacting seals are produced using a wear resistant synthetic rubber (Nitrile-Butadiene-Rubber, in short NBR) and are suitable for operating temperatures from -30°C to +120 °C (-22°F to +248°F).

The seals have integrated steel washers to increase their rigidity.

For special applications, however, seals are also available in other materials

For more detailed information see chapter "General Bearing Data" (page 226).

Speed Limitations of Sealed or Shielded Bearings

All **contacting seals** generate additional heat due to the rubbing of their preloaded sealing lips. This is why the maximum permissible speeds of bearings with contacting seals (suffix -RS2, -2RS2, -RSR, -2RSR etc.) is limited.

Their maximum speed must not exceed 2/3 of the limited speed ratings recommended for these bearings whether open or sealed design with grease lubrication:

$$n_{gRS} = \frac{n_{gGrease} * 2}{3}$$

where

n_{gRS} = Limited speed ratings for the bearing, sealed version [rpm]

n_{gGrease} = Limited speed ratings for the bearing with grease lubrication [rpm]

Berührungsfreie Dichtscheiben

Für Anwendungen bei höheren Drehzahlen, in denen Rillenkugellager in abgedichteter Ausführung benötigt werden, gibt es eine berührungsfreie Sonderdichtung, **LFS** (Low Friction Seal), siehe Abb. 1f).

Bei der Bauart LFS liegen die Dichtlippen praktisch berührungsfrei am Innenring an. LFS-Dichtungen haben zwar eine erheblich bessere Dichtwirkung als Deckscheiben (Z-Deckel), sind aber berührenden Dichtungen der Bauformen-RS, -2RS, -RSR, -2RSR, -RS2 und -2RS2 hinsichtlich Dichtwirkung unterlegen.

LFS-Dichtungen erzeugen dafür aber auch keine Zusatzreibung. Sie erfordern daher im Gegensatz zu den berührenden Dichtungen keine Einschränkung der Grenzdrehzahlen.

Reibungsarme LFS-Dichtscheiben werden standardmäßig aus verschleißfestem synthetischen Kautschuk, Kurzzeichen NBR gefertigt und sind für Einsatztemperaturen von -30°C bis +120°C geeignet.

Bei allen **berührenden Dichtungen** kann es unter besonderen Betriebsbedingungen, wie beispielsweise sehr hohen Drehzahlen oder höheren Betriebstemperaturen zu einem gewissen Fettaustritt kommen. In Anwendungsfällen, in denen dies nicht zulässig ist, müssen zusätzliche Vorkehrungen getroffen werden.

Non-Contacting Seals

For high speed applications where sealed deep groove ball bearings are necessary, a special designed seal is available, the so-called LFS-seal (LFS stands for Low Friction Seal), fig. 1f.

The sealing lips of LFS-seals contacts the bearing inner ring without preload and forms a non-contacting seal. In respect to their sealing effectiveness LFS-seals perform much better than Z-shields, but less than the contacting seals of the types -RS, -2RS, -RSR, -2RSR, -RS2 and -2RS2

On the other hand, **LFS-seals** do not generate additional heat. Thus bearings that are fitted with **LFS-**seals do not have a restriction in operating speed as do the other contacting seals.

LFS-type low friction seals are also from synthetic rubber (NBR) and thus suitable for operating in a temperature range of -30°C to + 120°C (-22°F to +248°F).

For all **contacting seals** there is the possibility of an emergence of grease during certain operating conditions such as bearings running at high speeds or high operating temperatures. In applications where this is not permissible, adequate additional design measures must be considered.

Einreihige Rillenkugellager Single Row Deep Groove Ball Bearings

Schiefstellung

Einreihige Rillenkugellager sind zum Ausgleich von Schiefstellungen nur beschränkt geeignet. Unter normalen Betriebsverhältnissen sind – abhängig von der Radialluft – Schiefstellungen bis maximal 10 Winkelminuten aus der Mittellage zulässig.

Allerdings weisen Lager, die unter Schiefstellungen laufen, erheblich höhere Laufgeräusche auf. Weiters ist in diesen Fällen auch mit einer Verringerung der Gebrauchsdauer durch die Zusatzbelastungen zu rechnen.

Toleranzen

Einreihige NKE Rillenkugellager werden standardmäßig in Normaltoleranz (PN) gefertigt. Auf Anfrage können diese aber auch mit eingeengten Toleranzen, wie beispielsweise in den Toleranzklassen P6 und P5 usw. gefertigt werden.

Detaillierte Werte der einzelnen Toleranzklassen entnehmen Sie bitte den Tabellen im Abschnitt "Lagerdaten / Toleranzen", ab Seite 52.

Käfige

Sofern nicht anders spezifiziert, werden **NKE** Rillenkugellager der Normalausführung mit Stahlblechkäfigen gefertigt. Ausgenommen davon sind große Lager, die mit Messingmassivkäfigen erzeugt werden (Nachsetzzeichen **M**), und kleine Lager, die teilweise standardmäßig einen Messingblechkäfig aufweisen (Nachsetzzeichen **Y**).

Auf Wunsch können **NKE** Rillenkugellager auch mit anderen Käfigen geliefert werden.

Misalignment

Single row deep groove ball bearings have a very limited ability to accommodate misalignments. Under normal application conditions, misalignments may not exceed 10 angular minutes maximum from their centre position.

It must be considered, however, that bearings which run misaligned are subjected to considerable additional forces that will shorten their service life and generate high running noise.

Tolerances

NKE single row deep grooved ball bearings are produced to normal tolerance class (**PN**) as standard. Applications of higher dimensional and geometrical accuracy the bearings are produced to precision tolerance classes **P6** and **P5**.

Detailed values for the tolerance classes are listed in the chapter "Bearing Data / Tolerances", page 237.

Cages

NKE deep groove ball bearings are normally fitted with pressed steel cages as standard.

Exceptions to this are large bearings, that usually have machined solid brass cages (suffix **M**) as standard or small and miniature bearings that are frequently equipped with pressed brass cages, indicated by the suffix " **Y**".

NKE deep groove ball bearings are also produced to other cage designs and cage materials.

Lagerluft

Einreihige NKE Rillenkugellager werden standardmäßig mit der Lagerluft "NORMAL" (CN) gefertigt.

Die als Normalluft definierten Werte wurden so bemessen, daß die Lager bei Verwendung "normaler" Passungen sowie unter "normalen" Betriebsbedingungen eine ausreichende Betriebslagerluft erhalten.

Als "normale" Passungen bei Kugellagern gelten:

Wellensitze: h5, j5, k5 Gehäusesitze: H6, H7, J6, J7

Auf Anfrage können alle NKE Rillenkugellager auch mit anderen Lagerluftwerten gefertigt werden.

Werte für die unterschiedlichen Lagerluftgruppen von ein und zweireihigen NKE Rillenkugellagern sind in den untenstehenden Tabellen angegeben.

Diese Werte entsprechen, soweit diese genormt sind, den Vorgaben der DIN 620/Teil 4 bzw. ISO 5753-1991

Internal Clearance

NKE single row deep groove ball bearings are produced with normal internal clearance (CN) as standard

The values of standard internal clearance are defined in such a way that bearings with **CN** clearance will have sufficient residual operating clearance when mounted using "normal" bearing fits.

"Normal" fits for deep groove ball bearings are considered as:

Shaft fits: h5, j5, k5 Housing fits: H6, H7, J6, J7

NKE deep groove ball bearings are also produced to other internal clearances.

Values of the different internal clearance groups of single and double row NKE deep groove ball bearings are listed in the tables below. These values are standardised and conform to the valid international standards DIN 620 part 4 and ISO 5753-1991.

Einreihige RillenkugellagerSingle Row Deep Groove Ball Bearings

Lagerluft ein- und zweireihiger **NKE** Rillenkugellager, Bohrungsdurchmesser ≤ 250 mm. *Internal clearance groups* of *NKE* single and double row deep groove ball bearings, bore diameters up to 250 mm.

Lagerbohrung Bore diameter	[mm]	> ≤	2,5 6	6 10	10 18	18 24	24 30	30 40	40 50	50 65	65 80		100 120	120 140		160 180			
Luftgruppe Clearance group	C2	min max	0 7	0 7	0 9	0 10	1 11	1 11	1 11	1 15	1 15	1 18	2 20	2 23	2 23	2 25	2 30	4 32	4 36
Luftgruppe Clearance group (NORMAL)	CN	min max	2 13	2 13	3 18	5 20	5 20	6 20	6 23	8 28	10 30	12 36	15 41	18 48	18 53		25 71	28 82	-
Luftgruppe Clearance group	СЗ	min max	8 23	8 23	11 25	13 28	13 28	15 33	18 36	23 43	25 51	30 58	36 66	41 81	46 91	53 102	63 117	73 132	-
Luftgruppe Clearance group	C4	min max		14 29	18 33	20 36	23 41	28 46	30 51	38 61	46 71	53 84	61 97	71 114	81 130	91 147	107 163	120 187	140 217
Luftgruppe Clearance group	C5	min max		20 37	25 45	28 48	30 53	40 64	45 73	55 90	65 105		90 140			135 200		175 255	205 290

Lagerluft ein- und zweireihiger **NKE** Rillenkugellager, Bohrungsdurchmesser > 250 mm. **Internal clearance groups** of **NKE** single and double row deep groove ball bearings, bore diameters over 250 mm.

Lagerbohrung	[mm]	>	250	280	315	355	400	450	500	560	630	710	800	900	1000	1120
Bore diameter		≤	280	315	355	400	450	500	560	630	710	800	900	1000	1120	1250
Luftgruppe	C2	min	4	8	8	8	10	10	20	20	30	30	30	40	40	40
Clearance group		max	39	45	50	60	70	80	90	100	120	130	150	160	170	180
Luftgruppe	CN	min	36	42	50	60	70	80	80	100	120	130	150	160	170	180
Clearance group (NORMAL)		max	97	110	120	140	160	180	210	220	250	280	310	340	370	400
Luftgruppe	СЗ	min	97	110	120	140	160	180	190	220	250	280	310	340	370	400
Clearance group		max	162	180	200	230	260	290	330	350	390	440	490	540	590	640
Luftgruppe	C4	min	152	175	200	230	260	290	320	350	390	440	490	540	590	640
Clearance group		max	237	260	290	330	370	410	460	510	560	620	690	760	840	910
Luftgruppe	C5	min	225	260	290	330	370	410	460	510	560	620	690	760	840	910
Clearance group		max	320	360	405	460	520	570	630	700	780	860	960	1040	1120	1220

Mindestbelastung

Zum kinematisch korrekten Betrieb benötigen Wälzlager in allen Betriebszuständen eine Mindestbelastung.

Für NKE einreihige Rillenkugellager muss die Mindestbelastung 1% der dynamischen Tragzahl betragen.

Berechnungsfaktoren

Bei Rillenkugellagern hängen sowohl die axiale Belastbarkeit als auch die zur Berechnung der äquivalenten dynamischen Lagerbelastung erforderlichen X- und Y- Faktoren direkt von der Lagerluft ab, da sich mit zunehmender Lagerluft auch der Druckwinkel vergrößert.

Äquivalente dynamische Lagerbelastung

Für ein- und zweireihige NKE Rillenkugellager gilt bei:

$$\frac{\mathsf{F}_{\mathsf{a}}}{\mathsf{F}_{\mathsf{r}}} \leq \mathsf{e} \quad \mathsf{P} = \mathsf{F}_{\mathsf{r}}$$

bzw. bei

$$\frac{F_a}{F_c}$$
 > e $P = X * F_r + Y * F_a$

Die Berechnungsfaktoren X und Y werden maßgeblich durch das Verhältnis von wirkender Axialkraft zur statischen Tragzahl \mathbf{C}_{0r} des Lagers bestimmt.

Werte für das **Grenzlastverhältnis e** sowie die **X**- und **Y-Faktoren** in Abhängigkeit von der jeweiligen Lagerluft sind in nebenstehender Tabelle angegeben. Zwischenwerte sind durch Interpolation zu ermitteln.

Minimum Load

Bearings require a minimum load under all operating conditions to ensure kinematically correct rolling element function.

For NKE single row deep groove ball bearings the minimum load must be 1% of the dynamic load rating.

Calculation Factors

In the case of deep groove ball bearings both the axial load capacity and the **X** and **Y** factors are required for the calculation of the actual dynamic equivalent load, which depends directly on the internal clearance of the bearing, because the contact angle increases along with the internal bearing clearance.

Equivalent Dynamic Bearing Load

For single and double row ball bearings the following formula should be applied:

Where
$$\frac{F_a}{F_c} \leq e$$
, then $P = F_r$

or, where

$$\frac{F_a}{F_r}$$
 > e, then $P = X * F_r + Y * F_a$

The magnitude of calculation factors \boldsymbol{X} and \boldsymbol{Y} are mainly determined by the ratio of acting thrust force to static load rating \boldsymbol{C}_{0r} of the affected bearing.

Values of the **limit value e** and the **X** and **Y factors** are given in the following table, based on the individual bearing internal clearance.

Äquivalente statische Lagerbelastung

Für ein- und zweireihige Rillenkugellager gilt:

$$P_0 = 0.6 * F_r + 0.5 * F_a$$

Wenn allerdings \mathbf{P}_0 kleiner als \mathbf{F}_r wird, ist der höhere Wert zur Berechnung der äquivalenten statischen Lagerbelastung zu verwenden.

Equivalent Static Bearing Load

For single and double row ball bearings:

$$P_0 = 0.6 * F_r + 0.5 * F_a$$

When $\mathbf{P_0}$ is smaller than $\mathbf{F_r}$, the higher value must be used for the calculation of the equivalent static bearing load.

Luftabhängige Berechnungsfaktoren ein- und zweireihiger **NKE** Rillenkugellager Calculation factors of **NKE** single and double row deep groove ball bearings, based on individual clearances

F a					gerluftgrup I clearance	-			
	l c	N (NORMA		IIILEITIA 	C3	; group 	1	C4	
J oi	l e	X	-, Y	е	X	ΙΥ	е	X	Υ
0,030	0,23	0,56	1,95	0,32	0,46	1,72	0,41	0,44	1,41
0,035	0,23	0,56	1,90	0,32	0,46	1,69	0,41	0,44	1,39
0,040	0,24	0,56	1,80	0,33	0,46	1,62	0,42	0,44	1,36
0,045	0,24	0,56	1,77	0,33	0,46	1,60	0,42	0,44	1,35
0,050	0,25	0,56	1,74	0,34	0,46	1,57	0,43	0,44	1,33
0,055	0,25	0,56	1,71	0,34	0,46	1,55	0,43	0,44	1,32
0,060	0,26	0,56	1,69	0,35	0,46	1,53	0,43	0,44	1,31
0,065	0,26	0,56	1,66	0,35	0,46	1,51	0,43	0,44	1,30
0,070	0,27	0,56	1,60	0,36	0,46	1,46	0,44	0,44	1,27
0,080	0,28	0,56	1,57	0,37	0,46	1,44	0,45	0,44	1,25
0,090	0,28	0,56	1,54	0,38	0,46	1,41	0,45	0,44	1,24
0,10	0,29	0,56	1,51	0,38	0,46	1,39	0,46	0,44	1,22
0,11	0,29	0,56	1,48	0,39	0,46	1,36	0,46	0,44	1,20
0,12	0,30	0,56	1,45	0,40	0,46	1,34	0,47	0,44	1,19
0,13	0,31	0,56	1,40	0,41	0,46	1,30	0,48	0,44	1,16
0,14	0,31	0,56	1,38	0,41	0,46	1,29	0,48	0,44	1,15
0,15	0,32	0,56	1,37	0,42	0,46	1,27	0,49	0,44	1,14
0,16	0,32	0,56	1,35	0,42	0,46	1,26	0,49	0,44	1,12
0,17	0,33	0,56	1,34	0,43	0,46	1,25	0,50	0,44	1,12
0,18	0,33	0,56	1,32	0,43	0,46	1,24	0,50	0,44	1,12
0,19	0,34	0,56	1,30	0,43	0,46	1,22	0,50	0,44	1,11
0,20	0,34	0,56	1,29	0,44	0,46	1,21	0,51	0,44	1,10
0,25	0,37	0,56	1,20	0,46	0,46	1,14	0,53	0,44	1,05
0,30	0,38	0,56	1,16	0,48	0,46	1,11	0,54	0,44	1,04
0,35	0,40	0,56	1,12	0,49	0,46	1,09	0,54	0,44	1,03
0,40	0,41	0,56	1,08	0,51	0,46	1,06	0,55	0,44	1,02
0,45	0,42	0,56	1,04	0,52	0,46	1,03	0,55	0,44	1,01
0,50	0,44	0,56	1,00	0,54	0,46	1,00	0,56	0,44	1,00

Maximale axiale Belastbarkeit

Bei reiner Axialbelastung sollte die auf das Lager wirkende Kraft eine bestimmte, von der Innengeometrie der jeweiligen Lager abhängende Größe folgende Werte nicht überschreiten.

Als Faustregel gilt:

Bei kleinen Rillenkugellagern sowie bei Dünnringlagern und Lagern der Reihen 617, 618, 619, 160, 161 gilt:

$$F_{amax} \leq \frac{C_{0r}}{4}$$

Für andere Kugellagertypen gilt:

$$F_{amax} \leq \frac{C_{0r}}{2}$$

Weitere Varianten einreihiger Rillenkugellager

Rillenkugellager werden in einer Vielzahl unterschiedlicher Varianten hergestellt, von denen wiederum eine Anzahl zum NKE-Standard-Lieferprogramm gehört, das in diesem Katalog eingehend beschrieben wird.

Überbreite Reihen 622...2RS und 623...2RS

Dauergeschmierte Lagerungen, beispielsweise Arbeitsspindeln von Holzbearbeitungsmaschinen, erfordern abgedichtete Rillenkugellager mit vergrößerter Schmierstoffmenge.

Rillenkugellager der **überbreiten Reihen 622..**-2RS2 und 623..-2RS2 weisen bei gleichem Bohrungs - und Außendurchmesser eine größere Breite und daher größere Fettreservoire als vergleichbare Lager der Baureihen 62..-2RS2 bzw. 63..-2RS2 auf.

Detaillierte Werte sind in den Produkttabellen der einreihigen Rillenkugellager enthalten.

Maximum Thrust Loads

In the case of purely axial loaded bearings the acting thrust forces must not exceed certain limits. The limits are determined by the internal bearing design.

For guidance the following formula may be applied: For **miniature** deep groove ball bearings, **thin section** bearings and bearings of the series **617**, **618**, **619**, **160** and **161**:

where:

$$F_{amax} \leq \frac{C_{0r}}{4}$$

For all other deep groove ball bearings the following applies:

$$F_{amax} \leq \frac{C_{0r}}{2}$$

Further Design Variants of Single Row Deep Groove Ball Bearings

NKE deep groove ball bearings are produced in a wide range of different variants. Many of them are part of the NKE standard product range as listed in this technical and product catalogue.

Extra Width Series 622...2RS and 623...2RS

Several applications require sealed deep groove ball bearings with extra grease volume to ensure maximum service life. Examples are greased "for-life" bearing arrangements in wood working machines.

These requirements are fulfilled by extra-width bearings of the series 622..-2RS2 and 623..-2RS2. These have the same radial cross-section section as bearings of series 62..-2RS2 or 63..-2RS2, respectively, but feature an enlarged width.

This enables a larger grease fill volume. For detailed information please see the Product Tables.

Einreihige Rillenkugellager Single Row Deep Groove Ball Bearings

Anschlussmaße ein- und Zweireihiger Rillenkugellager

Die Umgebungsteile der Lager müssen so gestaltet sein, dass eine ausreichende axiale Unterstützung der Lagerringe gewährleistet ist. Dazu müssen die Schulterhöhen der Anlageflächen an den Wellenbunden bzw. der Gehäuseschultern eine ausreichende Mindesthöhe aufweisen.

Allerdings dürfen die Radien der Kantenverrundung der Lagerringe nicht an den Hohlkehlen von Wellenbund oder Gehäuse anliegen.

Daher muss der größte Hohlkehlradius an den Anschlußteilen (\mathbf{r}_g) kleiner sein als der kleinste Radius für die Kantenverrundung (\mathbf{r}_s) der Lagerringe (siehe Zeichnung bei Tabelle auf der Folgeseite).

Empfehlungen für Einbaumaße sind auch in **DIN 5418** definiert.

NKE Rillenkugellager mit Sonderbefettung

Für spezielle Anwendungsbereiche können aber alle **NKE Wälzlager** auch mit Sonderfetten nach Kundenspezifikationen bzw. mit anderen Schmierstoffmengen geliefert werden.

Abutment and Fillet Dimensions for Single and Double Row Deep Groove Ball Bearings

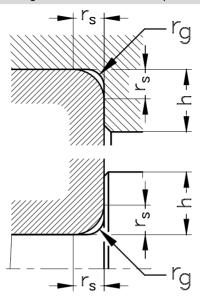
The machine components surrounding the bearing must be designed in such a way that adequate axial support of bearing rings is secured under all circumstances.

To gain an adequate support both the shaft shoulders and the housing shoulders must have a certain minimum height.

On the other hand, the bearing rings must contact adjacent parts with their side faces only. The radii of bearing fillets must not touch the shoulder fillet radii of neither the shaft shoulders or the housing.

Therefore, the largest fillet radius (\mathbf{r}_g) must be smaller than the minimum fillet dimension of the bearing rings (\mathbf{r}_s) as listed in the bearing tables. For details please see the table on following page.

Recommendations for the dimensions of adjacent parts are given in **DIN 5418**.


NKE Deep Groove Ball Bearings with Special Grease Filling

For special operating conditions **NKE** bearings can also be supplied with special grease fillings according to customer's specification or with grease fill volumes other than the standard.

Anschlussmaße ein- und zweireihiger Rillenkugellager [mm]

Abutment and Fillet Dimensions for Single and Double Row Deep Groove Ball Bearings [mm]

_	_		_{min} Lagerreihe Bearing series	
r _{s min}	r _{g max}	618, 619 160, 60	62, 622 63, 623	64
0,08	0,08	0,26		
0,1	0,1	0,3	0,6	
0,15	0,15	0,4	0,7	
0,2	0,2	0,7	0,9	
0,3	0,3	1	1,2	
0,6	0,6	1,6	2,1	
1	1	2,3	2,8	
1,1	1	3	3,5	4,5
1,5	1,5	3,5	4,5	5,5
2	2	4,4	5,5	6,5
2,1	2,1	5,1	6	7
3	2,5	6,2	7	8
4	3	7,3	8,5	10
5	4	9	10	12
6	5	11,5	13	15
7,5	6	14	16	19

Einreihige Rillenkugellager Single Row Deep Groove Ball Bearings

Das NKE Bezeichnungsschema für Wälzlager mit Sonderbefettung setzt sich aus folgenden Symbolen zusammen:

The NKE designation system for bearings containing special grease consists of the following symbols:

A) LT MT HT LHT	Symbol für die Temperatureignung: Tieftemperaturfett Mitteltemperaturfett Hochtemperaturfett Sonderfett, geeignet für Hochund Tieftemperaturanwendungen	A) LT MT HT LHT	Symbol for temperature range of grease: Low Temperature grease Medium Temperature grease High Temperature grease Special grease suitable for Low and High Temperatures
XX)	Fortlaufende Numerierung	XX)	Continual number
B)	Symbol für Fettfüllmenge in Prozent des Lagerfreiraumes	В)	Symbol for grease filling volume as % of bearings free space
A M X C	Fettfüllung 10% bis 15% Fettfüllung 25% bis 50% (Standard) Fettfüllung 45% bis 60% Fettfüllung 70% bis 90% (Vollfettfüllung) Fettfüllungsgrad nach Kundenspezifikation	A M X	Filling volume 10% ÷ 15% Filling volume 25% up to 50% (Standard) Filling volume 45% up to 60% Filling volume 70% up to 90% (bearing is fully filled with grease) Filling volume according to individual customers' specifications

Montage abgedichteter Lager

Die beidseitig abgedichteten bzw. mit Deckscheiben an beiden Seiten gelieferten NKE Rillenkugellager (Nachsetzzeichen -2RS, -2RSR, -2LFS oder -2Z) die bereits gefettet geliefert werden, dürfen vor dem Einbau nicht ausgewaschen oder im Ölbad erwärmt werden.

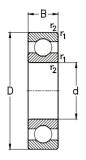
Diese Lager sollten vorzugsweise in kaltem Zustand montiert werden.

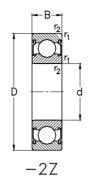
Beim Einbau ist besonders darauf zu achten, dass die Dicht- oder Deckscheiben nicht beschädigt werden.

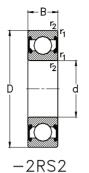
Fitting of Sealed Bearings

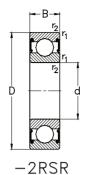
NKE single row deep groove ball bearings that are fitted with seals or shields on both sides (suffixes -2RS, -2RSR, -2LFS or -2Z) are supplied already grease packed. Therefore they must not be washed out or heated up by oil bath method prior to mounting.

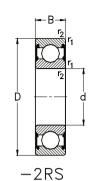
These bearings should preferably be mounted in normal temperature conditions.


It is important that the seals or shields must not be damaged during mounting.

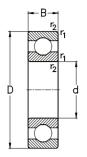


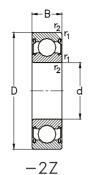


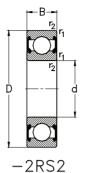

Einreihige Rillenkugellager Single Row Deep Groove Ball Bearings

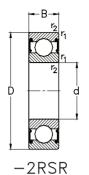


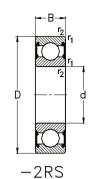
Hau		nessu nm]	ngen	Lagertype	Tragzahlen [kN]		Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Gewicht [kg]	
Вои	ındary [n	dimen nm]	sions	Designation	Lo	oad ratin [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Weight [kg]
d	D	В	r ₁ , r ₂		C _r	Cor	Cu	$\mathbf{n}_{\theta r}$	n _G	m
	4.0		min		dyn.	stat.		50.400	0000	2.224
3	10	4	0,15	623	0,6	0,3		56400	80000	0,001
	10	4	0,15	623-Z	0,6	0,3			52000	0,001
	10	4	0,15	623-2Z	0,6	0,3			52000	0,001
4	11	4	0,15	619/4	0,9	0,3		52800	80000	0,001
	12	4	0,2	604	0,8	0,3		49000	75000	0,002
	13	5	0,2	624	1,2	0,5		46600	67000	0,003
	13	5	0,2	624-Z	1,2	0,5			38000	0,003
	13	5	0,2	624-2Z	1,2	0,5			38000	0,003
	16	5	0,3	634	1,4	0,6		35300	67000	0,006
	16	5	0,3	634-Z	1,4	0,6			36000	0,006
	16	5	0,3	634-2Z	1,4	0,6			36000	0,006
5	13	4	0,2	619/5	1,1	0,4		42300	67000	0,002
	16	5	0,3	625	1,4	0,6		36200	60000	0,005
	16	5	0,3	625-Z	1,4	0,6		-	36000	0,005
	16	5	0,3	625-2Z	1,4	0,6			36000	0,005
	19	6	0,3	635	2,2	1		31500	50000	0,009
	19	6	0,3	635-Z	2,2	1			32000	0,009
	19	6	0,3	635-2Z	2,2	1			32000	0,009
6	15	5	0,2	619/6	1,3	0,5		40100	63000	0,004
	19	6	0,3	626	2,2	1	-	32500	50000	0,009
	19	6	0,3	626-2RSR	2,2	1			21500	0,009
	19	6	0,3	626-RSR	2,2	1			21500	0,009


Anschlussmaße siehe Seite 383

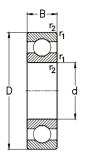

Abutment and fillet dimensions see on page 383

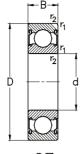

Hai	uptabn [n	nessu nm]	ngen	Lagertype	Ti	Tragzahlen [kN]		Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Gewicht [kg]
Воц	undary [n	dimen nm]	sions	Designation	Lo	oad ratin [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Weight [kg]
d	D	В	r ₁ , r ₂ min		C _r dyn.	C ₀r stat.	C _u	$n_{\scriptscriptstyle{\thetar}}$	n _G	m
6	19	6	0,3	626-Z	2,2	1			32000	0,009
	19	6	0,3	626-2Z	2,2	1			32000	0,009
7	17	5	0,3	619/7	1,6	0,7		34200	56000	0,005
	19	6	0,3	607	2,1	0,9		34600	53000	0,008
	19	6	0,3	607-RSR	2,1	0,9			20000	0,008
	19	6	0,3	607-2RSR	2,1	0,9			20000	0,008
	19	6	0,3	607-Z	2,1	0,9			30000	0,008
	19	6	0,3	607-2Z	2,1	0,9			30000	0,008
	22	7	0,3	627	3,3	1,3	0,1	29900	45000	0,013
	22	7	0,3	627-RSR	3,3	1,3	0,1	-	20000	0,013
	22	7	0,3	627-2RSR	3,3	1,3	0,1		20000	0,013
	22	7	0,3	627-Z	3,3	1,3	0,1	-	30000	0,013
	22	7	0,3	627-2Z	3,3	1,3	0,1		30000	0,013
8	19	6	0,3	619/8	2,2	0,9	0	33100	50000	0,007
	22	7	0,3	608	3,3	1,4	0,1	31800	48000	0,013
	22	7	0,3	608-RSR	3,3	1,4	0,1	-	20000	0,013
	22	7	0,3	608-2RSR	3,3	1,4	0,1		20000	0,013
	22	7	0,3	608-Z	3,3	1,4	0,1		30000	0,013
	22	7	0,3	608-2Z	3,3	1,4	0,1		30000	0,013
9	20	6	0,3	619/9	1,8	0,9	0,1	30300	48000	0,008
	24	7	0,3	609	3,7	1,7	0,1	28300	43000	0,015
	24	7	0,3	609-RSR	3,7	1,7	0,1		18000	0,015

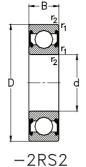

Einreihige Rillenkugellager Single Row Deep Groove Ball Bearings

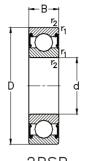


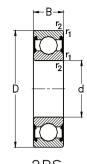
Hau	ıptabn [n	nessu nm]	ngen	Lagertype	Ti	ragzahle [kN]	en	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Gewicht [kg]
Вои	ındary [n	dimen nm]	sions	Designation	Lo	oad ratin [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Weight [kg]
d	D	В	r ₁ , r ₂ min		C _r dyn.	C ₀r stat.	C _u	$n_{\scriptscriptstyle{ hetar}}$	n _G	m
9	24	7	0,3	609-2RSR	3,7	1,7	0,1		18000	0,015
	24	7	0,3	609-Z	3,7	1,7	0,1		30000	0,015
	24	7	0,3	609-2Z	3,7	1,7	0,1		30000	0,015
	26	8	0,3	629	4,6	1,9	0,1	25700	38000	0,02
	26	8	0,3	629-RSR	4,6	1,9	0,1		18500	0,02
	26	8	0,3	629-2RSR	4,6	1,9	0,1		18500	0,02
	26	8	0,3	629-Z	4,6	1,9	0,1		28000	0,02
	26	8	0,3	629-2Z	4,6	1,9	0,1		28000	0,02
10	19	5	0,3	61800	1,7	0,8	0	27500	48000	0,005
	19	5	0,3	61800-2RSR	1,7	0,8	0		22000	0,005
	19	5	0,3	61800-2Z	1,7	0,8	0		34000	0,005
	22	6	0,3	61900	2,7	1,3	0,1	26900	45000	0,01
	22	6	0,3	61900-2RSR	2,7	1,3	0,1		22000	0,01
	22	6	0,3	61900-2Z	2,7	1,3	0,1		34000	0,01
	26	8	0,3	6000	4,6	2	0,1	27600	40000	0,019
	26	8	0,3	6000-RS2	4,6	2	0,1		17000	0,019
	26	8	0,3	6000-2RS2	4,6	2	0,1		17000	0,019
	26	8	0,3	6000-Z	4,6	2	0,1		28000	0,019
	26	8	0,3	6000-2Z	4,6	2	0,1		28000	0,019
	30	9	0,6	6200	5,1	2,4	0,1	23500	40000	0,03
	30	9	0,6	6200-RS2	5,1	2,4	0,1		17000	0,03
	30	9	0,6	6200-2RS2	5,1	2,4	0,1		17000	0,03


Anschlussmaße siehe Seite 383


Abutment and fillet dimensions see on page 383


Hau	•	nessu nm]	ngen	Lagertype	Ti	Tragzahlen [kN]		Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Gewicht [kg]
Вои	•	dimen nm]	sions	Designation	Load ratings [kN]		Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Weight [kg]	
d	D	В	r ₁ , r ₂ min		C _r dyn.	C ₀r stat.	Cu	n_{er}	n _G	m
10	30	9	0,6	6200-Z	5,1	2,4	0,1		26000	0,03
	30	9	0,6	6200-2Z	5,1	2,4	0,1		26000	0,03
	35	11	0,6	6300	8,2	3,5	0,2	21100	32000	0,055
	35	11	0,6	6300-RS2	8,2	3,5	0,2		14500	0,055
	35	11	0,6	6300-2RS2	8,2	3,5	0,2		14500	0,055
	35	11	0,6	6300-Z	8,2	3,5	0,2		22000	0,055
	35	11	0,6	6300-2Z	8,2	3,5	0,2		22000	0,055
12	21	5	0,3	61801	1,8	1	0	23500	43000	0,006
	21	5	0,3	61801-2RSR	1,8	1	0		21000	0,006
	21	5	0,3	61801-2Z	1,8	1	0		32000	0,006
	24	6	0,3	61901	2,2	1,5	0,1	23300	40000	0,011
	24	6	0,3	61901-2RSR	2,2	1,5	0,1		20000	0,011
	24	6	0,3	61901-2Z	2,2	1,5	0,1		30000	0,011
	28	8	0,3	6001	5,1	2,4	0,1	24300	38000	0,02
	28	8	0,3	6001-RS2	5,1	2,4	0,1		17000	0,02
	28	8	0,3	6001-2RS2	5,1	2,4	0,1		17000	0,02
	28	8	0,3	6001-Z	5,1	2,4	0,1		26000	0,02
	28	8	0,3	6001-2Z	5,1	2,4	0,1		26000	0,02
	32	10	0,6	6201	6,8	3,1	0,1	22200	32000	0,04
	32	10	0,6	6201-RS2	6,8	3,1	0,1		16000	0,04
	32	10	0,6	6201-2RS2	6,8	3,1	0,1		16000	0,04
	32	10	0,6	6201-Z	6,8	3,1	0,1		24000	0,04

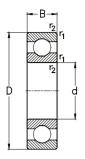

Einreihige Rillenkugellager Single Row Deep Groove Ball Bearings

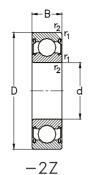


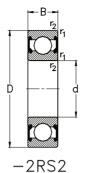
2Z	-2RS

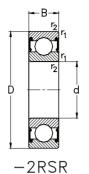
K2K	-2RS

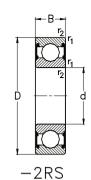
Hauptabmessungen [mm]				Lagertype	Tragzahlen [kN]			Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Gewicht [kg]
Boundary dimensions [mm]				Designation	Load ratings [kN]			Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Weight [kg]
d	D	В	r ₁ , r ₂ min		C _r dyn.	C ₀r stat.	C _u	n _{er}	n _G	m
12	32	10	0,6	6201-2Z	6,8	3,1	0,1		24000	0,04
	37	12	1	6301	9,7	4,2	0,2	20000	28000	0,06
	37	12	1	6301-RS2	9,7	4,2	0,2		13000	0,06
	37	12	1	6301-2RS2	9,7	4,2	0,2		13000	0,06
	37	12	1	6301-Z	9,7	4,2	0,2		20000	0,06
	37	12	1	6301-2Z	9,7	4,2	0,2		20000	0,06
15	24	5	0,3	61802	2	1,3	0,1	19200	38000	0,007
	24	5	0,3	61802-2RSR	2	1,3	0,1		18500	0,007
	24	5	0,3	61802-2Z	2	1,3	0,1		28000	0,007
	28	7	0,3	61902	4,3	2,3	0,1	20600	34000	0,016
	28	7	0,3	61902-2RSR	4,3	2,3	0,1		16000	0,016
	28	7	0,3	61902-2Z	4,3	2,3	0,1		24000	0,016
	32	8	0,3	16002	5,6	2,8	0,1	20000	32000	0,03
	32	9	0,3	6002	5,6	2,8	0,1	21500	32000	0,029
	32	9	0,3	6002-RS2	5,6	2,8	0,1		15000	0,029
	32	9	0,3	6002-2RS2	5,6	2,8	0,1		15000	0,029
	32	9	0,3	6002-Z	5,6	2,8	0,1		24000	0,029
	32	9	0,3	6002-2Z	5,6	2,8	0,1		24000	0,029
	35	11	0,6	6202	7,6	3,7	0,2	20200	28000	0,043
	35	11	0,6	6202-RS2	7,6	3,7	0,2		13000	0,043
	35	11	0,6	6202-2RS2	7,6	3,7	0,2		13000	0,043
	35	11	0,6	6202-Z	7,6	3,7	0,2		20000	0,043



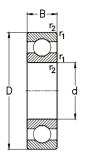

Anschlussmaße siehe Seite 383

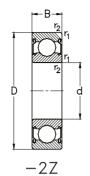

Abutment and fillet dimensions see on page 383

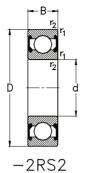

Hauptabmessungen [mm]				Lagertype	Tragzahlen [kN]			Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Gewicht [kg]
Boundary dimensions [mm]				Designation	Load ratings [kN]			Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Weight [kg]
d	D	В	r ₁ , r ₂ min		C _r dyn.	C ₀r stat.	C _u	${\sf n}_{\scriptscriptstyle heta r}$	n _G	m
15	35	11	0,6	6202-2Z	7,6	3,7	0,2		20000	0,043
	42	13	1	6302	11,4	5,4	0,2	17500	24000	0,08
	42	13	1	6302-RS2	11,4	5,4	0,2		12000	0,08
	42	13	1	6302-2RS2	11,4	5,4	0,2		12000	0,08
	42	13	1	6302-Z	11,4	5,4	0,2		18000	0,08
	42	13	1	6302-2Z	11,4	5,4	0,2		18000	0,08
17	26	5	0,3	61803	2,1	1,4	0,1	17100	34000	0,008
	26	5	0,3	61803-2RSR	2,1	1,4	0,1		16000	0,008
	26	5	0,3	61803-2Z	2,1	1,4	0,1		24000	0,008
	30	7	0,3	61903	4,6	2,6	0,1	18500	32000	0,018
	30	7	0,3	61903-2RSR	4,6	2,6	0,1		14500	0,018
	30	7	0,3	61903-2Z	4,6	2,6	0,1		22000	0,018
	35	8	0,3	16003	6	3,3	0,2	17700	28000	0,03
	35	10	0,3	6003	6	3,3	0,2	20300	28000	0,037
	35	10	0,3	6003-RS2	6	3,3	0,2		13000	0,037
	35	10	0,3	6003-2RS2	6	3,3	0,2		13000	0,037
	35	10	0,3	6003-Z	6	3,3	0,2		22000	0,037
	35	10	0,3	6003-2Z	6	3,3	0,2		22000	0,037
	40	12	0,6	6203	9,6	4,8	0,2	18100	24000	0,063
	40	12	0,6	6203-RS2	9,6	4,8	0,2		12000	0,063
	40	12	0,6	6203-2RS2	9,6	4,8	0,2		12000	0,063
	40	12	0,6	6203-Z	9,6	4,8	0,2		18000	0,063

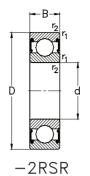


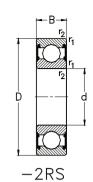
Hau		nessu nm]	ngen	Lagertype	Tı	ragzahle [kN]	en	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Gewicht [kg]
Вои	•	dimen nm]	sions	Designation	Lo	[kN]		Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Weight [kg]
d	D	В	r ₁ , r ₂ min		C _r dyn.	C ₀r stat.	C _u	n _{er}	n _G	m
17	40	12	0,6	6203-2Z	9,6	4,8	0,2		18000	0,063
	47	14	1	6303	13,6	6,6	0,3	15900	22000	0,11
	47	14	1	6303-RS2	13,6	6,6	0,3		10500	0,11
	47	14	1	6303-2RS2	13,6	6,6	0,3		10500	0,11
	47	14	1	6303-Z	13,6	6,6	0,3		16000	0,11
	47	14	1	6303-2Z	13,6	6,6	0,3		16000	0,11
	62	17	1,1	6403	22,7	10,8	0,5	13700	18000	0,275
20	32	7	0,3	61804	3,5	2,2	0,1	16600	28000	0,018
	32	7	0,3	61804-2RSR	3,5	2,2	0,1		12500	0,018
	32	7	0,3	61804-2Z	3,5	2,2	0,1		19000	0,018
	37	9	0,3	61904	6,4	3,7	0,2	17000	26000	0,038
	37	9	0,3	61904-2RSR	6,4	3,7	0,2		12000	0,038
	37	9	0,3	61904-2Z	6,4	3,7	0,2		18000	0,038
	42	8	0,3	16004	7,9	4,5	0,2	14300	24000	0,049
	42	12	0,6	6004	9,4	5	0,2	18300	24000	0,065
	42	12	0,6	6004-RS2	9,4	5	0,2		11000	0,065
	42	12	0,6	6004-2RS2	9,4	5	0,2		11000	0,065
	42	12	0,6	6004-Z	9,4	5	0,2		17000	0,065
	42	12	0,6	6004-2Z	9,4	5	0,2		17000	0,065
	47	14	1	6204	12,8	6,7	0,3	16300	20000	0,105
	47	14	1	6204-RS2	12,8	6,7	0,3		9900	0,105
	47	14	1	6204-2RS2	12,8	6,7	0,3		9900	0,105



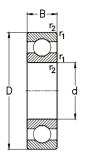


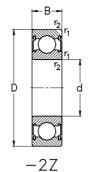

Abutment and fillet dimensions see on page 383

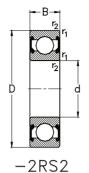

	[n	messu nm] dimen		Lagertype Designation		ragzahle [kN] pad rating		Referenzdrehzahlen [min ⁻¹] Thermal speed	Grenzdrehzahlen [min ⁻¹] Limited speed	Gewicht [kg] Weight
Бои	•	nm]	310113	Designation	LC	[kN]	ys	ratings [rpm]	ratings [rpm]	[kg]
d	D	В	r ₁ , r ₂ min		C _r dyn.	C ₀r stat.	Cu	$n_{\scriptscriptstyle{ hetar}}$	n _G	m
20	47	14	1	6204-Z	12,8	6,7	0,3		15000	0,105
	47	14	1	6204-2Z	12,8	6,7	0,3		15000	0,105
	52	15	1,1	6304	15,9	7,9	0,4	14400	19000	0,148
	52	15	1,1	6304-RS2	15,9	7,9	0,4		9300	0,148
	52	15	1,1	6304-2RS2	15,9	7,9	0,4		9300	0,148
	52	15	1,1	6304-Z	15,9	7,9	0,4		14000	0,148
	52	15	1,1	6304-2Z	15,9	7,9	0,4		14000	0,148
	72	19	1,1	6404	31	15,3	0,7	12200	15000	0,412
22	50	14	1	62/22	14	7,7	0,4	14900	19000	0,11
	50	14	1	62/22-2RS2	14	7,7	0,4		11500	0,11
	50	14	1	62/22-2Z	14	7,7	0,4		15000	0,11
	56	16	1,1	63/22	18,4	9,3	0,4	13500	18000	0,16
	56	16	1,1	63/22-2RS2	18,4	9,3	0,4		9500	0,16
	56	16	1,1	63/22-2Z	18,4	9,3	0,4		14000	0,16
25	37	7	0,3	61805	3,7	2,6	0,1	13500	24000	0,022
	37	7	0,3	61805-2RSR	3,7	2,6	0,1		11000	0,022
	37	7	0,3	61805-2Z	3,7	2,6	0,1		17000	0,022
	42	9	0,3	61905	6,7	4,2	0,2	14100	22000	0,045
	42	9	0,3	61905-2RSR	6,6	4,2	0,2		10500	0,045
	42	9	0,3	61905-2Z	6,7	4,2	0,2		16000	0,045
	47	8	0,3	16005	7,2	4,7	0,3	11900	20000	0,056
	47	12	0,6	6005	10,0	5,8	0,3	15300	20000	0,078

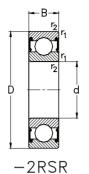


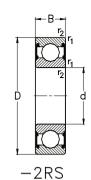
Hai	•	nessu nm]	ngen	Lagertype	Ti	ragzahle [kN]	en	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Gewicht [kg]
Воц	•	dimen nm]	sions	Designation	Lo	ad rating [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Weight [kg]
d	D	В	r ₁ , r ₂ min		C _r dyn.	C ₀r stat.	C _u	$\mathbf{n}_{ extsf{ heta} r}$	n _G	m
25	47	12	0,6	6005-RS2	10,1	5,9	0,3		10000	0,078
	47	12	0,6	6005-2RS2	10,1	5,9	0,3		10000	0,078
	47	12	0,6	6005-Z	10,1	5,9	0,3		15000	0,078
	47	12	0,6	6005-2Z	10,1	5,9	0,3		15000	0,078
	52	15	1	6205	14	7,9	0,4	14400	18000	0,125
	52	15	1	6205-RS2	14	7,9	0,4		9300	0,125
	52	15	1	6205-2RS2	14	7,9	0,4		9300	0,125
	52	15	1	6205-Z	14	7,9	0,4		14000	0,125
	52	15	1	6205-2Z	14	7,9	0,4		14000	0,125
	62	17	1,1	6305	22,4	11,5	0,5	12300	16000	0,232
	62	17	1,1	6305-RS2	22,4	11,5	0,5		7300	0,232
	62	17	1,1	6305-2RS2	22,4	11,5	0,5	-	7300	0,232
	62	17	1,1	6305-Z	22,4	11,5	0,5		11000	0,232
	62	17	1,1	6305-2Z	22,4	11,5	0,5		11000	0,232
	80	21	1,5	6405	38,3	19,3	0,9	11000	13000	0,543
28	58	16	1	62/28	16,6	9,4	0,4	13100	16000	0,17
	58	16	1	62/28-2RS2	16,6	9,4	0,4		9500	0,17
	58	16	1	62/28-2Z	16,6	9,4	0,4		14000	0,17
	68	18	1,1	63/28	25	13,8	0,6	11300	14000	0,29
	68	18	1,1	63/28-2RS2	25	13,8	0,6		6000	0,29
	68	18	1,1	63/28-2Z	25	13,8	0,6		9000	0,29
30	42	7	0,3	61806	4	3,2	0,1	11300	20000	0,027



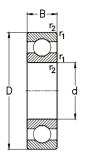


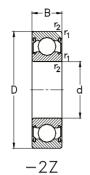

Abutment and fillet dimensions see on page 383

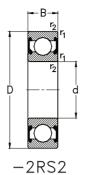

Ha	•	nessu nm]	ngen	Lagertype	Tı	ragzahle [kN]	en	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Gewicht [kg]
Воц	•	dimen nm]	sions	Designation	Lo	oad ratin [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Weight [kg]
d	D	В	r ₁ , r ₂ min		C _r dyn.	C ₀r stat.	C _u	n_{er}	n _G	m
30	42	7	0,3	61806-2RSR	4	3,2	0,1		10000	0,027
	42	7	0,3	61806-2Z	4	3,2	0,1		15000	0,027
	47	9	0,3	61906	7,2	5	0,2	11900	19000	0,051
	47	9	0,3	61906-2RSR	7,2	5	0,2		9500	0,051
	47	9	0,3	61906-2Z	7,2	5	0,2		14000	0,051
	55	9	0,3	16006	11,2	7,4	0,3	10500	17000	0,084
	55	13	1	6006	13,2	8,3	0,4	13100	17000	0,115
	55	13	1	6006-RS2	13,2	8,3	0,4		8500	0,115
	55	13	1	6006-2RS2	13,2	8,3	0,4		8500	0,115
	55	13	1	6006-Z	13,2	8,3	0,4		13000	0,115
	55	13	1	6006-2Z	13,2	8,3	0,4		13000	0,115
	62	16	1	6206	19,5	11,3	0,5	12000	15000	0,192
	62	16	1	6206-RS2	19,5	11,3	0,5		7300	0,192
	62	16	1	6206-2RS2	19,5	11,3	0,5		7300	0,192
	62	16	1	6206-Z	19,5	11,3	0,5		11000	0,192
	62	16	1	6206-2Z	19,5	11,3	0,5		11000	0,192
	72	19	1,1	6306	27	15,2	0,7	10800	13000	0,348
	72	19	1,1	6306-RS2	27	15,2	0,7		6300	0,348
	72	19	1,1	6306-2RS2	27	15,2	0,7		6300	0,348
	72	19	1,1	6306-Z	27	15,2	0,7		9500	0,348
	72	19	1,1	6306-2Z	27	15,2	0,7		9500	0,348
	90	23	1,5	6406	47,4	24,5	1,1	9900	11000	0,746

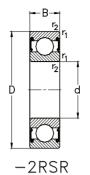


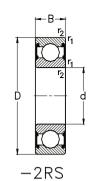
Hau	ıptabr [n	nessu nm]	ngen	Lagertype	Ti	ragzahle [kN]	en	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Gewicht [kg]
Вои	ındary [n	dimen nm]	sions	Designation	Lo	oad rating [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Weight [kg]
d	D	В	r ₁ , r ₂ min		C _r dyn.	C ₀r stat.	C _u	n _{er}	n _G	m
35	47	7	0,3	61807	4,3	3,6	0,2	9600	18000	0,03
	47	7	0,3	61807-2RSR	4,3	3,6	0,2		8500	0,03
	47	7	0,3	61807-2Z	4,3	3,6	0,2		13000	0,03
	55	10	0,6	61907	10,4	7,2	0,3	10500	16000	0,08
	55	10	0,6	61907-2RSR	10,4	7,2	0,3		7500	0,08
	55	10	0,6	61907-2Z	10,4	7,2	0,3		11000	0,08
	62	9	0,3	16007	12,2	8,8	0,4	8900	15000	0,107
	62	14	1	6007	16,2	10,4	0,5	11600	15000	0,151
	62	14	1	6007-RS2	16,2	10,4	0,5		7300	0,151
	62	14	1	6007-2RS2	16,2	10,4	0,5		7300	0,151
	62	14	1	6007-Z	16,2	10,4	0,5		11000	0,151
	62	14	1	6007-2Z	16,2	10,4	0,5		11000	0,151
	72	17	1,1	6207	25,7	15,3	0,7	10300	13000	0,288
	72	17	1,1	6207-RS2	25,7	15,3	0,7		6300	0,288
	72	17	1,1	6207-2RS2	25,7	15,3	0,7		6300	0,288
	72	17	1,1	6207-Z	25,7	15,3	0,7	-	9500	0,288
	72	17	1,1	6207-2Z	25,7	15,3	0,7		9500	0,288
	80	21	1,5	6307	33,4	19,2	0,9	9900	12000	0,458
	80	21	1,5	6307-RS2	33,4	19,2	0,9		5600	0,458
	80	21	1,5	6307-2RS2	33,4	19,2	0,9	-	5600	0,458
	80	21	1,5	6307-Z	33,4	19,2	0,9		8500	0,458
	80	21	1,5	6307-2Z	33,4	19,2	0,9		8500	0,458



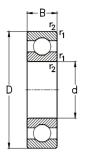


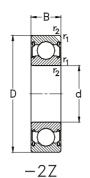

Abutment and fillet dimensions see on page 383

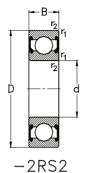

Hai	uptabn [m	nessu nm]	ngen	Lagertype	Ti	ragzahle [kN]	en	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Gewicht [kg]
Вои	undary [n	dimen nm]	sions	Designation	Lo	oad rating [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Weight [kg]
d	D	В	r ₁ , r ₂ min		C _r dyn.	C ₀r stat.	C _u	n _{er}	n _G	m
35	100	25	1,5	6407	57	30,1	1,4	9000	10000	0,928
40	52	7	0,3	61808	4,4	3,9	0,2	8400	16000	0,034
	52	7	0,3	61808-2RSR	4,4	3,9	0,2		7000	0,034
	52	7	0,3	61808-2Z	4,4	3,9	0,2		11000	0,034
	62	12	0,6	61908	12,2	8,9	0,4	10100	14000	0,12
	62	12	0,6	61908-2RSR	12,2	8,9	0,4		6500	0,12
	62	12	0,6	61908-2Z	12,2	8,9	0,4		10000	0,12
	68	9	0,3	16008	12,6	9,7	0,4	7900	14000	0,126
	68	15	1	6008	17	11,7	0,5	10700	14000	0,188
	68	15	1	6008-RS2	17	11,7	0,5		6600	0,188
	68	15	1	6008-2RS2	17	11,7	0,5		6600	0,188
	68	15	1	6008-Z	17	11,7	0,5		10000	0,188
	68	15	1	6008-2Z	17	11,7	0,5		10000	0,188
	80	18	1,1	6208	29,5	18,2	0,8	9300	11000	0,366
	80	18	1,1	6208-RS2	29,5	18,2	0,8		5600	0,366
	80	18	1,1	6208-2RS2	29,5	18,2	0,8		5600	0,366
	80	18	1,1	6208-Z	29,5	18,2	0,8		8500	0,366
	80	18	1,1	6208-2Z	29,5	18,2	0,8		8500	0,366
	90	23	1,5	6308	40,8	24	1,1	9000	11000	0,632
	90	23	1,5	6308-RS2	40,8	24	1,1		5000	0,632
	90	23	1,5	6308-2RS2	40,8	24	1,1		5000	0,632
	90	23	1,5	6308-Z	40,8	24	1,1		7500	0,632

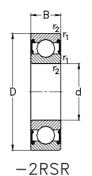


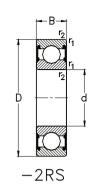
Hau	ıptabn [n	nessu nm]	ngen	Lagertype	Tı	ragzahle [kN]	en	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Gewicht [kg]
Воц	ındary [n	dimen nm]	sions	Designation	Lo	oad ratin [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Weight [kg]
d	D	В	r ₁, r ₂ min		C _r dyn.	C ₀r stat.	C _u	n _{er}	n _G	m
40	90	23	1,5	6308-2Z	40,8	24	1,1		7500	0,632
	110	27	2	6408	66	37,7	1,7	8200	9000	1,18
45	58	7	0,3	61809	4,6	4,3	0,2	7300	14000	0,04
	58	7	0,3	61809-2RSR	4,6	4,3	0,2		6300	0,04
	58	7	0,3	61809-2Z	4,6	4,3	0,2		9500	0,04
	68	12	0,6	61909	14,1	10,9	0,5	9000	13000	0,14
	68	12	0,6	61909-2RSR	14,1	10,9	0,5		6000	0,14
	68	12	0,6	61909-2Z	14,1	10,9	0,5		9000	0,14
	75	10	0,6	16009	15,6	12,2	0,6	7400	12000	0,168
	75	16	1	6009	21,1	14,8	0,7	9800	12000	0,231
	75	16	1	6009-RS2	21,1	14,8	0,7		6000	0,231
	75	16	1	6009-2RS2	21,1	14,8	0,7		6000	0,231
	75	16	1	6009-Z	21,1	14,8	0,7		9000	0,231
	75	16	1	6009-2Z	21,1	14,8	0,7		9000	0,231
	85	19	1,1	6209	31,7	20,7	0,9	8700	11000	0,405
	85	19	1,1	6209-RS2	31,7	20,7	0,9		5300	0,405
	85	19	1,1	6209-2RS2	31,7	20,7	0,9		5300	0,405
	85	19	1,1	6209-Z	31,7	20,7	0,9		8000	0,405
	85	19	1,1	6209-2Z	31,7	20,7	0,9		8000	0,405
	100	25	1,5	6309	53	31,9	1,5	8300	9500	0,848
	100	25	1,5	6309-RS2	53	31,9	1,5		4400	0,848
	100	25	1,5	6309-2RS2	53	31,9	1,5		4400	0,848



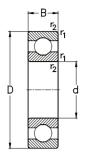


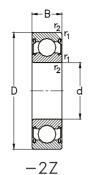

Abutment and fillet dimensions see on page 383

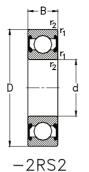

	-	nm]	ŭ	Lagertype		ragzahle [kN]		Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Gewicht [kg]
Вои	undary [n	aimen nm]	ISIONS	Designation	LC	oad rating [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Weight [kg]
d	D	В	r ₁ , r ₂ min		C _r dyn.	C ₀r stat.	C _u	$\mathbf{n}_{\theta r}$	n _G	m
45	100	25	1,5	6309-Z	53	31,9	1,5		6700	0,848
	100	25	1,5	6309-2Z	53	31,9	1,5		6700	0,848
	120	29	2	6409	78	45,4	2,1	7600	8500	1,51
50	65	7	0,3	61810	5,5	5,3	0,2	6400	13000	0,052
	72	12	0,6	61910	13,9	11	0,5	8100	12000	0,14
	72	12	0,6	61910-2RSR	13,9	11	0,5		5500	0,14
	72	12	0,6	61910-2Z	13,9	11	0,5		8500	0,14
	80	10	0,6	16010	16,1	13,2	0,6	6700	11000	0,18
	80	16	1	6010	21,8	16,6	0,8	8900	11000	0,261
	80	16	1	6010-RS2	21,8	16,6	0,8		5600	0,261
	80	16	1	6010-2RS2	21,8	16,6	0,8		5600	0,261
	80	16	1	6010-Z	21,8	16,6	0,8		8500	0,261
	80	16	1	6010-2Z	21,8	16,6	0,8		8500	0,261
	90	20	1,1	6210	35,1	23,2	1,1	8200	10000	0,453
	90	20	1,1	6210-RS2	35,1	23,2	1,1		5000	0,453
	90	20	1,1	6210-2RS2	35,1	23,2	1,1		5000	0,453
	90	20	1,1	6210-Z	35,1	23,2	1,1		7500	0,453
	90	20	1,1	6210-2Z	35,1	23,2	1,1		7500	0,453
	110	27	2	6310	62	38	1,7	7700	8500	1,1
	110	27	2	6310-RS2	62	38	1,7		4000	1,1
	110	27	2	6310-2RS2	62	38	1,7		4000	1,1
	110	27	2	6310-Z	62	38	1,7		6000	1,1

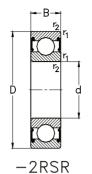


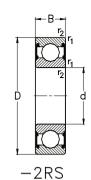
Hai	uptabn [m	nessu nm]	ngen	Lagertype	Tı	ragzahle [kN]	en	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Gewicht [kg]
Воц	undary [n	dimen nm]	sions	Designation	Lo	oad ratin [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Weight [kg]
d	D	В	r ₁ , r ₂ min		C _r dyn.	C ₀r stat.	C _u	n _{er}	n _G	m
50	110	27	2	6310-2Z	62	38	1,7		6000	1,1
	130	31	2,1	6410	92	55	2,5	7100	7500	1,83
55	72	9	0,3	61811	9,04	8,8	0,38	6600	12000	0,083
	80	13	1	61911	16	13,3	0,6	7500	11000	0,19
	90	11	0,6	16011	19,5	16,3	0,7	6200	10000	0,26
	90	18	1,1	6011	28,2	21,3	1	8300	10000	0,311
	90	18	1,1	6011-RS2	28,2	21,3	1		5000	0,311
	90	18	1,1	6011-2RS2	28,2	21,3	1		5000	0,311
	90	18	1,1	6011-Z	28,2	21,3	1		7500	0,311
	90	18	1,1	6011-2Z	28,2	21,3	1		7500	0,311
	100	21	1,5	6211	43,4	29,2	1,3	7500	9000	0,607
	100	21	1,5	6211-RS2	43,4	29,2	1,3		4400	0,607
	100	21	1,5	6211-2RS2	43,4	29,2	1,3		4400	0,607
	100	21	1,5	6211-Z	43,4	29,2	1,3		6700	0,607
	100	21	1,5	6211-2Z	43,4	29,2	1,3		6700	0,607
	120	29	2	6311	72	44,8	2	7200	8000	1,39
	120	29	2	6311-RSR	72	44,8	2		3500	1,39
	120	29	2	6311-2RSR	72	44,8	2		3500	1,39
	120	29	2	6311-Z	72	44,8	2		5300	1,39
	120	29	2	6311-2Z	72	44,8	2		5300	1,39
	140	33	2,1	6411	101	63	2,8	6700	7000	2,4
60	78	10	0,3	61812	11,5	10,6	0,5	6400	11000	0,11



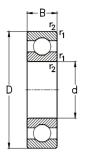



Abutment and fillet dimensions see on page 383


Ha	uptabr [n	nessu nm]	ngen	Lagertype	Ti	ragzahle [kN]	en	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Gewicht [kg]
Воц	undary [n	dimen nm]	sions	Designation	Lo	oad rating [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Weight [kg]
d	D	В	r ₁ , r ₂ min		C _r dyn.	C ₀r stat.	C _u	$n_{\theta r}$	n _G	m
60	85	13	1	61912	19,5	16,3	0,7	6900	10000	0,2
	95	11	0,6	16012	19,9	17,5	0,8	5700	9500	0,28
	95	18	1,1	6012	29,4	23,2	1,1	7700	9500	0,41
	95	18	1,1	6012-RS2	29,4	23,2	1,1		4500	0,41
	95	18	1,1	6012-2RS2	29,4	23,2	1,1		4500	0,41
	95	18	1,1	6012-Z	29,4	23,2	1,1		7000	0,41
	95	18	1,1	6012-2Z	29,4	23,2	1,1		7000	0,41
	110	22	1,5	6212	47,7	33	1,5	6900	8000	0,783
	110	22	1,5	6212-RS2	47,7	33	1,5		4000	0,783
	110	22	1,5	6212-2RS2	47,7	33	1,5		4000	0,783
	110	22	1,5	6212-Z	47,7	33	1,5		6000	0,783
	110	22	1,5	6212-2Z	47,7	33	1,5		6000	0,783
	130	31	2,1	6312	82	51,9	2,4	6800	7000	1,72
	130	31	2,1	6312-RSR	82	51,9	2,4		3300	1,72
	130	31	2,1	6312-2RSR	82	52	2,4		3300	1,72
	130	31	2,1	6312-Z	82	52	2,4		5000	1,72
	130	31	2,1	6312-2Z	82	52	2,4		5000	1,72
	150	35	2,1	6412	109	70	3,1	6400	6300	2,8
65	85	10	0,6	61813	9,7	9,8	0,4	5800	10000	0,13
	90	13	1	61913	19,9	17,5	0,8	6300	9500	0,22
	100	11	0,6	16013	21,2	19,7	0,9	5300	9000	0,298
	100	18	1,1	6013	30,5	25,2	1,1	7100	9000	0,436

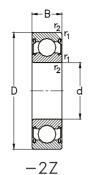


Ha	uptabn [n	nessu nm]	ngen	Lagertype	Tı	ragzahle [kN]	n	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Gewicht [kg]
Boi	undary [n	dimen nm]	sions	Designation	Lo	oad rating [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Weight [kg]
d	D	В	r ₁, r ₂ min		C _r dyn.	C ₀r stat.	C _u	n _{er}	n _G	m
65	100	18	1,1	6013-RSR	30,5	25,2	1,1		4100	0,436
	100	18	1,1	6013-2RSR	30,5	25,2	1,1		4100	0,436
	100	18	1,1	6013-Z	30,5	25,2	1,1		6300	0,436
	100	18	1,1	6013-2Z	30,5	25,2	1,1		6300	0,436
	120	23	1,5	6213	57	40	1,8	6400	7500	0,982
	120	23	1,5	6213-RSR	57	40	1,8		3500	0,982
	120	23	1,5	6213-2RSR	57	40	1,8		3500	0,982
	120	23	1,5	6213-Z	57	40	1,8		5300	0,982
	120	23	1,5	6213-2Z	57	40	1,8		5300	0,982
	140	33	2,1	6313	93	60	2,7	6400	6700	2,13
	140	33	2,1	6313-RSR	93	60	2,7		3000	2,13
	140	33	2,1	6313-2RSR	93	60	2,7		3000	2,13
	140	33	2,1	6313-Z	93	60	2,7		4500	2,13
	140	33	2,1	6313-2Z	93	60	2,7		4500	2,13
	160	37	2,1	6413	118	79	3,4	6100	6000	3,3
70	90	10	0,6	61814	9,8	10,1	0,5	5300	9000	0,14
	100	16	1	61914	27,1	23,3	1,1	6400	8500	0,35
	110	13	0,6	16014	27,9	25,1	1,1	5300	8000	0,43
	110	20	1,1	6014	38	30,9	1,4	6800	8000	0,6
	110	20	1,1	6014-RSR	38	30,9	1,4		4000	0,604
	110	20	1,1	6014-2RSR	38	30,9	1,4		4000	0,604
	110	20	1,1	6014-Z	38	30,9	1,4		6000	0,604

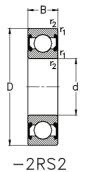


Abutment and fillet dimensions see on page 383

Hai	uptabn [m	nessu nm]	ngen	Lagertype	Ti	ragzahle [kN]	en	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Gewicht [kg]
Воц	undary [n	dimen nm]	sions	Designation	Lo	oad rating [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Weight [kg]
d	D	В	r ₁ , r ₂ min		C _r dyn.	C ₀r stat.	C _u	$n_{\theta r}$	n _G	m
70	110	20	1,1	6014-2Z	38	30,9	1,4		6000	0,604
	125	24	1,5	6214	61	45,1	2,1	6100	7000	1,08
	125	24	1,5	6214-RSR	61	45,1	2,1		3300	1,08
	125	24	1,5	6214-2RSR	61	45,1	2,1		3300	1,08
	125	24	1,5	6214-Z	61	45,1	2,1		5000	1,08
	125	24	1,5	6214-2Z	61	45,1	2,1		5000	1,08
	150	35	2,1	6314	104	68	3	6100	6300	2,63
	150	35	2,1	6314-RSR	104	68	3		2800	2,63
	150	35	2,1	6314-2RSR	104	68	3		2800	2,63
	150	35	2,1	6314-Z	104	68	3		4300	2,63
	150	35	2,1	6314-2Z	104	68	3		4300	2,63
	180	42	3	6414	140	100	4	5700	5300	4,8
75	95	10	0,6	61815	13,3	13,1	0,6	5000	8500	0,15
	105	16	1	61915	27,9	25,1	1,1	6000	8000	0,37
	115	13	0,6	16015	28,6	26,8	1,2	4900	7500	0,456
	115	20	1,1	6015	39,5	33,5	1,5	6400	7500	0,643
	115	20	1,1	6015-RSR	39,5	33,5	1,5		3700	0,643
	115	20	1,1	6015-2RSR	39,5	33,5	1,5		3700	0,643
	115	20	1,1	6015-Z	39,5	33,5	1,5		5600	0,643
	115	20	1,1	6015-2Z	39,5	33,5	1,5		5600	0,643
	130	25	1,5	6215	66	49,5	2,2	5900	6700	1,21
	130	25	1,5	6215-RSR	66	49,5	2,2		3200	1,21

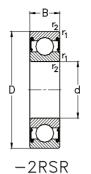

Hauptabmessungen

26


2

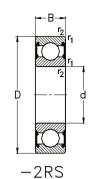
6216-2Z

140



Lagertype

Tragzahlen


[FN]

Referenzdrehzahlen Grenzdrehzahlen

4500

1,42

Gewicht

[ka]

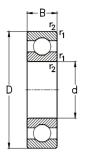
[mm]						[kN]		[min"]	[min ⁻ ']	[kg]
Вог	undary [n	dimen nm]	sions	Designation	Lo	oad rating [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Weight [kg]
d	D	В	r ₁ , r ₂ min		C _r dyn.	C ₀r stat.	C _u	n _{er}	n _G	m
75	130	25	1,5	6215-2RSR	66	49,5	2,2		3200	1,21
	130	25	1,5	6215-Z	66	49,5	2,2		4800	1,21
	130	25	1,5	6215-2Z	66	49,5	2,2		4800	1,21
	160	37	2,1	6315	114	77	3,2	6300	5600	3,12
	160	37	2,1	6315-RSR	114	77	3,2		2700	3,12
	160	37	2,1	6315-2RSR	114	77	3,2		2700	3,12
	160	37	2,1	6315-Z	114	77	3,2		4000	3,12
	160	37	2,1	6315-2Z	114	77	3,2		4000	3,12
	190	45	3	6415	154	114	4,5	5600	5000	6,75
80	100	10	0,6	61816	15,9	16,8	0,8	4600	8000	0,15
	110	16	1	61916	27,6	25,3	1,2	5600	7500	0,4
	125	14	0,6	16016	33,1	31,4	1,4	4700	7000	0,615
	125	22	1,1	6016	51	42	1,9	6100	7000	0,85
	125	22	1,1	6016-RSR	51	42	1,9		3300	0,85
	125	22	1,1	6016-2RSR	51	42	1,9		3300	0,85
	125	22	1,1	6016-Z	51	42	1,9		5000	0,85
	125	22	1,1	6016-2Z	51	42	1,9		5000	0,85
	140	26	2	6216	72	54	2,3	5500	6000	1,42
	140	26	2	6216-RSR	72	54	2,3		3000	1,42
	140	26	2	6216-2RSR	72	54	2,3		3000	1,42
	140	26	2	6216-Z	72	54	2,3		4500	1,42

404 www.nke.at

2,3

54

72



Abutment and fillet dimensions see on page 383

На	Hauptabmessungen [mm]		ngen	Lagertype	Tragzahlen [kN]			Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Gewicht [kg]
Bot	undary [m	dimen nm]	sions	Designation	Lo	oad rating [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Weight [kg]
d	D	В	r ₁ , r ₂ min		C _r dyn.	C ₀r stat.	C _u	n _{er}	n _G	m
80	170	39	2,1	6316	123	87	3,5	5500	5300	3,73
	170	39	2,1	6316-RSR	123	87	3,5		2500	3,73
	170	39	2,1	6316-2RSR	123	87	3,5		2500	3,73
	170	39	2,1	6316-Z	123	87	3,5		3800	3,73
	170	39	2,1	6316-2Z	123	87	3,5		3800	3,73
	200	48	3	6416	163	125	4,8	5400	4800	8
85	110	13	1	61817	15,9	16,8	0,8	4900	7500	0,27
	120	18	1,1	61917	34	29,9	1,3	5500	7000	0,55
	130	14	0,6	16017	34	33,3	1,5	4400	6700	0,641
	130	22	1,1	6017	53	45,6	2	5800	6700	0,895
	130	22	1,1	6017-RSR	53	45,6	2		3200	0,895
	130	22	1,1	6017-2RSR	53	45,6	2		3200	0,895
	130	22	1,1	6017-Z	53	45,6	2		4800	0,895
	130	22	1,1	6017-2Z	53	45,6	2		4800	0,895
	150	28	2	6217	84	62	2,6	5300	5600	1,82
	150	28	2	6217-RSR	84	62	2,6		2800	1,82
	150	28	2	6217-2RSR	84	62	2,6		2800	1,82
	150	28	2	6217-Z	84	62	2,6		4300	1,82
	150	28	2	6217-2Z	84	62	2,6		4300	1,82
	180	41	3	6317	133	97	3,8	5300	5000	4,24
	180	41	3	6317-RSR	133	97	3,8		2300	4,24
	180	41	3	6317-2RSR	133	97	3,8		2300	4,24

Hauptabmessungen

[mm]

190

190

225

43

43

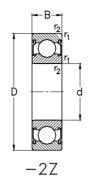
54

3

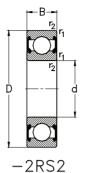
3

4

6318-Z

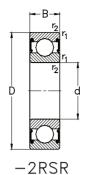

6318-2Z

6418


143

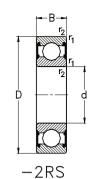
143

193



Lagertype

Tragzahlen


[kN]

Referenzdrehzahlen Grenzdrehzahlen

[min⁻¹]

[min⁻¹]

Gewicht

[kg]

4,9

4,9

11,6

3400

3400

4300

£									r91	
Boo	undary [n	dimen nm]	sions	Designation	Lo	oad rating [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Weight [kg]
d	D	В	r ₁ , r ₂		C _r	C_{or}	$C_{\rm u}$	$n_{\theta r}$	$n_{\rm G}$	m
			min		dyn.	stat.				
85	180	41	3	6317-Z	133	97	3,8		3400	4,24
	180	41	3	6317-2Z	133	97	3,8		3400	4,24
	210	52	4	6417	175	138	5,1	5300	4500	9,52
90	115	13	1	61818	19,6	20,5	0,9	4600	7000	0,28
	125	18	1,1	61918	36,5	34,2	1,5	5200	6700	0,59
	140	16	1	16018	33,6	33,3	1,4	4500	6300	0,859
	140	24	1,5	6018	58	50	2,1	5600	6300	1,18
	140	24	1,5	6018-RSR	58	50	2,1		3000	1,18
	140	24	1,5	6018-2RSR	58	50	2,1		3000	1,18
	140	24	1,5	6018-Z	58	50	2,1		4500	1,18
	140	24	1,5	6018-2Z	58	50	2,1		4500	1,18
	160	30	2	6218	96	72	2,9	5100	5300	2,2
	160	30	2	6218-RSR	96	72	2,9		2500	2,2
	160	30	2	6218-2RSR	96	72	2,9		2500	2,2
	160	30	2	6218-Z	96	72	2,9		3800	2,2
	160	30	2	6218-2Z	96	72	2,9	-	3800	2,2
	190	43	3	6318	143	107	4,1	5100	4800	4,9
	190	43	3	6318-RSR	143	107	4,1	-	2200	4,9
	190	43	3	6318-2RSR	143	107	4,1		2200	4,9

406 www.nke.at

4,1

4,1

5,7

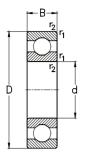
--

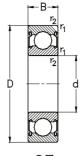
4900

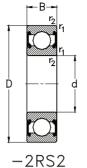
107

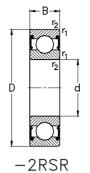
107

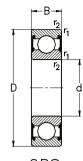
158






Abutment and fillet dimensions see on page 383

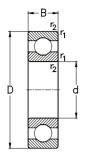

Hau	uptabn [m	nessu nm]	ngen	Lagertype	Tragzahlen [kN]			Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Gewicht [kg]
Вои	ındary [n	dimen nm]	sions	Designation	Lo	oad rating [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Weight [kg]
d	D	В	r ₁ , r ₂ min		C _r dyn.	C ₀r stat.	C _u	n _{er}	n _G	m
95	120	13	1	61819	19,8	21,3	0,9	4400	6700	0,3
	130	18	1,1	61919	36,3	34,5	1,5	4900	6300	0,61
	145	16	1	16019	42,7	41,9	1,7	4200	6000	0,905
	145	24	1,5	6019	60	54	2,2	5300	6000	1,21
	145	24	1,5	6019-RSR	60	54	2,2		2900	1,21
	145	24	1,5	6019-2RSR	60	54	2,2		2900	1,21
	145	24	1,5	6019-Z	60	54	2,2		4300	1,21
	145	24	1,5	6019-2Z	60	54	2,2		4300	1,21
	170	32	2,1	6219	109	82	3,2	5000	5000	2,67
	170	32	2,1	6219-RSR	109	82	3,2		2400	2,67
	170	32	2,1	6219-2RSR	109	82	3,2		2400	2,67
	170	32	2,1	6219-Z	109	82	3,2		3600	2,67
	170	32	2,1	6219-2Z	109	82	3,2		3600	2,67
	200	45	3	6319	153	119	4,4	4900	4500	5,65
	200	45	3	6319-RSR	153	119	4,4		2200	5,65
	200	45	3	6319-2RSR	153	119	4,4		2200	5,65
	200	45	3	6319-Z	153	119	4,4		3200	5,65
	200	45	3	6319-2Z	153	119	4,4		3200	5,65
100	125	13	1	61820	20,1	22	0,9	4100	6300	0,31
	140	20	1,1	61920	37,2	36,6	1,5	4900	6000	0,83
	150	16	1	16020	43,9	44,3	1,8	4000	5600	0,929
	150	24	1,5	6020	60	54	2,2	5100	5600	1,26

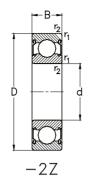


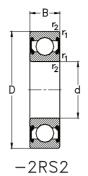
22	-2RS

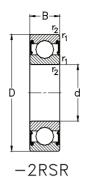
35 K	-2RS

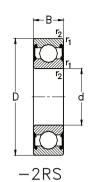
Hau	Hauptabmessungen [mm]		ngen	Lagertype	Tragzahlen [kN]			Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Gewicht [kg]
Вои	undary [n	dimen nm]	sions	Designation	Lo	oad ratin [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Weight [kg]
d	D	В	r ₁, r ₂ min		C _r dyn.	C ₀r stat.	C _u	n _{er}	n _G	m
100	150	24	1,5	6020-RSR	60	54	2,2		2700	1,26
	150	24	1,5	6020-2RSR	60	54	2,2		2700	1,26
	150	24	1,5	6020-Z	60	54	2,2		4000	1,26
	150	24	1,5	6020-2Z	60	54	2,2		4000	1,26
	180	34	2,1	6220	122	93	3,6	4800	4800	3,22
	180	34	2,1	6220-RSR	122	93	3,6		2200	3,22
	180	34	2,1	6220-2RSR	122	93	3,6		2200	3,22
	180	34	2,1	6220-Z	122	93	3,6		3400	3,22
	180	34	2,1	6220-2Z	122	93	3,6		3400	3,22
	215	47	3	6320	173	140	5,1	4600	4300	7,56
105	130	13	1	61821	17	19,7	0,8	3900	6300	0,32
	145	20	1,1	61921	43,5	42,3	1,7	4600	5600	0,87
	160	18	1	16021	52	51	2	4000	5300	1,22
	160	26	2	6021	72	66	2,6	5000	5300	1,58
	160	26	2	6021-RSR	72	66	2,6		2500	1,58
	160	26	2	6021-2RSR	72	66	2,6		2500	1,58
	160	26	2	6021-Z	72	66	2,6		3800	1,58
	160	26	2	6021-2Z	72	66	2,6		3800	1,58
	190	36	2,1	6221	133	105	3,9	4700	4500	3,86
	190	36	2,1	6221-RSR	133	105	3,9		2100	3,86
	190	36	2,1	6221-2RSR	133	105	3,9		2100	3,86
	190	36	2,1	6221-Z	133	105	3,9		3200	3,86

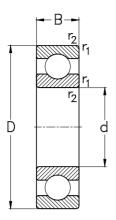

Abutment and fillet dimensions see on page 383


	u ptabn [m undary	nm]	ŭ	Lagertype		ragzahle [kN] pad rating		Referenzdrehzahlen [min ⁻¹] Thermal speed	Grenzdrehzahlen [min ⁻¹] Limited speed	Gewicht [kg]
БОГ	•	aimen nm]	ISIONS	Designation	LC	[kN]	ys	ratings [rpm]	ratings [rpm]	Weight [kg]
d	D	В	r ₁ , r ₂ min		C _r dyn.	C ₀r stat.	C _u	n _{er}	n _G	m
105	190	36	2,1	6221-2Z	133	105	3,9		3200	3,86
	225	49	3	6321	184	153	5,4	4500	4000	8,63
110	140	16	1	61822	28,1	30,7	1,2	4100	5600	0,6
	150	20	1,1	61922	39,2	40,5	1,6	4400	5600	0,9
	170	19	1	16022	57	57	2,2	3900	5000	1,49
	170	28	2	6022	82	73	2,8	4800	5000	1,97
	170	28	2	6022-RSR	82	73	2,8		2400	1,97
	170	28	2	6022-2RSR	82	73	2,8		2400	1,97
	170	28	2	6022-Z	82	73	2,8		3600	1,97
	170	28	2	6022-2Z	82	73	2,8		3600	1,97
	200	38	2,1	6222	144	117	4,3	4500	4300	4,57
	200	38	2,1	6222-2RSR	144	117	4,3		2000	4,57
	200	38	2,1	6222-2Z	144	117	4,3		3000	4,57
	240	50	3	6322	195	168	5,8	4100	3800	10,3
120	150	16	1	61824	29	32,9	1,3	3800	5300	0,65
	165	22	1,1	61924	48,6	50,5	1,9	4200	5000	1,2
	180	19	1	16024	59	60	2,2	3600	4800	1,6
	180	28	2	6024	88	80	3	4500	4800	2,11
	180	28	2	6024-2RSR	88	80	3		2300	2,11
	180	28	2	6024-2Z	88	80	3		3400	2,11
	215	40	2,1	6224	155	131	4,6	4300	4000	5,6
	215	40	2,1	6224-2RSR	155	131	4,6		1900	5,6


Einreihige Rillenkugellager


Single Row Deep Groove Ball Bearings

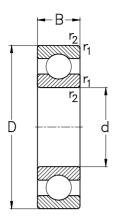



Hauptabmessungen [mm]		Lagertype	Tragzahlen [kN]			Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Gewicht [kg]		
Вои	undary dimensions Designation [mm]			Designation	Load ratings [kN]			Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Weight [kg]
d	D	В	r ₁ , r ₂ min		C _r dyn.	C ₀r stat.	C _u	$n_{e_{r}}$	n _G	m
120	215	40	2,1	6224-2Z	155	131	4,6		3400	5,6
	260	55	3	6324	217	196	6,5	3800	3400	12,8

Anschlussmaße siehe Seite 383

Abutment and fillet dimensions see on page 383

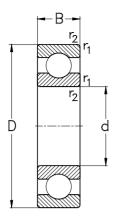
На	uptabme [mn		en	Lagertype	Tragzahlen [kN]			Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Gewicht [kg]
Вог	undary di [mn		ns	Designation	Lo	ad ratin [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Weight [kg]
d	D	В	r ₁ , r ₂ min		C _r dyn.	C ₀r stat.	C _u	$n_{\scriptscriptstyle{ hetar}}$	n _G	m
130	165	18	1,1	61826	37,9	42,9	1,6	3600	4800	0,93
	180	24	1,5	61926	65	67	2,5	4000	4500	1,6
	200	22	1,1	16026	79	81,9	2,9	3400	4300	2,42
	200	33	2	6026	106	101	3,6	4400	4300	3,27
	230	40	3	6226	167	146	5,0	3900	3600	6,22
	280	58	4	6326-M	230	215	6,8	3500	4500	18,2
140	175	18	1,1	61828	39,3	46	1,7	3300	4500	0,99
	190	24	1,5	61928	67	71	2,5	3700	5600	1,7
	210	22	1,1	16028	80	87	3,0	3200	4000	2,53
	210	33	2	6028	110	109	3,7	4100	4000	3,53
	250	42	3	6228	177	165	5,4	3600	3400	8,04
	300	62	4	6328-M	253	246	7,6	3200	4300	22
150	190	20	1,1	61830	49,1	57	2	3200	4300	1,4
	210	28	2	61930-MA	89	93	3,1	3600	5300	3,05
	225	24	1,1	16030	92	99	3,3	3100	3800	3,12
	225	35	2,1	6030	121	118	3,9	3900	3800	4,32
	270	45	3	6230-M	189	183	5,7	3300	3200	10,3
	320	65	4	6330-M	274	285	8,4	3000	4000	26,6
160	200	20	1,1	61832	49,6	59	2	3000	4000	1,45
	220	28	2	61932-MA	92	99	3,3	3400	5000	3,25
	240	25	1,5	16032	94	104	3,4	3000	3600	3,77
	240	38	2,1	6032-M	133	136	4,4	3800	3600	6,26



Abutment and fillet dimensions see on page 383

	uptabme [mn undary di	n] imensio		Lagertype Designation	Tragzahlen [kN] Load ratings [kN]			Referenzdrehzahlen [min-1] Thermal speed	Grenzdrehzahlen [min ⁻¹] Limited speed	Gewicht [kg] Weight
d	[mn	В	r ₁ , r ₂ min		C _r	C _{0r} stat.	C _u	ratings [rpm] n _{θr}	ratings [rpm] n _G	[kg] m
160	290	48	3	6232-M	199	203	6,2	3100	3000	14,3
	340	68	4	6332-M	300	323	9,3	2800	3800	29,3
170	215	22	1,1	61834	62	73	2,4	3000	3600	1,9
	230	28	2	61934-MA	94	104	3,4	3200	4800	3,4
	260	28	1,5	16034	109	123	3,8	2900	3200	5,13
	260	42	2,1	6034-M	168	172	5,3	3600	4300	7,1
	310	52	4	6234-M	213	224	6,6	3000	3800	17,5
	360	72	4	6334-M	327	365	10,2	2600	3400	35,1
180	225	22	1,1	61836	62	76	2,4	2800	3400	2
	250	33	2	61936-MA	119	128	4	3200	4300	5,05
	280	31	2	16036	131	146	4,4	2800	4000	6,66
	280	46	2,1	6036-M	189	198	5,9	3300	4000	11
	320	52	4	6236-M	226	244	7,0	2800	3600	18,2
	380	75	4	6336-M	347	399	10,8	2400	3200	43,3
190	240	24	1,5	61838-MA	75	92	2,8	2700	3200	2,6
	260	33	2	61938-MA	113	126	3,8	3000	4300	5,25
	290	31	2	16038-M	149	168	4,9	2700	3000	8
	290	46	2,1	6038-M	197	215	6,3	3100	3800	10,6
	340	55	4	6238-M	255	282	7,9	2600	3400	21,8
	400	78	5	6338-M	355	416	11,0	2300	3000	50
200	250	24	1,5	61840-MA	82	101	3,1	2600	3200	2,7
	280	38	2,1	61940-MA	149	168	4,9	2900	3800	7,4

Ha	uptabme [mn	_	en	Lagertype	Tragzahlen [kN]			Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Gewicht [kg]
Вог	undary di [mr		ns	Designation	Lo	ad ratin [kN]	ıgs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Weight [kg]
d	D	В	r ₁ , r ₂ min		C _r dyn.	C ₀r stat.	C _u	$n_{\theta r}$	n _G	m
200	310	34	2	16040-M	161	180	5,1	2600	2800	9,1
	310	51	2,1	6040-M	218	243	6,9	3000	3600	13,7
	360	58	4	6240-M	269	312	8,5	2400	3200	26,2
	420	80	5	6340-M	383	463	11,9	2200	3100	56,6
220	270	24	1,5	61844	85	109	3,2	2300	2800	3
	300	38	2,1	61944-MA	152	178	5	2600	3600	8
	340	37	2,1	16044-M	174	204	5,5	2300	2400	12
	340	56	3	6044-M	247	291	7,9	2700	3200	18
	400	65	4	6244-M	296	355	9,2	2200	3000	36,9
	460	88	5	6344-M	411	518	12,8	2000	2600	74,5
240	300	28	2	61848-MA	108	139	3,8	2300	2600	4,5
	320	38	2,1	61948-MA	159	195	5,3	2400	3200	8,6
	360	37	2,1	16048-M	202	255	6,7	2100	3000	14,3
	360	56	3	6048-M	256	317	8,3	2500	3000	19,9
	440	72	4	6248-M	360	471	11,6	2000	2600	50,2
	500	95	5	6348-M	440	592	14,0	1800	2400	96
260	320	28	2	61852-MA	111	149	4,0	2100	2400	4,8
	360	46	2,1	61952-MA	197	264	5,9	2200	3000	14,5
	400	44	3	16052-MA	236	309	7,7	2000	2800	21,2
	400	65	4	6052-M	291	376	9,4	2300	2800	31,1
	480	80	5	6252-M	408	563	13,3	1800	2400	66,6
	540	102	6	6352-M	503	711	16,2	1600	2100	119



Abutment and fillet dimensions see on page 383

	uptabme [mn undary di	n] Ŭ		Lagertype Designation		agzahle [kN]		Referenzdrehzahlen [min ⁻¹] Thermal speed	Grenzdrehzahlen [min-1] Limited speed	Gewicht [kg] Weight
	[mn			2 00.g		[kN]	90	ratings [rpm]	ratings [rpm]	[kg]
d	D	В	r ₁ , r ₂ min		C _r dyn.	C ₀r stat.	C _u	$n_{\scriptscriptstyle{ hetar}}$	n _G	m
280	350	33	2	61856-MA	147	191	4,9	2000	2200	7,4
	380	46	2,1	61956-MA	217	285	7,1	2000	2800	15,5
	420	44	3	16056-MA	242	329	8,0	1800	2600	23,1
	420	65	4	6056-M	302	408	9,9	2100	2600	33
	500	80	5	6256-M	424	599	13,8	1700	2200	70,5
	580	108	6	6356-M	568	841	18,4	1500	1900	146
300	380	38	2,1	61860-MA	147	191	4,9	1900	2600	10,5
	420	56	3	61960-MA	268	371	8,9	1900	2400	24,5
	460	50	4	16060-MA	284	405	9,4	1700	2400	32,7
	460	74	4	6060-M	375	521	12,2	1900	2400	43,2
320	400	38	2,1	61864-MA	180	243	5,8	1700	2400	11
	440	56	3	61964-MA	276	395	9,2	1800	2400	25,5
	480	50	4	16064-MA	281	406	9,2	1600	2200	34,4
	480	74	4	6064-M	370	542	12,3	1800	2200	49,4
340	420	38	2,1	61868-MA	179	253	5,9	1600	2400	11,5
	460	56	3	61968-MA	283	418	9,5	1600	2200	26,5
	520	57	4	16068-MA	340	516	11,3	1500	2000	47,3
	520	82	5	6068-M	425	642	14,1	1700	2000	61,4
360	440	38	2,1	61872-MA	161	234	5,3	1500	2200	12
	480	56	3	61972-MA	300	455	10,1	1500	2000	28
	540	57	4	16072-MA	352	552	11,8	1400	1900	49,5
	540	82	5	6072-M	460	717	15,4	1600	1900	64,4

На	uptabme [mn		en	Lagertype	Tr	agzahl [kN]	en	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Gewicht [kg]
Вог	undary di [mn		ns	Designation	Lo	ad ratin [kN]	ıgs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Weight [kg]
d	D	В	r ₁ , r ₂ min		C _r dyn.	C ₀r stat.	C _u	$n_{\scriptscriptstyle{ hetar}}$	n _G	m
380	480	46	2,1	61876-MA	244	366	8	1400	2000	20
	520	65	4	61976-MA	352	552	11,8	1500	1900	40
	560	57	4	16076-MA	376	618	13,0	1300	1800	50,5
	560	82	5	6076-M	458	726	15,2	1500	1800	67,6
400	500	46	2,1	61880-M	248	380	8,1	1300	1900	20,5
	540	65	4	61980-MA	345	560	11,7	1400	1800	41,5
	600	90	5	6080-M	493	810	16,5	1400	1700	87,2
420	520	46	2,1	61884-MA	251	393	8,2	1300	1800	21,5
	560	65	4	61984-MA	352	586	12	1300	1800	43
	620	90	5	6084-M	535	930	18,5	1300	1600	93
440	540	46	2,1	61888-MA	255	406	8,3	1200	1800	22,5
	600	74	4	61988-MA	411	711	14,2	1200	1600	60,5
	650	94	6	6088-M	551	967	18,8	1300	1500	105
460	580	56	3	61892-MA	319	537	10,7	1200	1600	35
	620	74	4	61992-MA	407	709	13,9	1200	1600	62,5
	680	100	6	6092-M	528	946	18	1200	1500	121
480	600	56	3	61896-M	329	561	11	1100	1600	36,5
	650	78	5	61996-MA	448	808	15,5	1100	1500	74
	700	100	6	6096-M	521	951	17,8	1200	1400	126
500	620	56	3	618/500-MA	313	544	10,5	1100	1500	37,5
	670	78	5	619/500-MA	460	848	15,9	1100	1400	77
	720	100	6	60/500-M	585	1116	20,5	1100	1300	135

Abutment and fillet dimensions see on page 383

На	uptabme [mn	_	en	Lagertype	Tı	ragzahlo [kN]	en	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Gewicht [kg]
Во	undary di [mn		ns	Designation	Lo	oad ratin [kN]	ıgs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Weight [kg]
d	D	В	r ₁ , r ₂ min		C _r dyn.	C ₀r stat.	C _u	$n_{\scriptscriptstyle{ hetar}}$	n _G	m
530	650	56	3	618/530-MA	312	566	10,3	990	1400	39,5
	710	82	5	619/530-MA	484	910	16,6	1010	1300	90,5
	780	112	6	60/530-M	647	1266	22,5	1040	1200	186
560	680	56	3	618/560-MA	337	613	11,2	920	1300	42
	750	85	5	619/560-MA	490	942	16,7	950	1200	105
	820	115	6	60/560-M	615	1263	21,8	980	1200	208
600	730	60	3	618/600-MA	352	673	11,9	860	1200	52
	800	90	5	619/600-MA	583	1195	20,5	870	1100	125
	870	118	6	60/600-M	725	1515	25,4	900	1100	236
630	920	128	7,5	60/630-M	817	1769	28,9	850	1000	285
670	820	69	4	618/670-MA	446	910	15,2	770	1100	77,5
	900	103	6	619/670-MA	669	1456	23,6	780	1000	185
	980	136	7,5	60/670-M	908	2047	32,4	790	900	345
710	1030	140	7,5	60/710-M	962	2195	33,8	780	850	370
750	920	78	5	618/750-MA	525	1151	18,1	680	900	110
	1000	112	6	619/750-MA	758	1745	26,8	690	850	255

Single Row Deep Groove Ball Bearings with Snap Ring Groove and Snap Ring

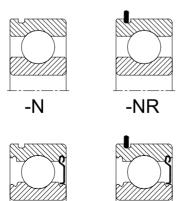
Einreihige Rillenkugellager mit Ringnut und Sprengring

Normen, Hauptabmessungen

Einreihige Rillenkugellager	DIN 625
Ringnuten	DIN 616
Sprengringe	DIN 5417

Allgemeines

Rillenkugellager mit Ringnut im Außenring ermöglichen eine einfache und wirtschaftliche axiale Befestigung der Lager in den Gehäusen.


Verschiedene Ausführungen gehören zum **NKE** Standardprogramm (siehe Abbildung unten).

Die Grundvariante stellen Lager der Ausführung **N** dar. Diese können auf Wunsch auch mit bereits montiertem Sprengring (Nachsetzzeichen **NR**) geliefert werden.

Diese Lager sind standardmäßig auch mit einseitiger (-Z-N, -Z-NR) oder beidseitiger Dichtscheibe (-2Z-N bzw. -2Z-NR) lieferbar.

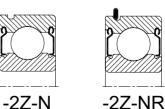
Weitere Ausführungen sind im Rahmen des NKE Bedarfsprogramms gleichfalls lieferbar. Diese Typen bitten wir bei uns anzufragen.

-7-N

Single Row Deep Groove Ball Bearings with Snap Ring Groove and Snap Ring

Standards, Boundary Dimensions

Single row deep groove ball bearings DIN 625 Snap ring grooves DIN 616 Snap rings DIN 5417


General

Deep groove ball bearings with snap ring grooves fitted provide a fast and economic axial location of bearings in their housing seats.

NKE produces several variants as part of the standard product range (see examples below). Bearings with the groove machined in the outer, (suffix **N**), form the base design. They are also available with a snap ring already fitted in this groove, i.e. suffix **NR**.

There are also deep groove ball bearings with snap ring groove features with shields fitted to either one face (i.e. suffixes -Z-N or -Z-NR) or both faces (i.e. suffixes -2Z-N or -2Z-NR)

Other variations are available within the **NKE** special products range; please contact the technical or commercial department for more information.

418 www.nke.at

-**Z-NR**

Single Row Deep Groove Ball Bearings with Snap Ring Groove and Snap Ring

Sprengringe

Sprengringe bestehen zumeist aus Federstahl mit einer Härte von 450 bis 520 HV.

Sprengringe gehören zum NKE Zubehörprogramm und sind daher auch separat erhältlich.

Anschlussmaße

Neben den für Rillenkugellager üblichen Gestaltungsrichtlinien für Umgebungsteile nach DIN 5418 (siehe Seite 383) sind auch die in den Tabellen auf den Seiten 420 und 421 angegebenen Maße bei der Dimensionierung der Anschlußteile zu berücksichtigen.

Weiters ist zu beachten, dass die Kantenverrundung am Außenring auf der Nutseite ($\mathbf{r}_{min} = \mathbf{0}, \mathbf{5}$ für alle Größen) kleiner ist als bei Lagern ohne Sprengringnut.

Um ein Anliegen dieser Kantenverrundung an der Hohlkehlen des Gehäuses zu vermeiden, dürfen die **Hohlkehlenradien** (\mathbf{r}_g) folgende Maße nicht überschreiten:

bei Lagern der Reihe 60:

bis einschließlich ab 6007-N: $r_g \le 0.3 \text{ mm}$ 6008-N: $r_g \le 0.5 \text{ mm}$

bei Lagern der Reihe 62, 63 und 64 für alle Lager: $r_a \le 0.5$ mm

Snap Rings

Snap rings are usually made from spring steel with a hardness of 450 to 520 HV

Snap rings are part of the NKE accessories product range which can be ordered separately.

Abutment and Fillet Dimensions

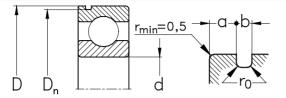
In addition to the values shown in the tables on pages 420 and 421, it is necessary at the design stage to consider the recommendations as defined in DIN 5418 (see table page **383**) for the design of adjacent parts.

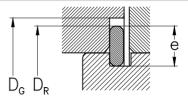
Furthermore it is stated that the corner radius $(r_{min} = 0.5 \text{ for all sizes})$ is smaller, (when compared to normal bearings), on the side of the outer ring where the snap ring groove is located.

To prevent the bearing radius contacting the adjacent parts corner fillet clearance the shoulder corner fillet radius of the housing (\mathbf{r}_g) must not exceed the following dimensions:

for bearings of series 60:

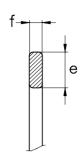
up to type **6007-N**: $r_g \le 0.3 \text{ mm}$ from type **6008-N**: $r_g \le 0.5 \text{ mm}$

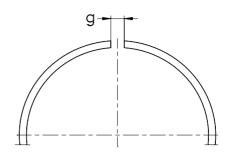

for bearings of the series **62**, **63** and **64** for all bearings: $r_q \le 0.5$ mm


Single Row Deep Groove Ball Bearings with Snap Ring Groove and Snap Ring

Alle Abmessungen in [mm]

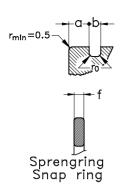
All Dimensions are in [mm]

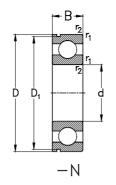


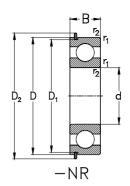


		stype							a :b				
		type		D) _n		_	rreihe				
	•	rreihe		ט			,	Bearing	•			L	_
00	62	g series	C4		!			30	•	3, 64		b	r ₀
60		63	64	20	min.	max.	min.	max.	max.	min.	min.	max.	max.
 6002-N	6200-N 6201-N			30 32	27,92 29,90	28,17		2,06	1,91	2,06	1,35	1,65 1,65	0,4
		 6300-N		35		30,15	1,91		1,91	2,06	1,35	,	0,4
6003-N 	6202-N 	6300-N 6301-N		35	32,92 34,52	33,17 34,77	1,91 	2,06	1,91 1,91	2,06 2,06	1,35 1,35	1,65 1.65	0,4 0,4
	 6203-N			40	37,85	38,10			,	,	,	1,65	,
6004-N	02U3-N	6302-N		42	39,50	39,75	1,9	2,06	1,91 1,91	2,06 2,06	1,35 1,35	1,65	0,4 0,4
60/22-N		03UZ-IN		44	41,50	41,75	1,9	2,06	1,91	2,00	1,35	1,65	0,4
6005-N	6204-N	6303-N		47	44,35	44,60	1.9	2,06	2,31	2.46	1,35	1,65	0,4
	62/22-N			50	47,35	47,60		2,00	2,31	2,46	1,35	1,65	0,4
60/28-N	6205-N	6304-N	6402-N	52	49,48	49,73	1,91	2,06	2,31	2,46	1,35	1,65	0,4
6006-N				55	52,35	52,60	1,91	2,06	2,01	2,40	1,35	1,65	0,4
		63/22-N		56	53,35	53,60			2,31	2,46	1,35	1.65	0,4
60/32-N	62/28-N			58	55,35	55,60	1,88	2,06	2,31	2,46	1,35	1,65	0,4
6007-N	6206-N	6305-N	6403-N	62	59,11	59,61	1,86	2,06	3,08	3,28	1,9	2,2	0,6
	62/32-N			65	62,10	62,60		_,	3,07	3,28	1,9	2,2	0,6
6008-N		63/28-N		68	64,32	64,82	2.29	2.49	3.08	3,28	1,9	2,2	0,6
	6207-N	6306-N	6404-N	72	68,31	68,81	-,	,	3,08	3,28	1,9	2,2	0,6
6009-N		63/32-N		75	71,33	71,83	2,29	2,49	3,08	3,28	1,9	2,2	0,6
6010-N	6208-N	6307-N	6405-N	80	76,31	76,81	2,29	2,49	3,08	3,28	1,9	2,2	0,6
	6209-N			85	81,31	81,81			3,08	3,28	1,9	2,2	0,6
6011-N	6210-N	6308-N	6406-N	90	86,29	86,79	2,67	2,87	3,08	3,28	2,7	3	0,6
6012-N				95	91,32	91,82	2,67	2,87	-		2,7	3	0,6
6013-N	6211-N	6309-N	6407-N	100	96,30	96,80	2,67	2,87	3,08	3,28	2,7	3	0,6
6014-N	6212-N	6310-N	6408-N	110	106,31	106,81	2,67	2,87	3,08	3,28	2,7	3	0,6
6015-N				115	111,31	111,81	2,67	2,87			2,7	3	0,6
	6213-N	6311-N	6409-N	120	114,71	115,21		-	3,86	4,06	3,1	3,4	0,6
6016-N	6214-N			125	119,72	120,22	2,67	2,87	3,86	4,06	3,1	3,4	0,6
6017-N	6215-N	6312-N	6410-N	130	124,72	125,22	2,67	2,87	3,86	4,06	3,1	3,4	0,6
6018-N	6216-N	6313-N	6411-N	140	134,73	135,23	3,46	3,71	4,65	4,9	3,1	3,4	0,6
6019-N				145	139,73	140,23	3,44	3,71			3,1	3,4	0,6
6020-N	6217-N	6314-N	6413-N	150	144,74	145,24	3,46	3,71	4,65	4,9	3,1	3,4	0,6
6021-N	6218-N	6315-N	6413-N	160	154,72	155,22	3,46	3,71	4,65	4,9	3,1	3,4	0,6
6022-N	6219-N	6316-N		170	163,15	163,65	3,46	3,71	5,44	5,69	3,5	3,8	0,6
6024-N	6220-N	6317-N	6414-N	180	173,16	173,66	3,45	3,71	5,44	5,69	3,5	3,8	0,6
	6221-N	6318-N	6415-N	190	183,13	183,64			5,44	5,69	3,5	3,8	0,6
6026-N	6222-N	6319-N	6416-N	200	193,15	193,65	5,44	5,69	5,44	5,69	3,5	3,8	0,6

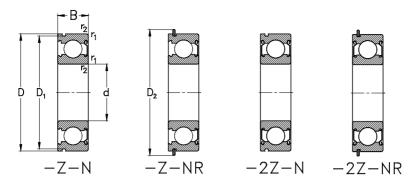
Single Row Deep Groove Ball Bearings with Snap Ring Groove and Snap Ring





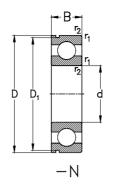

				Spren Snap				
D								
	Bezeichnung		f	•	•	g	D_R	\mathbf{D}_{G}
	Designation	min.	max.	min	max.	≈	max	min
30	SP 30	1,02	1,12	3,1	3,25	3	34,7	35,5
32	SP 32	1,02	1,12	3,1	3,25	3	36,7	37,5
35	SP 35	1,02	1,12	3,1	3,25	3	39,7	40,5
37	SP 37	1,02	1,12	3,1	3,25	3	41,3	42
40	SP 40	1,02	1,12	3,1	3,25	3	44,6	45,5
42	SP 42	1,02	1,12	3,1	3,25	3	46,3	47
44	SP 44	1,02	1,12	3,1	4,04	3	48,3	49
47	SP 47	1,02	1,12	3,89	4,04	4	52,7	53,5
50	SP 50	1,02	1,12	3,89	4,04	4	55,7	56,5
52	SP 52	1,02	1,12	3,89	4,04	4	57,9	58,5
55	SP 55	1,02	1,12	3,89	4,04	4	60,7	61,5
56	SP 56	1,02	1,12	3,89	4,04	4	61,7	62,5
58	SP 58	1,02	1,12	3,89	4,04	4	63,7	64,5
62	SP 62	1,60	1,70	3,89	4,04	4	67,7	68,5
65	SP 65	1,60	1,70	3,89	4,04	4	70,7	71,5
68	SP 68	1,60	1,70	4,7	4,85	5	74,6	76
72	SP 72	1,60	1,70	4,7	4,85	5	78,6	80
75	SP 75	1,60	1,70	4,7	4,85	5	81,6	83
80	SP 80	1,60	1,70	4,7	4,85	5	86,6	88
85	SP 85	1,60	1,70	4,7	4,85	5	91,6	93
90	SP 90	2,36	2,46	4,7	4,85	5	96,6	98
95	SP 95	2,36	2,46	4,7	4,85	5	101,6	103
100	SP 100	2,36	2,46	4,7	4,85	5	106,5	108
110	SP 110	2,36	2,46	4,7	4,85	5	116,6	118
115	SP 115	2,36	2,46	4,7	4,85	5	121,6	123
120	SP 120	2,72	2,82	7,06	7,21	7	129,7	131,5
125	SP 125	2,72	2,82	7,06	7,21	7	134,7	126,5
130	SP 130	2,72	2,82	7,06	7,21	7	139,7	141,5
140	SP 140	2,72	2,82	7,06	7,21	7	154,7	157
145	SP 145	2,72	2,82	7,06	7,21	7	154,7	157
150	SP 150	2,72	2,82	7,06	7,21	7	159,7	162
160	SP 160	2,72	2,82	7,06	7,21	7	169,7	172
170	SP 170	3	3,1	9,45	9,6	10	182,9	185
180	SP 180	3	3,1	9,45	9,6	10	192,9	195
190	SP 190	3	3,1	9,45	9,6	10	202,9	205
200	SP 200	3	3,1	9,45	9,6	10	212,9	215

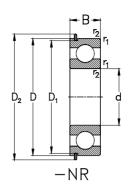
Single Row Deep Groove Ball Bearings with Snap Ring Groove and Snap Ring



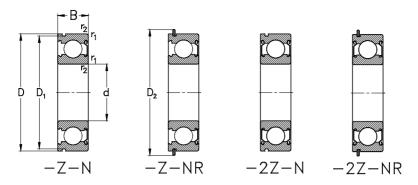
	Наι		nessu nm]	ngen	Lage	rtype	Ti	ragzahle [kN]	n	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]
	Bou	•	dimen nm]	sions	Desig	nation	Lo	oad rating [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]
	d	D	В	r ₁ , r ₂ min	N	NR	C _r dyn.	C ₀r stat.	C _u	$n_{\scriptscriptstyle{\thetar}}$	n _G
	10	30	9	0,6	6200-N	6200-NR	5,1	2,4	0,1	23500	40000
		30	9	0,6	6200-Z-N	6200-Z-NR	5,1	2,4	0,1	-	26000
		30	9	0,6	6200-2Z-N	6200-2Z-NR	5,1	2,4	0,1	_	26000
	12	32	10	0,6	6201-N	6201-NR	6,8	3,1	0,1	22200	32000
		32	10	0,6	6201-Z-N	6201-Z-NR	6,8	3,1	0,1	_	24000
		32	10	0,6	6201-2Z-N	6201-2Z-NR	6,8	3,1	0,1	-	24000
	15	35	11	0,6	6202-N	6202-NR	7,6	3,7	0,2	20200	28000
		35	11	0,6	6202-Z-N	6202-Z-NR	7,6	3,7	0,2	-	20000
_		35	11	0,6	6202-2Z-N	6202-2Z-NR	7,6	3,7	0,2	_	20000
	17	40	12	0,6	6203-N	6203-NR	9,6	4,8	0,2	18100	24000
		40	12	0,6	6203-Z-N	6203-Z-NR	9,6	4,8	0,2	_	24000
		40	12	0,6	6203-2Z-N	6203-2Z-NR	9,6	4,8	0,2	-	24000
		47	14	1	6303-N	6303-NR	13,6	6,6	0,3	15900	22000
		47	14	1	6303-Z-N	6303-Z-NR	13,6	6,6	0,3	-	22000
		47	14	1	6303-2Z-N	6303-2Z-NR	13,6	6,6	0,3	_	22000
	20	42	12	0,6	6004-N	6004-NR	9,4	5	0,2	18300	24000
		42	12	0,6	6004-Z-N	6004-Z-NR	9,4	5	0,2	_	24000
		42	12	0,6	6004-2Z-N	6004-2Z-NR	9,4	5	0,2	-	24000
		47	14	1	6204-N	6204-NR	12,8	6,7	0,3	16300	20000
		47	14	1	6204-Z-N	6204-Z-NR	12,8	6,7	0,3	-	20000
		47	14	1	6204-2Z-N	6204-2Z-NR	12,8	6,7	0,3	_	20000
		52	15	1,1	6304-N	6304-NR	15,9	7,9	0,4	14400	19000


Single Row Deep Groove Ball Bearings with Snap Ring Groove and Snap Ring

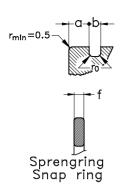


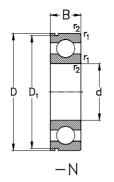

	Sprengring Snap Ring							Gewicht [kg] Weight [kg]
d		D ₁	D₂ max	b	f	а	r ₀ max	m
10	SP30	28,17	34,7	1,35	1,12	2,06	0,4	0,03
	SP30	28,17	34,7	1,35	1,12	2,06	0,4	0,03
	SP30	28,17	34,7	1,35	1,12	2,06	0,4	0,03
12	SP32	30,15	36,7	1,35	1,12	2,06	0,4	0,04
	SP32	30,15	36,7	1,35	1,12	2,06	0,4	0,04
	SP32	30,15	36,7	1,35	1,12	2,06	0,4	0,04
15	SP35	33,17	39,7	1,35	1,12	2,06	0,4	0,043
	SP35	33,17	39,7	1,35	1,12	2,06	0,4	0,043
	SP35	33,17	39,7	1,35	1,12	2,06	0,4	0,043
17	SP40	38,1	44,6	1,35	1,12	2,06	0,4	0,063
	SP40	38,1	44,6	1,35	1,12	2,06	0,4	0,063
	SP40	38,1	44,6	1,35	1,12	2,06	0,4	0,063
	SP47	44,6	52,7	1,35	1,12	2,46	0,4	0,11
	SP47	44,6	52,7	1,35	1,12	2,46	0,4	0,11
	SP47	44,6	52,7	1,35	1,12	2,46	0,4	0,11
20	SP42	39,75	46,3	1,35	1,12	2,06	0,4	0,065
	SP42	39,75	46,3	1,35	1,12	2,06	0,4	0,065
	SP42	39,75	46,3	1,35	1,12	2,06	0,4	0,065
	SP47	44,6	52,7	1,35	1,12	2,46	0,4	0,105
	SP47	44,6	52,7	1,35	1,12	2,46	0,4	0,105
	SP47	44,6	52,7	1,35	1,12	2,46	0,4	0,105
	SP52	49,73	57,9	1,35	1,12	2,46	0,4	0,148

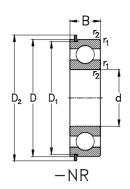
Single Row Deep Groove Ball Bearings with Snap Ring Groove and Snap Ring



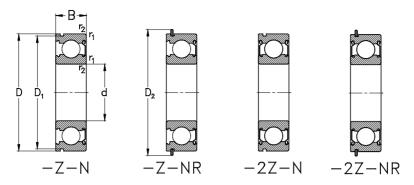
На	uptabr [n	nessu nm]	ngen	Lage	rtype	Ti	agzahle [kN]	n	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]
Boi	undary [n	dimen nm]	sions	Desig	nation	Lo	oad rating [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]
d	D	В	r ₁ , r ₂ min	N	NR	C _r dyn.	C ₀r stat.	C _u	n _{er}	n _G
20	52	15	1,1	6304-Z-N	6304-Z-NR	15,9	7,9	0,4	_	14000
	52	15	1,1	6304-2Z-N	6304-2Z-NR	15,9	7,9	0,4	-	14000
25	47	12	0,6	6005-N	6005-NR	10,1	5,9	0,3	15300	20000
	47	12	0,6	6005-Z-N	6005-Z-NR	10,1	5,9	0,3	-	15000
	47	12	0,6	6005-2Z-N	6005-2Z-NR	10,1	5,9	0,3	_	15000
	52	15	1	6205-N	6205-NR	14	7,9	0,4	14400	18000
	52	15	1	6205-Z-N	6205-Z-NR	14	7,9	0,4	_	14000
	52	15	1	6205-2Z-N	6205-2Z-NR	14	7,9	0,4	-	14000
	62	17	1,1	6305-N	6305-NR	22,4	11,5	0,5	12300	16000
	62	17	1,1	6305-Z-N	6305-Z-NR	22,4	11,5	0,5	-	11000
	62	17	1,1	6305-2Z-N	6305-2Z-NR	22,4	11,5	0,5	_	11000
30	55	13	1	6006-N	6006-NR	13,2	8,3	0,4	13100	17000
	55	13	1	6006-Z-N	6006-Z-NR	13,2	8,3	0,4	_	13000
	55	13	1	6006-2Z-N	6006-2Z-NR	13,2	8,3	0,4	-	13000
	62	16	1	6206-N	6206-NR	19,5	11,3	0,5	12000	15000
	62	16	1	6206-Z-N	6206-Z-NR	19,5	11,3	0,5	-	11000
	62	16	1	6206-2Z-N	6206-2Z-NR	19,5	11,3	0,5	_	11000
	72	19	1,1	6306-N	6306-NR	27	15,2	0,7	10800	13000
	72	19	1,1	6306-Z-N	6306-Z-NR	27	15,2	0,7	_	9500
	72	19	1,1	6306-2Z-N	6306-2Z-NR	27	15,2	0,7		9500
35	62	14	1	6007-N	6007-NR	16,2	10,4	0,5	11600	15000
	62	14	1	6007-Z-N	6007-Z-NR	16,2	10,4	0,5	-	11000


Single Row Deep Groove Ball Bearings with Snap Ring Groove and Snap Ring

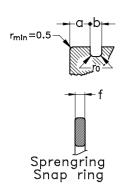


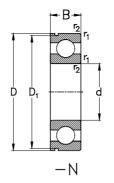

	Sprengring Snap Ring							Gewicht [kg] Weight [kg]
d		D ₁	D₂ max	b	f	а	r ₀ max	m
20	SP52	49,73	57,9	1,35	1,12	2,46	0,4	0,148
	SP52	49,73	57,9	1,35	1,12	2,46	0,4	0,148
25	SP47	44,6	52,7	1,35	1,12	2,06	0,4	0,08
	SP47	44,6	52,7	1,35	1,12	2,06	0,4	0,08
	SP47	44,6	52,7	1,35	1,12	2,06	0,4	0,08
	SP52	49,73	57,9	1,35	1,12	2,46	0,4	0,125
	SP52	49,73	57,9	1,35	1,12	2,46	0,4	0,125
	SP52	49,73	57,9	1,35	1,12	2,46	0,4	0,125
	SP62	59,61	67,7	1,9	1,7	3,28	0,6	0,232
	SP62	59,61	67,7	1,9	1,7	3,28	0,6	0,232
	SP62	59,61	67,7	1,9	1,7	3,28	0,6	0,232
30	SP55	52,6	60,7	1,35	1,12	2,06	0,4	0,115
	SP55	52,6	60,7	1,35	1,12	2,06	0,4	0,115
	SP55	52,6	60,7	1,35	1,12	2,06	0,4	0,115
	SP62	59,61	67,7	1,9	1,7	3,28	0,6	0,192
	SP62	59,61	67,7	1,9	1,7	3,28	0,6	0,192
	SP62	59,61	67,7	1,9	1,7	3,28	0,6	0,192
	SP72	68,81	78,6	1,9	1,7	3,28	0,6	0,348
	SP72	68,81	78,6	1,9	1,7	3,28	0,6	0,348
	SP72	68,81	78,6	1,9	1,7	3,28	0,6	0,348
35	SP62	59,61	67,7	1,9	1,7	3,28	0,6	0,151
	SP62	59,61	67,7	1,9	1,7	3,28	0,6	0,151

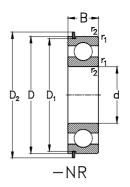
Single Row Deep Groove Ball Bearings with Snap Ring Groove and Snap Ring



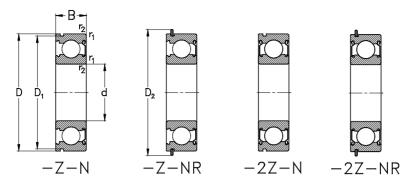
Hau	uptabn [n	nessu nm]	ngen	Lage	rtype	Ti	agzahle [kN]	en	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]
Вои	undary [n	dimen nm]	sions	Desig	nation	Lo	oad rating [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]
d	D	В	r ₁ , r ₂ min	N	NR	C _r dyn.	C ₀r stat.	C _u	$\mathbf{n}_{\theta r}$	n _G
35	62	14	1	6007-2Z-N	6007-2Z-NR	16,2	10,4	0,5	_	11000
	72	17	1,1	6207-N	6207-NR	25,7	15,3	0,7	10300	13000
	72	17	1,1	6207-Z-N	6207-Z-NR	25,7	15,3	0,7	_	9500
	72	17	1,1	6207-2Z-N	6207-2Z-NR	25,7	15,3	0,7	-	9500
	80	21	1,5	6307-N	6307-NR	33,4	19,2	0,9	9900	12000
	80	21	1,5	6307-Z-N	6307-Z-NR	33,4	19,2	0,9	-	8500
	80	21	1,5	6307-2Z-N	6307-2Z-NR	33,4	19,2	0,9	_	8500
	100	25	1,5	6407-N	6407-NR	57	30,1	1,4	9000	10000
40	68	15	1	6008-N	6008-NR	17	11,7	0,5	10700	14000
	68	15	1	6008-Z-N	6008-Z-NR	17	11,7	0,5	-	10000
	68	15	1	6008-2Z-N	6008-2Z-NR	17	11,7	0,5	_	10000
	80	18	1,1	6208-N	6208-NR	29,5	18,2	0,8	9300	11000
	80	18	1,1	6208-Z-N	6208-Z-NR	29,5	18,2	0,8	_	8500
	80	18	1,1	6208-2Z-N	6208-2Z-NR	29,5	18,2	0,8	-	8500
	90	23	1,5	6308-N	6308-NR	40,8	24	1,1	9000	11000
	90	23	1,5	6308-Z-N	6308-Z-NR	40,8	24	1,1	-	7500
	90	23	1,5	6308-2Z-N	6308-2Z-NR	40,8	24	1,1	_	7500
	110	27	2	6408-N	6408-NR	66	37,7	1,7	8200	9000
45	75	16	1	6009-N	6009-NR	21,1	14,8	0,7	9800	12000
	75	16	1	6009-Z-N	6009-Z-NR	21,1	14,8	0,7	-	9000
	75	16	1	6009-2Z-N	6009-2Z-NR	21,1	14,8	0,7	_	9000
	85	19	1,1	6209-N	6209-NR	31,7	20,7	0,9	8700	11000


Single Row Deep Groove Ball Bearings with Snap Ring Groove and Snap Ring

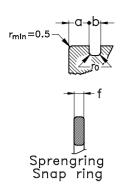


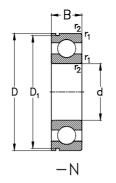

	Sprengring Snap Ring							Gewicht [kg] Weight [kg]
d		D ₁	D₂ max	b	f	а	r₀ max	m
35	SP62	59,61	67,7	1,9	1,7	3,28	0,6	0,151
	SP72	68,81	78,6	1,9	1,7	3,28	0,6	0,288
	SP72	68,81	78,6	1,9	1,7	3,28	0,6	0,288
	SP72	68,81	78,6	1,9	1,7	3,28	0,6	0,288
	SP80	76,81	86,6	1,9	1,7	3,28	0,6	0,458
	SP80	76,81	86,6	1,9	1,7	3,28	0,6	0,458
	SP80	76,81	86,6	1,9	1,7	3,28	0,6	0,458
	SP100	96,8	106,5	2,7	2,46	3,28	0,6	0,928
40	SP68	64,82	74,6	1,9	1,7	3,28	0,6	0,188
	SP68	64,82	74,6	1,9	1,7	3,28	0,6	0,188
	SP68	64,82	74,6	1,9	1,7	3,28	0,6	0,188
	SP80	76,81	86,6	1,9	1,7	3,28	0,6	0,366
	SP80	76,81	86,6	1,9	1,7	3,28	0,6	0,366
	SP80	76,81	86,6	1,9	1,7	3,28	0,6	0,366
	SP90	86,79	96,5	2,7	2,46	3,28	0,6	0,632
	SP90	86,79	96,5	2,7	2,46	3,28	0,6	0,632
	SP90	86,79	96,5	2,7	2,46	3,28	0,6	0,632
	SP110	106,81	116,6	2,7	2,46	3,28	0,6	1,18
45	SP75	71,83	81,6	1,9	1,7	3,28	0,6	0,231
	SP75	71,83	81,6	1,9	1,7	3,28	0,6	0,231
	SP75	71,83	81,6	1,9	1,7	3,28	0,6	0,231
	SP85	81,81	91,6	1,9	1,7	3,28	0,6	0,405

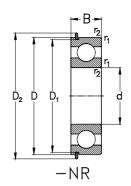
Single Row Deep Groove Ball Bearings with Snap Ring Groove and Snap Ring



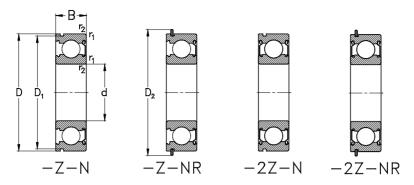
На	uptabr [n	nessu nm]	ngen	Lage	rtype	Ti	agzahle [kN]	en	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]
Bo	undary [n	dimen nm]	sions	Desig	nation	Lo	ad rating [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]
d	D	В	r ₁ , r ₂ min	N	NR	C _r dyn.	C ₀r stat.	C _u	$n_{\scriptscriptstyle{ hetar}}$	$n_{\rm G}$
45	85	19	1,1	6209-Z-N	6209-Z-NR	31,7	20,7	0,9	_	8000
	85	19	1,1	6209-2Z-N	6209-2Z-NR	31,7	20,7	0,9	-	8000
	100	25	1,5	6309-N	6309-NR	53	31,9	1,5	8300	9500
	100	25	1,5	6309-Z-N	6309-Z-NR	53	31,9	1,5	-	6700
	100	25	1,5	6309-2Z-N	6309-2Z-NR	53	31,9	1,5	_	6700
	120	29	2	6409-N	6409-NR	78	45,4	2,1	7600	8500
50	80	16	1	6010-N	6010-NR	21,8	16,6	0,8	8900	11000
	80	16	1	6010-Z-N	6010-Z-NR	21,8	16,6	0,8	-	8500
	80	16	1	6010-2Z-N	6010-2Z-NR	21,8	16,6	0,8	-	8500
	90	20	1,1	6210-N	6210-NR	35,1	23,2	1,1	8200	10000
	90	20	1,1	6210-Z-N	6210-Z-NR	35,1	23,2	1,1	-	7500
	90	20	1,1	6210-2Z-N	6210-2Z-NR	35,1	23,2	1,1	-	7500
	110	27	2	6310-N	6310-NR	62	38	1,7	7700	8500
	110	27	2	6310-Z-N	6310-Z-NR	62	38	1,7	-	6000
	110	27	2	6310-2Z-N	6310-2Z-NR	62	38	1,7	-	6000
	130	31	2,1	6410-N	6410-NR	92	55	2,5	7100	7500
55	90	18	1,1	6011-N	6011-NR	28,2	21,3	1	8300	10000
	90	18	1,1	6011-Z-N	6011-Z-NR	28,2	21,3	1	-	7500
	90	18	1,1	6011-2Z-N	6011-2Z-NR	28,2	21,3	1	-	7500
	100	21	1,5	6211-N	6211-NR	43,4	29,2	1,3	7500	9000
	100	21	1,5	6211-Z-N	6211-Z-NR	43,4	29,2	1,3	-	6700
	100	21	1,5	6211-2Z-N	6211-2Z-NR	43,4	29,2	1,3	-	6700


Single Row Deep Groove Ball Bearings with Snap Ring Groove and Snap Ring

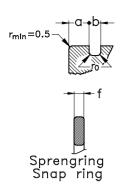


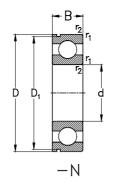

	Sprengring Snap Ring							Gewicht [kg] Weight [kg]
d		D ₁	D₂ max	b	f	а	r₀ max	m
45	SP85	81,81	91,6	1,9	1,7	3,28	0,6	0,405
	SP85	81,81	91,6	1,9	1,7	3,28	0,6	0,405
	SP100	96,8	106,5	2,7	2,46	3,28	0,6	0,848
	SP100	96,8	106,5	2,7	2,46	3,28	0,6	0,848
	SP100	96,8	106,5	2,7	2,46	3,28	0,6	0,848
	SP120	115,21	129,7	3,1	2,82	4,06	0,6	1,51
50	SP80	76,81	86,6	1,9	1,7	3,28	0,6	0,261
	SP80	76,81	86,6	1,9	1,7	3,28	0,6	0,261
	SP80	76,81	86,6	1,9	1,7	3,28	0,6	0,261
	SP90	86,79	96,5	2,7	2,46	3,28	0,6	0,453
	SP90	86,79	96,5	2,7	2,46	3,28	0,6	0,453
	SP90	86,79	96,5	2,7	2,46	3,28	0,6	0,453
	SP110	106,81	116,6	2,7	2,46	3,28	0,6	1,1
	SP110	106,81	116,6	2,7	2,46	3,28	0,6	1,1
	SP110	106,81	116,6	2,7	2,46	3,28	0,6	1,1
	SP130	125,22	139,7	3,1	2,82	4,06	0,6	1,83
55	SP90	86,79	96,5	2,7	2,46	3,28	0,6	0,311
	SP90	86,79	96,5	2,7	2,46	3,28	0,6	0,311
	SP90	86,79	96,5	2,7	2,46	3,28	0,6	0,311
	SP100	96,8	106,5	2,7	2,46	3,28	0,6	0,607
	SP100	96,8	106,5	2,7	2,46	3,28	0,6	0,607
	SP100	96,8	106,5	2,7	2,46	3,28	0,6	0,607

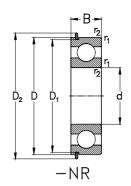
Single Row Deep Groove Ball Bearings with Snap Ring Groove and Snap Ring



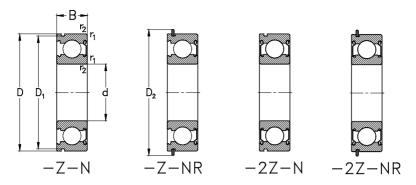
Ha	uptabn [n	nessu nm]	ngen	Lage	rtype	Tı	ragzahle [kN]	n	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]
Во	oundary [n	dimen nm]	sions	Desig	nation	Lo	oad rating [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]
d	D	В	r ₁ , r ₂ min	N	NR	C _r dyn.	C ₀r stat.	C _u	$\mathbf{n}_{\theta r}$	n _G
55	120	29	2	6311-N	6311-NR	72	44,8	2	7200	8000
	120	29	2	6311-Z-N	6311-Z-NR	72	44,8	2	-	5300
	120	29	2	6311-2Z-N	6311-2Z-NR	72	44,8	2	_	5300
	140	33	2,1	6411-N	6411-NR	101	63	2,8	6700	7000
60	95	18	1,1	6012-N	6012-NR	29,4	23,2	1,1	7700	9500
	95	18	1,1	6012-Z-N	6012-Z-NR	29,4	23,2	1,1	-	7000
	95	18	1,1	6012-2Z-N	6012-2Z-NR	29,4	23,2	1,1	_	7000
	110	22	1,5	6212-N	6212-NR	47,7	33	1,5	6900	8000
	110	22	1,5	6212-Z-N	6212-Z-NR	47,7	33	1,5	_	6000
	110	22	1,5	6212-2Z-N	6212-2Z-NR	47,7	33	1,5	-	6000
	130	31	2,1	6312-N	6312-NR	82	51,9	2,4	6800	7000
	130	31	2,1	6312-Z-N	6312-Z-NR	82	52	2,4	-	5000
	130	31	2,1	6312-2Z-N	6312-2Z-NR	82	52	2,4	_	5000
	150	35	2,1	6412-N	6412-NR	109	70	3,1	6400	6300
65	100	18	1,1	6013-N	6013-NR	30,5	25,2	1,1	7100	9000
	100	18	1,1	6013-Z-N	6013-Z-NR	30,5	25,2	1,1	-	6300
	100	18	1,1	6013-2Z-N	6013-2Z-NR	30,5	25,2	1,1	_	6300
	120	23	1,5	6213-N	6213-NR	57	40	1,8	6400	7500
	120	23	1,5	6213-Z-N	6213-Z-NR	57	40	1,8	_	5300
	120	23	1,5	6213-2Z-N	6213-2Z-NR	57	40	1,8	-	5300
	140	33	2,1	6313-N	6313-NR	93	60	2,7	6400	6700
	140	33	2,1	6313-Z-N	6313-Z-NR	93	60	2,7	-	4500


Single Row Deep Groove Ball Bearings with Snap Ring Groove and Snap Ring

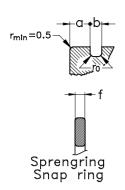


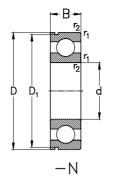

	Sprengring Snap Ring							Gewicht [kg] Weight [kg]
d		D ₁	D₂ max	b	f	а	r₀ max	m
55	SP120	115,21	129,7	3,1	2,82	4,06	0,6	1,39
	SP120	115,21	129,7	3,1	2,82	4,06	0,6	1,39
	SP120	115,21	129,7	3,1	2,82	4,06	0,6	1,39
	SP140	135,23	149,7	3,1	2,82	4,9	0,6	2,4
60	SP95	91,82	101,6	2,7	2,46	2,87	0,6	0,41
	SP95	91,82	101,6	2,7	2,46	2,87	0,6	0,41
	SP95	91,82	101,6	2,7	2,46	2,87	0,6	0,41
	SP110	106,81	116,6	2,7	2,46	3,28	0,6	0,783
	SP110	106,81	116,6	2,7	2,46	3,28	0,6	0,783
	SP110	106,81	116,6	2,7	2,46	3,28	0,6	0,783
	SP130	125,22	139,7	3,1	2,82	4,06	0,6	1,72
	SP130	125,22	139,7	3,1	2,82	4,06	0,6	1,72
	SP130	125,22	139,7	3,1	2,82	4,06	0,6	1,72
	SP150	145,24	159,7	3,1	2,82	4,9	0,6	2,9
65	SP100	96,8	106,5	2,7	2,46	2,87	0,6	0,436
	SP100	96,8	106,5	2,7	2,46	2,87	0,6	0,436
	SP100	96,8	106,5	2,7	2,46	2,87	0,6	0,436
	SP120	115,21	129,7	3,1	2,82	4,06	0,6	0,982
	SP120	115,21	129,7	3,1	2,82	4,06	0,6	0,982
	SP120	115,21	129,7	3,1	2,82	4,06	0,6	0,982
	SP140	135,23	149,7	3,1	2,82	4,9	0,6	2,13
	SP140	135,23	149,7	3,1	2,82	4,9	0,6	2,13

Single Row Deep Groove Ball Bearings with Snap Ring Groove and Snap Ring



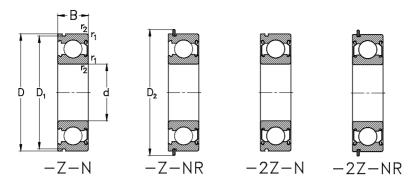
Ha	uptabn [n	nessu nm]	ngen	Lage	rtype	Tı	ragzahle [kN]	n	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]
Boi	undary [n	dimen nm]	sions	Desig	nation	Lo	oad rating [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]
d	D	В	r ₁ , r ₂ min	N	NR	C _r dyn.	C ₀r stat.	C _u	$n_{\scriptscriptstyle{ hetar}}$	n _G
65	140	33	2,1	6313-2Z-N	6313-2Z-NR	93	60	2,7	-	4500
	160	37	2,1	6413-N	6413-NR	118	79	3,4	6100	6000
70	110	20	1,1	6014-N	6014-NR	38	30,9	1,4	6800	8000
	110	20	1,1	6014-Z-N	6014-Z-NR	38	30,9	1,4	-	6000
	110	20	1,1	6014-2Z-N	6014-2Z-NR	38	30,9	1,4	_	6000
	125	24	1,5	6214-N	6214-NR	61	45,1	2,1	6100	7000
	125	24	1,5	6214-Z-N	6214-Z-NR	61	45,1	2,1	_	5000
	125	24	1,5	6214-2Z-N	6214-2Z-NR	61	45,1	2,1	-	5000
	150	35	2,1	6314-N	6314-NR	104	68	3	6100	6300
	150	35	2,1	6314-Z-N	6314-Z-NR	104	68	3	-	4300
	150	35	2,1	6314-2Z-N	6314-2Z-NR	104	68	3	_	4300
75	115	20	1,1	6015-N	6015-NR	39,5	33,5	1,5	6400	7500
	115	20	1,1	6015-Z-N	6015-Z-NR	39,5	33,5	1,5	_	5600
	115	20	1,1	6015-2Z-N	6015-2Z-NR	39,5	33,5	1,5	-	5600
	130	25	1,5	6215-N	6215-NR	66	49,5	2,2	5900	6700
	130	25	1,5	6215-Z-N	6215-Z-NR	66	49,5	2,2	-	4800
	130	25	1,5	6215-2Z-N	6215-2Z-NR	66	49,5	2,2	_	4800
	160	37	2,1	6315-N	6315-NR	114	77	3,2	6300	5600
	160	37	2,1	6315-Z-N	6315-Z-NR	114	77	3,2	_	4000
	160	37	2,1	6315-2Z-N	6315-2Z-NR	114	77	3,2		4000
80	125	22	1,1	6016-N	6016-NR	51	42	1,9	6100	7000
	125	22	1,1	6016-Z-N	6016-Z-NR	51	42	1,9	_	5000


Single Row Deep Groove Ball Bearings with Snap Ring Groove and Snap Ring

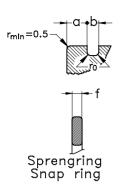


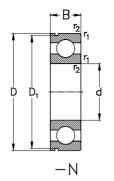

	Sprengring Snap Ring							Gewicht [kg] Weight [kg]
d		D ₁	D₂ max	b	f	а	r ₀ max	m
65	SP140	135,23	149,7	3,1	2,82	4,9	0,6	2,13
	SP160	155,22	169,7	3,1	2,82	4,9	0,6	3,49
70	SP110	106,81	116,6	2,7	2,46	3,28	0,6	0,604
	SP110	106,81	116,6	2,7	2,46	3,28	0,6	0,604
	SP110	106,81	116,6	2,7	2,46	3,28	0,6	0,604
	SP125	120,22	134,7	3,1	2,82	4,06	0,6	1,08
	SP125	120,22	134,7	3,1	2,82	4,06	0,6	1,08
	SP125	120,22	134,7	3,1	2,82	4,06	0,6	1,08
	SP150	145,24	159,7	3,1	2,82	4,9	0,6	2,63
	SP150	145,24	159,7	3,1	2,82	4,9	0,6	2,63
70	SP150	145,24	159,7	3,1	2,82	4,9	0,6	2,63
75	SP115	111,81	121,6	2,7	2,46	2,87	0,6	0,643
	SP115	111,81	121,6	2,7	2,46	2,87	0,6	0,643
	SP115	111,81	121,6	2,7	2,46	2,87	0,6	0,643
	SP130	125,22	139,7	3,1	2,82	4,06	0,6	1,21
	SP130	125,22	139,7	3,1	2,82	4,06	0,6	1,21
	SP130	125,22	139,7	3,1	2,82	4,06	0,6	1,21
	SP160	155,22	169,7	3,1	2,82	4,9	0,6	3,12
	SP160	155,22	169,7	3,1	2,82	4,9	0,6	3,12
	SP160	155,22	169,7	3,1	2,82	4,9	0,6	3,12
80	SP125	120,22	134,7	3,1	2,82	4,06	0,6	0,85
	SP125	120,22	134,7	3,1	2,82	4,06	0,6	0,85

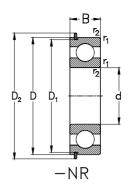
Single Row Deep Groove Ball Bearings with Snap Ring Groove and Snap Ring



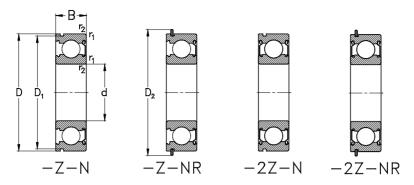
Hau	uptabn [n	nessu nm]	ngen	Lage	rtype	Ti	agzahle [kN]	en	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]
Вои	ındary [n	dimen nm]	sions	Desig	nation	Lo	oad rating [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]
d	D	В	r ₁ , r ₂ min	N	NR	C _r dyn.	C ₀r stat.	C _u	$n_{\scriptscriptstyle{ hetar}}$	n _G
80	125	22	1,1	6016-2Z-N	6016-2Z-NR	51	42	1,9	_	5000
	140	26	2	6216-N	6216-NR	72	54	2,3	5500	6000
	140	26	2	6216-Z-N	6216-Z-NR	72	54	2,3	_	4500
	140	26	2	6216-2Z-N	6216-2Z-NR	72	54	2,3	_	4500
85	130	22	1,1	6017-N	6017-NR	53	45,6	2	5800	6700
	130	22	1,1	6017-Z-N	6017-Z-NR	53	45,6	2	-	4800
	130	22	1,1	6017-2Z-N	6017-2Z-NR	53	45,6	2	_	4800
	150	28	2	6217-N	6217-NR	84	62	2,6	5300	5600
	150	28	2	6217-Z-N	6217-Z-NR	84	62	2,6	_	4300
	150	28	2	6217-2Z-N	6217-2Z-NR	84	62	2,6	_	4300
90	140	24	1,5	6018-N	6018-NR	58	50	2,1	5600	6300
	140	24	1,5	6018-Z-N	6018-Z-NR	58	50	2,1	-	4500
	140	24	1,5	6018-2Z-N	6018-2Z-NR	58	50	2,1	_	4500
	160	30	2	6218-N	6218-NR	96	72	2,9	5100	5300
	160	30	2	6218-Z-N	6218-Z-NR	96	72	2,9	-	3800
	160	30	2	6218-2Z-N	6218-2Z-NR	96	72	2,9	-	3800
95	170	32	2,1	6219-Z-N	6219-Z-NR	109	82	3,2	-	3600
	170	32	2,1	6219-2Z-N	6219-2Z-NR	109	82	3,2	_	3600
100	150	24	1,5	6020-N	6020-NR	60	54	2,2	5100	5600
	150	24	1,5	6020-Z-N	6020-Z-NR	60	54	2,2	-	4000
	150	24	1,5	6020-2Z-N	6020-2Z-NR	60	54	2,2	_	4000
	180	34	2,1	6220-Z-N	6220-Z-NR	122	93	3,6	-	3400


Single Row Deep Groove Ball Bearings with Snap Ring Groove and Snap Ring




	Sprengring Snap Ring							Gewicht [kg] Weight [kg]
d		D ₁	D₂ max	b	f	а	r ₀ max	m
80	SP125	120,22	134,7	3,1	2,82	4,06	0,6	0,85
	SP140	135,23	149,7	3,1	2,82	4,9	0,6	1,42
	SP140	135,23	149,7	3,1	2,82	4,9	0,6	1,42
	SP140	135,23	149,7	3,1	2,82	4,9	0,6	1,42
85	SP130	125,22	139,7	3,1	2,82	4,06	0,6	0,895
	SP130	125,22	139,7	3,1	2,82	4,06	0,6	0,895
	SP130	125,22	139,7	3,1	2,82	4,06	0,6	0,895
	SP150	145,24	159,7	3,1	2,82	4,9	0,6	1,82
	SP150	145,24	159,7	3,1	2,82	4,9	0,6	1,82
	SP150	145,24	159,7	3,1	2,82	4,9	0,6	1,82
90	SP140	135,23	149,7	3,1	2,82	4,9	0,6	1,18
	SP140	135,23	149,7	3,1	2,82	4,9	0,6	1,18
	SP140	135,23	149,7	3,1	2,82	4,9	0,6	1,18
	SP160	155,22	169,7	3,1	2,82	4,9	0,6	2,2
	SP160	155,22	169,7	3,1	2,82	4,9	0,6	2,2
	SP160	155,22	169,7	3,1	2,82	4,9	0,6	2,2
95	SP170	163,65	182,9	3,5	3,1	5,69	0,6	2,67
	SP170	163,65	182,9	3,5	3,1	5,69	0,6	2,67
100	SP150	145,24	159,7	3,1	2,82	4,9	0,6	1,26
	SP150	145,24	159,7	3,1	2,82	4,9	0,6	1,26
	SP150	145,24	159,7	3,1	2,82	4,9	0,6	1,26
	SP180	173,66	192,9	3,5	3,1	5,69	0,6	3,22

Single Row Deep Groove Ball Bearings with Snap Ring Groove and Snap Ring



Hau	uptabn [n	nessu nm]	ngen	Lage	rtype	Tragzahlen [kN]			Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]
Вои	Boundary dimensions [mm]			Designation		Load ratings [kN]			Thermal speed ratings [rpm]	Limited speed ratings [rpm]
d	D	В	r ₁ , r ₂	N	NR	C _r	\mathbf{C}_{0r}	\mathbf{C}_{u}	$n_{\theta r}$	$n_{\scriptscriptstyle G}$
			min			dyn.	stat.			
100	180	34	2,1	6220-2Z-N	6220-2Z-NR	122	93	3,6	_	3400
105	160	26	2	6021-N	6021-NR	72	66	2,6	5000	5300
	160	26	2	6021-Z-N	6021-Z-NR	72	66	2,6	_	3800
	160	26	2	6021-2Z-N	6021-2Z-NR	72	66	2,6	-	3800
110	170	28	2	6022-N	6022-NR	82	73	2,8	4800	5000
	170	28	2	6022-Z-N	6022-Z-NR	82	73	2,8	-	3600
	170	28	2	6022-2Z-N	6022-2Z-NR	82	73	2,8	_	3600
120	180	28	2	6024-N	6024-NR	88	80	3	4500	4800
	180	28	2	6024-Z-N	6024-Z-NR	88	80	4	_	3400
	180	28	2	6024-2Z-N	6024-2Z-NR	88	80	5	-	3400

Single Row Deep Groove Ball Bearings with Snap Ring Groove and Snap Ring

	Sprengring Snap Ring							Gewicht [kg] Weight [kg]
d		D ₁	D₂ max	b	f	а	r ₀ max	m
100	SP180	173,66	192,9	3,5	3,1	5,69	0,6	3,22
105	SP160	155,22	169,7	3,1	2,82	4,9	0,6	1,58
	SP160	155,22	169,7	3,1	2,82	4,9	0,6	1,58
	SP160	155,22	169,7	3,1	2,82	4,9	0,6	1,58
110	SP170	163,65	182,9	3,5	3,1	5,69	0,6	1,97
	SP170	163,65	182,9	3,5	3,1	5,69	0,6	1,97
	SP170	163,65	182,9	3,5	3,1	5,69	0,6	1,97
120	SP180	173,66	192,9	3,5	3,1	5,69	0,6	2,11
	SP180	173,66	192,9	3,5	3,1	5,69	0,6	2,11
	SP180	173,66	192,9	3,5	3,1	5,69	0,6	2,11

Angular Contact Ball Bearings

Einreihige Schrägkugellager

Single Row Angular Contact Ball Bearings

Einreihige Schrägkugellager, in Universalausführung

Single Row Angular Contact Ball Bearings in Universal Design

Einreihige Schrägkugellager, abgedichtet

Single Row Angular Contact Ball Bearings with Seals and Shields

Zweireihige Schrägkugellager

Double Row Angular Contact Ball Bearings

Vierpunktlager

Four-Point Contact Ball Bearings

0

439

Einreihige Schrägkugellager Single Row Angular Contact Ball Bearings

DIN 628

Einreihige NKE Schrägkugellager, metrische Abmessungen

Normen, Hauptabmessungen

Maßpläne DIN 616

Ein- und zweireihige Schrägkugellager,

metrischen Abmessungen DIN 628

Allgemeines

Einreihige Schrägkugellager gehören zu den nicht zerlegbaren Radiallagern.

Einreihige Schrägkugellager sind auch für hohe Drehzahlen geeignet und nehmen Kräfte sowohl in radialer als auch in axialer Richtung auf. Sie sind aber auch zur Aufnahme kombinierter Belastungen und bei Kippmomenten gut geeignet.

Da einreihige Schrägkugellager Axialkräfte nur in einer Richtung aufnehmen können, müssen sie immer gegen ein zweites Lager angestellt werden, das die axiale Führung der Welle in die Gegenrichtung übernimmt.

Bei Schrägkugellagern werden die auf das Lager wirkenden Belastungen unter einem Winkel, dem so genannten **Druckwinkel** α , zur Mittelachse hin übertragen (siehe Abb. 1).

Je größer der Druckwinkel α wird, desto besser ist das Lager zur Aufnahme von Axialbelastungen geeignet.

Bauformen

Durch ihre universelle Verwendbarkeit werden einreihige Schrägkugellager in mehreren Konstruktionsvarianten gefertigt und auch mit unterschiedlichen Druckwinkeln angeboten.

Die spezifischen technischen Merkmale der einzelnen Konstruktionsvarianten werden durch entsprechende **Nachsetzzeichen** identifiziert.

NKE Single Row Angular Contact Ball Bearings, Metric Dimensions

Standards, Boundary Dimensions

Standard plans DIN 616

Single and double row angular contact ball bearings, metric dimensions

General

Single row angular contact ball bearings are rigid, non-separable radial bearings.

They are suitable for high-speed applications and can accommodate both radial and thrust forces including combined loads and tilting moments.

As single row angular contact ball bearings accept thrust loads in one direction only, they must be used in pairs where a bearing has to be adjusted against another to guide the shaft in the opposite direction.

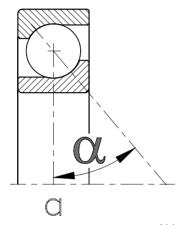
Angular contact ball bearings transfer the loads acting on the bearing at a certain angle, the so called "**contact angle**: α " towards the shaft centre line (see Fig. 1).

The ability of single row angular contact ball bearings to accommodate thrust loads depends on their contact angle. The higher the angle the better the ability for accepting thrust loads.

Design Variants

Due to their universal feature **single row angular contact ball bearings** are produced in various designs and with different contact angles.

The individual technical features of the different design variants are clearly identified by suitable suffixes.


Druckwinkel a

NKE Schrägkugellager der Reihen 72 und 73 werden mit unterschiedlichen Druckwinkeln gefertigt.

Die einzelnen Druckwinkel werden durch Nachsetzzeichen unterschieden:

Contact Angle a

NKE single row angular contact ball bearings are produced with several different contact angles, these contact angles are identified by the following suffixes:

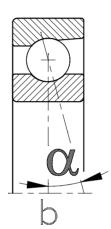


Abb. 1 *Fig. 1*

Nachsetzzeichen Suffix	Druckwinkel Contact angle
Α	30°
В	40°
С	15°
E	25°

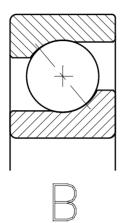
Im allgemeinen Maschinenbau werden üblicherweise Schrägkugellager der Reihen 72 und 73 mit einem Druckwinkel von 40° (Nachsetzzeichen B) verwendet.

Schrägkugellager mit anderen Druckwinkeln werden hauptsächlich zur Lagerung von Arbeitsspindeln von Werkzeugmaschinen verwendet.

Single row angular contact ball bearings of the series **72** and **73** with a contact angle of **40°** (suffix **B**) are regularly used in the general machinery industry.

Other angular contact ball bearings with different contact angles are mainly used in working spindles of machine tools.

Einreihige Schrägkugellager Single Row Angular Contact Ball Bearings



NKE Schrägkugellager der Reihen 72 und 73 in "BE"-Ausführung

Die einreihigen **NKE Schrägkugellager** der Reihen **72** und **73** werden auch mit verstärktem Innenaufbau hergestellt, Ausführung (**BE**), siehe Abb 2

NKE Angular Contact Ball Bearings, Series 72 and 73 in "BE"-Design

NKE single row angular contact ball bearings, series **72** and **73** are also produced with a reenforced internal design, i.e. "**BE**"- design, see Fig. 2.

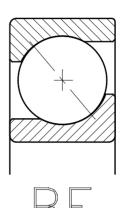


Abb. 2 Fig. 2

Durch die Verwendung größerer Kugeln bei gleichen Hauptabmessungen weisen Lager der Ausführung **BE** wesentlich höhere Tragfähigkeit als Lager der "konventionellen" Ausführung auf.

The use of larger ball sizes in **BE**-design bearings allows for significantly higher load ratings when compared to "conventional" design bearings whilst maintaining the same overall dimensions.

Reihen 72B und 73B in Universalausführung

Einreihige Schrägkugellager werden häufig paar- oder satzweise verwendet, wobei die Lager direkt nebeneinander sitzen, siehe Seite 447.

Um dabei die gewünschte Axialluft oder Vorspannung zu erhalten, müssen bereits die dafür verwendeten Einzellager sorgfältig aufeinander abgestimmt sein.

Series 72B and 73B in Universal Design

Single row angular contact ball bearings are frequently used in pairs or sets where two or more bearings are located side by side, see page 447.

To obtain certain clearances or preloads single bearings that are used in pairs have to be matched accordingly.

Daher sind einreihige NKE Schrägkugellager der Reihen 72 und 73 mit einem Druckwinkel von 40° sowohl in einer Ausführung zur Verwendung als Einzellager erhältlich (Nachsetzzeichen B bzw. BE) als auch in einer so genannten Universalausführung, welche einen willkürlichen paar- bzw. satzweisen Einbau dieser Lager erlaubt.

Achtung:

Schrägkugellager der Standardausführung sind für einen paar- oder satzweisen Einbau NICHT geeignet!

Lagerluft & Vorspannung

Einreihige NKE Schrägkugellager in Universalausführung sind so aufeinander abgestimmt, dass die Lagerpaare bzw. Lagersätze bei Verwendung "normaler" Passungen eine definierte Lagerluft-bzw. eine definierte Vorspannung aufweisen.

Als "normale" Passungen gelten:

For that reason NKE single row angular contact ball bearings of the series **72** and **73** featuring contact angles of **40°** are available in a variant for use as a single bearing (suffix **B** and **BE**, respectively) and in a **universal matched** variant to be used in random pairs or sets.

NOTE:

Standard design angular contact ball bearings are NOT suitable for being used as bearing pairs or sets!

Internal Clearance & Preload

NKE single row angular contact ball bearings in universal design, with normal bearing mounting fits, are matched in sets or pairs, respectively, to give a defined axial play or preloading, respectively.

The "normal" fits are:

Wellensitze Shaft fits	j5
Gehäusesitze Housing fits	J6

Lagerluft und Vorspannungsklassen

Einreihige NKE Schrägkugellager in Universalausführung werden in unterschiedlichen Lagerluft- bzw. Vorspannungsklassen hergestellt, siehe. Tabelle 1 bzw. 2.

Zur Identifikation der einzelnen Luft- bzw. Vorspannungsklassen werden folgende Nachsetzzeichen verwendet:

Die in Tabelle 2 angegebenen Werte gelten für nicht eingebaute Lagerpaare in X- oder O-Anordnung ohne Messbelastung.

Internal Clearance and Preload Classes

NKE single row angular contact ball bearings in universal design are produced in different internal clearance and preloading classes, see Table 1 and 2, respectively.

The individual internal clearance and preload classes are identified by following suffixes:

The values given in table 2 apply to unmounted bearing pairs arranged either back-to-back or face-to-face without external load applied.

	zzeichen ffix	Bedeutung <i>Meaning</i>	
	CA	geringe Axialluft light axial clearance	
Axialluft Axial clearance	СВ	mittlere Axialluft medium axial clearance	(STANDARD)
	CC	große Axialluft <i>large axial clearance</i>	
	GA	keine / geringe Vorspannun none / slight preload	g
Vorspannung Preload	GB	mittelstarke Vorspannung medium preload	
	GC	starke Vorspannung heavy preload	

Tabelle 1

Anmerkung:

Einreihige **NKE Schrägkugellager** der Reihen **72** und **73** in Universalausführung werden standardmäßig in Ausführung "CB" bevorratet.

Für andere Ausführungen ersuchen wir die jeweilige Verfügbarkeit anzufragen.

Schiefstellung

Einreihige Schrägkugellager sind zum Ausgleich von Schiefstellungen nur sehr beschränkt geeignet.

Bei Einzellagern und Lagerpaaren in X-Anordnung mit Betriebsspiel haben unter normalen Betriebsverhältnissen Schiefstellungen von maximal 2 Winkelminuten üblicherweise noch keine negativen Auswirkungen.

Allerdings weisen Schrägkugellager, die unter Schiefstellungen laufen, erheblich höhere Laufgeräusche auf es ist auch mit einer Verringerung der Gebrauchsdauer durch die Zusatzbelastungen zu rechnen.

Lagersätze ohne Lagerluft, Lagerpaare in Ooder Tandemanordnung sowie Spindellager dürfen nicht unter Verkippung laufen.

Note:

NKE **single row angular contact ball bearings**, Series 72 and 73 in universal design are standard stocked in "CB" design.

For other design variants, please check availability.

Misalignment

Single row angular contact ball bearings have a very limited ability to accommodate misalignments.

Therefore any operating misalignments applied to this bearing type creates additional forces subsequently reducing their service life and, additionally, generates higher running noise levels. Where individual single row angular contact bearings or pairs of bearings are arranged face-to-face with operating clearance, up to 2 angular minutes misalignment from the centre position does not normally affect the bearings negatively.

However, when arranged in pairs **back-to-back** or **tandem** or as **sets** without clearance, spindle bearings must not run misaligned.

Axialluftklassen bei NKE Schrägkugellagern 72 B (BE) & 73B (BE) in Universalausführung Axial Clearance Classes of Angular Contact Ball Bearings 72 B (BE) & 73B (BE) in Universal Design

Bohrungsdi Bore di	ameter			internal clea	asse [µm] arance class		
d [n	nmj	C	A	0	B	C	C:C
>	≤	min	max	min	max	min	max
	10	4	12	14	22	22	30
10	18	5	13	15	23	24	32
18	30	7	15	18	26	32	40
30	50	9	17	22	30	40	48
50	80	11	23	26	38	48	60
80	120	14	26	32	44	55	67
120	180	17	29	35	47	62	74
180	250	21	37	45	61	74	90
250	315	26	42	52	68	90	106

Anmerkung: Bei Lagern mit einem Druckwinkel von 40° (Nachsetzzeichen **B**) gilt: Radialluft ≈ 0,85 Axialluft Note: For 40° contact angles; i.e. suffix **B** applies: radial clearance ≈ 0,85 axial clearance

Vorspannungsklassen bei NKE Schrägkugellagern 72 B (BE) & 73B (BE) in Universalausführung Preload Classes of NKE Angular Contact Ball Bearings 72 B (BE) & 73B (BE) in Universal Design

Bohri durchr	nesser					Vor	spannu <i>Preload</i>	_					
	neter		G	Α			G	В			G	С	
d [n	nm]	[µ	m]	[]	N]	[μ	m]	[1	N]	[µm] [N]			
>	≤	min	max	min	max	min	max	min	max	min	max	min	max
10	18	+4	-4	0	80	-2	-10	30	330	-8	-16	230	660
18	30	+4	-4	0	120	-2	-10	40	480	-8	-16	340	970
30	50	+4	-4	0	160	-2	-10	60	630	-8	-16	450	1280
50	80	+6	-6	0	380	-3	-15	140	1500	-12	-24	1080	3050
80	120	+6	-6	0	410	-3	-15	150	1600	-12	-24	1150	3250
120	180	+6	-6	0	540	-3	-15	200	2150	-12	-24	1500	4300
180	250	+8	-8	0	940	-4	-20	330	3700	-16	-32	2650	7500
250	315	+8	-8	0	1080	-4	-20	380	4250	-16	-32	3000	8600

www.nke.at 445

Tabelle 2

Einreihige Schrägkugellager

Single Row Angular Contact Ball Bearings

Toleranzen

Einreihige **NKE** Schrägkugellager werden standardmäßig in Normaltoleranz (**PN**) gefertigt.

Auf Anfrage können diese auch mit eingeengten Toleranzen in den Toleranzklassen **P6** und **P5** gefertigt werden.

Detaillierte Werte für die einzelnen Toleranzklassen entnehmen Sie bitte den Tabellen im Abschnitt "Lagerdaten / Toleranzen", Seite 54.

Käfige

NKE Schrägkugellager werden mit unterschiedlichen Käfigbauarten gefertigt, wobei Stahlblechkäfige (Nachsetzzeichen J), Polyamidkäfige (Nachsetzzeichen TVP) oder Messingmassivkäfige (Nachsetzzeichen MP) verfügbar sind.

Große Schrägkugellager werden standardmäßig mit Messingmassivkäfigen (Nachsetzzeichen MP) gefertigt; Spindellager weisen standardmäßig einen Hartgewebekäfig (Nachsetzzeichen TPA) auf.

Für Sonderanwendungen können NKE Schrägkugellager auch mit Käfigen aus anderen Werkstoffen, wie etwa Stahlmassivkäfige (Nachsetzzeichen FP) oder Leichtmetall-Massivkäfigen (Nachsetzzeichen LP) geliefert werden.

Sofern eine bestimmte vom Standard abweichende Käfigausführung gewünscht wird, ersuchen wir die jeweilige Verfügbarkeit anzufragen.

Tolerances

NKE single row angular contact ball bearings are produced to normal tolerance class (**PN**) as standard.

On request these bearings are also produced to closer tolerances, such as tolerance classes **P6** and **P5**.

Detailed tolerance values are listed in the tables shown in the chapter "Bearing data / Tolerances" page 239.

Cages

NKE single row angular contact ball bearings are produced with several cage designs; such as pressed steel cages (Suffix J), polyamide cages (Suffix TVP) or machined solid brass cages (Suffix MP).

Large types and sizes have machined solid brass cages (Suffix **MP**) fitted as standard.

Bearings used in higher precision or in machine tool spindle applications are normally fitted with phenolic resin cages (suffix **TPA**).

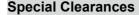
Some special applications have machined solid steel cages (suffix **FP**) or light metal alloy cages (suffix **LP**) fitted as standard.

If a specific cage design is required, please check availability.

Sonder-Lagerluft:

Auf Anfrage liefert **NKE** auch gepaarte Schrägkugellager mit speziellen Lagerluftwerten nach Kundenspezifikationen.

Lagerpaare


Einreihige **Schrägkugellager in Universalausführung** können paar- oder satzweise in folgenden Anordnungen verwendet werden, siehe Abb. 3.

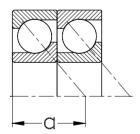
Tandem-Anordnung

Schrägkugellagerpaare in Tandemanordnung werden verwendet, wenn die auftretende Axiallast die Tragfähigkeit eines einzelnen Lagers übersteigt.

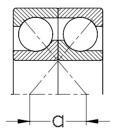
Bei dieser Anordnung werden Axialkräfte nur in einer Richtung aufgenommen und gleichmäßig auf beide Lager aufgeteilt.

Schrägkugellager in Tandem-Anordnung sind immer gegen ein weiteres, spiegelbildlich angeordnetes Lager, welches die Wellenführung in der Gegenrichtung übernimmt, anzustellen.

NKE also produces paired single row angular contact ball bearings to customers' requirements and specifications on request.

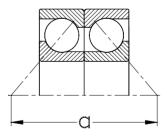

Bearing Pairs

Single row angular contact ball bearings in universal design usually used in pairs or sets. (see arrangements sketch, Fig. 3.)


Tandem arrangement

Single row angular contact ball bearings in a tandem arrangement are used when the actual thrust force exceeds the thrust load capacity of a single angular contact ball bearing. Thesethrust forces are accommodated in one direction only and are distributed equally to both bearings.

Single row angular contact ball bearings in tandem arrangement must always be adjusted against another bearing inversely arranged for shaft guidance in the opposite direction.


Tandem— Anordnung Tandem arrangement

X-Anordnung

Face to face arrangement

Abb. 3 Fig. 3

0-Anordnung

Back to back arrangement

Einreihige Schrägkugellager

Single Row Angular Contact Ball Bearings

X-Anordnung

Axialkräfte werden beidseitig von jeweils einem der Schrägkugellager aufgenommen.

Durch ihre relativ geringe **Stützbreite** (a) stellen Lagerungen in X-Anordnung keine allzu großen Anforderungen an die Fluchtung der Lagerstellen. Allerdings können aufgrund der geringeren Starrheit dieser Anordnung Kippmomente weniger gut aufgenommen werden.

Bei Lagerpaaren in X-Anordnung führt eine Erwärmung der Welle zu einer Verminderung der Axialluft bzw. zu einer erhöhten Vorspannung.

O-Anordnung

Axialkräfte werden, wie bei der X-Anordnung, in beiden Richtungen von jeweils einem Lager aufgenommen.

Schrägkugellager in O-Anordnung weisen durch ihre **große Stützbreite** (a) eine große Starrheit auf und sind auch zur Aufnahme von Kippmomenten sehr gut geeignet.

Lagerpaare in O-Anordnung sind nicht zum Ausgleich von Schiefstellungen geeignet.

Tragfähigkeit von Lagerpaaren

In den Produkttabellen sind die für Einzellager geltenden Tragzahlen angegeben.

Für **paarweise** direkt nebeneinander eingebaute Universallager gilt:

- für die dynamische Tragzahl:

- für die **statische** Tragzahl des Lagerpaares:

Die Richtdrehzahlen für Lagerpaare sind gegenüber den für Einzellager angegebenen Werte um 20% zu reduzieren.

Face-to-face arrangement

Thrust forces are accommodated in both directions by each individual angular contact ball bearing.

Bearing pairs arranged face-to-face do not require a very accurate alignment of the bearing positions due to their relatively small **support width** (a). On the other hand, these arrangements are not suitable to take tilting moments due to their less stiffness.

For bearing pairs arranged face-to-face temperature increase of the shaft causes a reduction of axial internal clearance or an increase of preloading forces, respectively.

Back-to-back arrangement

The axial forces are, similar to face-to-face arrangements, accommodated in both directions by each individual bearing.

Angular contact ball bearings arranged back-to-back provide a very rigid bearing arrangement due to their large support width (a). They are also able to accept tilting moments.

Bearing pairs arranged back-to-back are not able to compensate for misalignments.

Load Ratings of Bearing Pairs

The basic load ratings given in the product tables apply to single bearings only.

For **bearing pairs** mounted side-by-side (i.e. universal design), the following applies:

- for the **dynamic** load rating of a bearing pair:

$$C_{r pair} = 1,62 * C_{r single bearing}$$

- for the **static** load rating of a bearing pair:

$$C_{0r pair} = 2 * C_{0r single bearing}$$

The speed ratings for bearings arranged in pairs should be reduced by 20% compared to the single bearings.

Mindestbelastung:

Zum kinematisch korrekten Betrieb benötigen Wälzlager in allen Betriebszuständen eine Mindestbelastung.

Für NKE Einreihige Schrägkugellager muss die Mindestbelastung 1% der dynamischen Tragzahl betragen.

Äquivalente dynamische Lagerbelastung

Bei als Einzellager eingesetzten Schrägkugellagern mit einem Druckwinkel 40° der Ausführungen B bzw. BE sowie bei in Tandemanordnung eingebaute Schrägkugellager in Universalausführung gilt:

bei

$$\frac{F_a}{F_r} \le 1,14$$
 gilt $P = F_r$

oder, wenn

$$\frac{F_a}{F_r}$$
 > 1,14 dann P = 0,35*F_r + 0,57*F_a

Achtung:

Durch den Druckwinkel verursacht bei Schrägkugellagern jede äußere Belastung eine innere Axialkraft

Minimum Load:

Bearings require a minimum load under all operating conditions to ensure kinematically correct rolling element function.

For NKE single row angular contact ball bearings the minimum load must be 1% of the dynamic load rating.

Equivalent Dynamic Bearing Load

Where angular contact ball bearings with a contact angle **40°** are used, individually **B** or **BE** design, respectively or **universally design arranged in tandem**, the following formula should be used:

when

$$\frac{F_a}{F_c} \le 1,14$$
 then P = Fr

or, when

$$\frac{F_a}{F_r}$$
 > 1,14 then P = 0,35*F_r + 0,57*F_a

Note:

In the case of angular contact ball bearings, each external radial load applied generates an internal thrust force.

Einreihige Schrägkugellager

Single Row Angular Contact Ball Bearings

Zur Berechnung der resultierenden Axialkraft $\mathbf{F_a}$ sind daher auch die Hinweise aus Tabelle 3 zu beachten.

Bei **paarweise in X- oder O-Anordnung** eingesetzten Schrägkugellagern in Universalausführung gilt:

bei

$$\frac{F_a}{F_c} \le 1,14$$
 gilt $P = F_r + 0,55 * F_a$

bzw. wenn

$$\frac{F_a}{F_c}$$
 > 1,14 dann **P = 0,57*F**_r + **0,93*F**_a

Achtung:

 $\mathbf{F}_{\mathbf{a}}$ und $\mathbf{F}_{\mathbf{r}}$ sind die auf das Lagerpaar wirkenden Kräfte.

Äquivalente statische Lagerbelastung

Bei **einzeln** oder in **Tandemanordnung** paarweise eingebauten Schrägkugellagern der Ausführungen **B** und **BE** gilt:

$$P_0 = 0.5 * F_r + 0.26 * F_a$$

Wenn allerdings P_0 kleiner als F_r wird, ist F_r als statisch äquivalente Lagerbelastung zu verwenden.

Bei **paarweise in X- oder O-Anordnung** eingesetzten Schrägkugellagern in Universalausführung gilt:

$$P_0 = F_r + 0.52 * F_a$$

Achtung:

 $\mathbf{F}_{\mathbf{a}}$ und $\mathbf{F}_{\mathbf{r}}$ sind die auf das **Lagerpaar** wirkenden Kräfte.

For the calculation of the resulting axial force \mathbf{F}_a the information provided by table 3 should be considered

For angular contact ball bearings in the universal design, arranged in pairs either face-to-face or back-to-back, the following formula should be used:

when

$$\frac{F_a}{F_r} \le 1,14$$
 then **P = F_r + 0,55 * F_a**

or, when

$$\frac{F_a}{F_c}$$
 > 1,14 then **P = 0,57*F**_r + 0,93*F_a

Note:

 F_a and F_r indicate the forces acting on the bearing pairs.

Equivalent Static Bearing Load

For angular contact ball bearings in the **B** or **BE** design used either as **single bearings** or paired in tandem **arrangement**:

$$P_0 = 0.5 * F_r + 0.26 * F_a$$

But, when P_0 is smaller than F_r , the F_r value must be used as the equivalent static bearing load.

For angular contact ball bearings in the universal design arranged in pairs either face-to-face or back-to-back:

$$P_0 = F_r + 0.52 * F_a$$

Note:

F_a and **F**_r indicate the forces acting on the bearing pairs.

Axialbelastung bei einzeln verwendeten Schrägkugellagern und Schrägkugellagern in Tandem-Anordnung

Durch den Druckwinkel verursacht bei Schrägkugellagern jede Radialbelastung eine zusätzliche innere Axiallastkomponente.

Bei paarweise in X- oder O-Anordnung eingebauten Schrägkugellagern wird diese Kraftkomponente im Lagerpaar selbst aufgenommen, bei Einzellagern oder Lagerpaaren in Tandemanordnung muss sie allerdings überprüft werden.

In Tabelle 3 (siehe Seite 452) sind Berechnungsformeln für die resultierende Axialbelastung für verschiedene Lastfälle angegeben.

Achtung:

Die in Tabelle 3 angegebenen Formeln setzen im Betriebszustand spielfrei eingestellte Lager voraus.

Die auf die Lager wirkenden Radialkräfte F_r (F_{rA} bei Lager A, F_{rB} bei Lager B) greifen in den Druckmittelpunkten (a) der Lager an.

Der Abstand (a) wird in den Lagertabellen angegeben.

Der Betrag der Radialkräfte (\mathbf{F}_{rA} und \mathbf{F}_{rB}) wird, unabhängig von deren Wirkungsrichtung, immer als positiv betrachtet.

Weiters wird eine auf die Lager wirkende äußere Axiallast $\mathbf{F}_{\mathbf{a}}$ angenommen.

Thrust Loads to Angular Contact Ball Bearings and Single Mounted or Paired in Tandem Arrangement

In the case of angular contact ball bearings every radial load applied will generate an additional internal thrust load component due to the contact angle.

In the case of angular contact ball bearings arranged in pairs either back-to-back or face-to-face this thrust load component will be accommodated in the bearing pair internally. In the case of angular contact ball bearings, either as single bearings or paired in tandem arrangement, this thrust load component must be additionally considered.

The calculation formulas of the resulting thrust loads are listed on table 3, page 452.

Note:

The formulas listed in table 3 assume bearings having an operational clearance close to zero.

The radial forces applied to the bearings always act at the pressure centre (a) of the bearings.

The distance (a) is listed in the bearing tables.

The radial forces (\mathbf{F}_{rA} and \mathbf{F}_{rB}) which act on the bearings are always considered to be positive, irrespective from their actual direction.

Additionally an external thrust force $\mathbf{F}_{\mathbf{a}}$ has been assumed.

Resultierende Axialbelastung bei einreihigen Schrägkugellagern, Ausführungen B und BE (Druckwinkel 40°)

Resulting axial loads of single row angular contact ball bearings, B & BE design (contact angle 40°)

Lageranordnung Bearing arrangement	Belastungsfall: bei Load case; if		g / Axial loads on bearing B
O-Anordnung Back-to-back arrangement	$A F_{rA} \ge F_{rB} F_{a} \ge 0$	F _{aA} = 1,14 * F _{rA}	$F_{aB} = F_{aA} + F_a$
FrB FrA X-Anordnung Face-to-face arrangement A B	B $F_{rA} < F_{rB}$ $F_a \ge 1,14 * (F_{rB} - F_{rA})$	$F_{aA} = 1,14 * F_{rA}$	$F_{aB} = F_{aA} + F_a$
F _r A F _r B	C $F_{rA} > F_{rB}$ $F_a < 1,14 * (F_{rA} - F_{rB})$ oder / or $F_a = 0$	$F_{aA} = F_{aB} - F_a$	F _{aB} = 1,14 * F _{rB}
O-Anordnung Back-to-back arrangement B A	$ D F_{rA} \le F_{rB} F_{a} \ge 0 $	$F_{aA} = F_{aB} + F_a$	F _{aB} = 1,14 * F _{rB}
FrB FrA X-Anordnung Face-to-face arrangement A B	E $F_{rA} > F_{rB}$ $Fa \ge 1,14 * (F_{rA} - F_{rB})$	$F_{aA} = F_{aB} + F_a$	F _{aB} = 1,14 * F _{rB}
F _{rA} F _{rB}	F F _a < 1,14 * (F _{rA} - F _{rB}) oder / or F _a = 0	F _{aA} = 1,14 * F _{rA}	$F_{aB} = F_{aA} - F_a$

Tabelle 3
Table 3

Anschlussmaße einreihiger Schrägkugellager der Ausführungen B und BE

Gerade bei den Schrägkugellagern ist aufgrund der entstehenden inneren Axiallastkomponente besonders auf die Einhaltung einer ausreichenden axialen Unterstützung der Lagerringe durch die Umgebungskonstruktion zu achten.

Dazu müssen die Schulterhöhen der Anlageflächen an den Wellenbunden bzw. der Gehäuseschultern eine ausreichende Mindesthöhe aufweisen.

Allerdings dürfen die Radien der Kantenverrundung der Lagerringe nicht an den Hohlkehlen von Wellenbund oder Gehäuse anliegen.

Daher muß der größte Hohlkehlradius an den Anschlußteilen (\mathbf{r}_g bzw. \mathbf{r}_{g1}) kleiner sein als der kleinste Radius der Kantenverrundung (\mathbf{r}_1 , \mathbf{r}_2) der Lagerringe (siehe Zeichnung bei Tabelle auf der Seite 454).

Empfehlungen für Einbaumaße sind auch in **DIN 5418** definiert, die Werte der Kantenverrundung der Lagerringe sind in den Produkttabellen angegeben.

Empfehlungen zur Gestaltung der Anschlussteile sind in der Tabelle auf Seite **454** angegeben.

Förderwirkung bei Ölschmierung

Asymmetrische Lager, wozu auch Schrägkugellager gehören, weisen eine Pumpwirkung auf, die bei Ölumlaufschmierung zur zusätzlichen Unterstützung der Ölzirkulation ebenfalls herangezogen werden kann.

Bei Ölzuführung in Gegenrichtung ist allerdings mit einem erhöhten Durchflusswiderstand zu rechnen.

Abutment and Fillet Dimensions for Single Row Angular Contact Ball Bearings, Design B and BE

Especially in the case of angular contact ball bearings particular attention must be made for the optimum support of the bearing rings by the adjacent parts due to their generated internal thrust force elements.

The parts surrounding the bearing have to be designed in such a way that adequate axial support of bearing rings is secure under all circumstances.

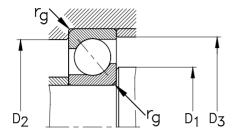
To gain adequate support, the shaft housing shoulders require a certain minimum height.

On the other hand, the bearing rings must only contact adjacent parts with their side faces. The radii of bearing corners must not touch the corner fillet radii of either the shaft or housing shoulders.

Therefore, the largest fillet radius (\mathbf{r}_g or \mathbf{r}_{g1} , respectively) must always be smaller than the minimum fillet dimension of the bearing rings (\mathbf{r}_1 , \mathbf{r}_2) refer to the details on the page **454**.

Recommendations for the dimensions of adjacent parts are listed in **DIN 5418**, the values for the bearing fillet dimensions are stated in the bearing tables.

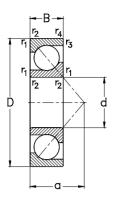
Pumping Effect with Oil Lubrication


Asymmetrical bearings, which angular contact ball bearings are, generate a certain pumping effect due to their internal design.

This effect may also be used to support the oil circulation in the lubricating circuit.

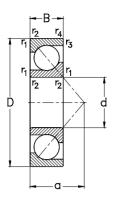
Although, in the case of oil circulation feed in the **opposite direction** an enlarged resistance against the oil flow must be taken into consideration.

Anschlussmaße Einreihiger Metrischer Schrägkugellager [mm] Abutment and Fillet Dimensions for Metric Single Row Angular Contact Ball Bearings [mm]


ø Welle			72 .	B (-BE)				73 .	В (·	-BE)	
Shaft ø	Туре	D₁	D_2	D_3	r _a	\mathbf{r}_{a1}	Type	D_1	D_2	D_3	r _a	r _{a1}
[mm]		min	max	max	max	max		min	max	max	max	max
10	7200-BE	14	26	27	0,6	0,3]
12	7201-BE	16	28	29	0,6	0,3	7301-BE	18	31	33	1	0,6
15	7202-BE	19	31	32	0,6	0,3	7302-BE	21	36	38	1	0,6
17	7203-BE	21	36	36	0,6	0,6	7303-BE	23	41	43	1	0,6
20	7204-BE	26	41	43	1	0,6	7304-BE	27	45	48	1	0,6
25	7205-BE	31	46	48	1	0,6	7305-BE	32	55	58	1	0,6
30	7206-BE	36	56	58	1	0,6	7306-BE	37	65	68	1	0,6
35	7207-BE	42	65	68	1	0,6	7307-BE	44	71	75	1,5	1
40	7208-BE	47	73	76	1	0,6	7308-BE	49	81	85	1,5	1
45	7209-BE	52	78	81	1	0,6	7309-BE	54	91	95	1,5	1
50	7210-BE	57	83	86	1	0,6	7310-BE	61	99	104	2	1
55	7211-BE	64	91	95	1,5	0,6	7311-BE	66	109	114	2	1
60	7212-BE	69	101	105	1,5	1	7312-BE	72	118	123	2,1	1
65	7213-BE	74	111	115	1,5	1	7313-BE	77	128	133	2,1	1
70	7214-BE	79	116	120	1,5	1	7314-BE	82	138	143	2,1	1
75	7215-BE	84	121	125	1,5	1	7315-BE	87	148	153	2,1	1
80	7216-BE	91	129	134	2	1	7316-BE	92	158	163	2,1	1
85	7217-BE	96	139	144	2	1	7317-BE	99	166	173	2,5	1
90	7218-BE	101	149	154	2	1	7318-BE	104	176	183	2,5	1
95	7219-BE	107	158	163	2,1	1	7319-BE	109	186	193	2,5	1
100	7220-BE	112	168	173	2,1	1	7320-BE	114	201	208	2,5	1
105	7221-BE	117	178	183	2,1	1	7321-BE	119	211	218	2,5	1
110	7222-BE	122	188	193	2,1	1	7322-BE	124	226	233	2,5	1
120	7224-B	132	203	208	2,1	1	7324-B	134	246	253	2,5	1
130	7226-B	144	216	223	2,5	1	7326-B	147	263	271	3	1,5
140	7228-B	154	236	243	2,5	1	7328-B	157	283	291	3	1,5
150	7230-B	164	256	263	2,5	1	7330-B	167	303	311	3	1,5
160	7232-B	174	276	283	2,5	1	7332-B	177	323	331	3	1,5
170	7234-B	187	293	301	3	1,5	7334-B	187	343	351	3	1,5

Einreihige Schrägkugellager Single Row Angular Contact Ball Bearings

	Hau	•	nessur im]	igen		Lagertype	Tra	agzahl [kN]	en	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Gewicht [kg]
	Boul	•	dimens nm]	sions		Designation	Loa	ad ratir [kN]	ngs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Weight [kg]
d	D	В	r ₁ , r ₂ min	r ₃ , r ₄ min	а		C _r dyn.	C ₀r stat.	C _u	n _{er}	n _G	m
10	30	9	0,6	0,3	13	7200-BE-TVP	7	3,3	0,2	22800	30000	0,03
12	32	10	0,6	0,3	14	7201-BE-TVP	7,5	3,8	0,2	21700	26000	0,04
	37	12	1	0,6	16	7301-BE-TVP	10,5	5	0,5	16500	24000	0,06
15	35	11	0,6	0,3	16	7202-BE-TVP	8,8	4,4	0,2	19800	24000	0,05
	42	13	1	0,6	19	7302-BE-TVP	13,1	6,7	0,3	14300	20000	0,08
17	40	12	0,6	0,6	18	7203-BE-TVP	11,5	6,1	0,3	17600	22000	0,07
	40	12	0,6	0,6	18	7203-BE-MP	10,8	5,5	0,3	17800	20000	0,07
	47	14	1	0,6	20	7303-BE-TVP	16,8	8,3	0,4	13000	19000	0,11
	47	14	1	0,6	20	7303-BE-MP	15,5	7,4	0,3	13100	19000	0,11
20	47	14	1	0,6	21	7204-BE-TVP	14,8	8,3	0,4	15900	19000	0,11
	47	14	1	0,6	21	7204-BE-MP	13,9	7,6	0,3	16000	18000	0,11
	52	15	1,1	0,6	23	7304-BE-TVP	20,9	11,1	0,5	11600	18000	0,15
	52	15	1,1	0,6	23	7304-BE-MP	19,5	10,0	0,5	11700	18000	0,15
25	52	15	1	0,6	24	7205-BE-TVP	16,2	10,1	0,5	14000	17000	0,13
	52	15	1	0,6	24	7205-BE-MP	15,5	9,4	0,4	14100	15000	0,13
	62	17	1,1	0,6	27	7305-BE-TVP	27,2	15,6	0,7	9900	15000	0,23
	62	17	1,1	0,6	27	7305-BE-MP	25,5	14,1	0,6	10000	14000	0,23
30	62	16	1	0,6	27	7206-BE-TVP	24,9	15,6	0,7	11600	14000	0,2
	62	16	1	0,6	27	7206-BE-MP	23,7	14,4	0,7	11600	13000	0,2
	72	19	1,1	0,6	31	7306-BE-TVP	36,2	21,4	1,0	8700	13000	0,35
	72	19	1,1	0,6	31	7306-BE-MP	33,9	19,4	0,9	8800	12000	0,35
35	72	17	1,1	0,6	31	7207-BE-TVP	32,2	20,8	0,9	9900	12000	0,3

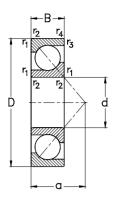

Empfohlene Anschlussmaße siehe Seite 454

For recommended abutment and fillet dimensions see page 454

	Hau	•	nessur ım]	ngen		Lagertype	Tra	agzahl [kN]	en	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Gewicht [kg]
	Boui	•	dimens nm]	sions		Designation	Lo	ad ratii [kN]	ngs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Weight [kg]
d	D	В	r ₁ , r ₂ min	r ₃ , r ₄ min	а		C _r dyn.	C _{0r} stat.	C _u	n _{er}	n _G	m
35	72	17	1,1	0,6	31	7207-BE-MP	30,6	19,2	0,9	10000	11000	0,3
	80	21	1,5	1	35	7307-BE-TVP	40,2	24,4	1,1	8000	11000	0,46
	80	21	1,5	1	35	7307-BE-MP	37,7	22,2	1,0	8100	10000	0,46
40	80	18	1,1	0,6	34	7208-BE-TVP	36,2	25,8	1,2	8900	11000	0,37
	80	18	1,1	0,6	34	7208-BE-MP	36,1	23,9	1,1	9000	10000	0,37
	90	23	1,5	1	39	7308-BE-TVP	51	33,0	1,5	7200	10000	0,63
	90	23	1,5	1	39	7308-BE-MP	48,6	30,3	1,4	7300	9000	0,63
45	85	19	1,1	0,6	37	7209-BE-TVP	39,5	28,2	1,3	8400	10000	0,41
	85	19	1,1	0,6	37	7209-BE-MP	37,8	26,3	1,2	8400	9000	0,41
	100	25	1,5	1	43	7309-BE-TVP	61	40,1	1,8	6600	9000	0,84
	100	25	1,5	1	43	7309-BE-MP	58	36,8	1,7	6700	8000	0,84
50	90	20	1,1	0,6	39	7210-BE-TVP	40,8	30,5	1,4	7900	9000	0,47
	90	20	1,1	0,6	39	7210-BE-MP	39,2	28,6	1,3	8000	8500	0,47
	110	27	2	1	47	7310-BE-TVP	77	52	2,3	6100	8000	1,1
	110	27	2	1	47	7310-BE-MP	73	47,3	2,2	6200	7500	1,1
55	100	21	1,5	1	43	7211-BE-TVP	51	38,5	1,8	7200	8000	0,64
	100	21	1,5	1	43	7211-BE-MP	48,5	36,1	1,6	7200	7500	0,64
	120	29	2	1	51	7311-BE-TVP	88	60	2,7	5700	7000	1,4
	120	29	2	1	51	7311-BE-MP	83	55	2,5	5800	6700	1,4
60	110	22	1,5	1	47	7212-BE-TVP	59	44,4	2,0	6600	7500	0,8
	110	22	1,5	1	47	7212-BE-MP	56	41,5	1,9	6600	7000	0,8
	130	31	2,1	1,1	55	7312-BE-TVP	107	74	3,4	5300	6700	1,8

Einreihige Schrägkugellager Single Row Angular Contact Ball Bearings

	Hau	•	nessun ım]	igen		Lagertype	Tra	agzahl [kN]	en	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Gewicht [kg]
	Boui	•	dimens nm]	sions		Designation	Lo	ad ratir [kN]	ngs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Weight [kg]
d	D	В	r ₁ , r ₂ min	r ₃ , r ₄ min	а		C _r dyn.	C ₀r stat.	C _u	n _{er}	n _G	m
60	130	31	2,1	1,1	55	7312-BE-MP	101	68	3,1	5400	6000	1,8
65	120	23	1,5	1	50	7213-BE-TVP	70	54	2,4	6000	6300	1
	120	23	1,5	1	50	7213-BE-MP	67	50	2,3	6100	6300	1
	140	33	2,1	1,1	60	7313-BE-TVP	108	80	3,6	5100	5600	2,2
	140	33	2,1	1,1	60	7313-BE-MP	102	73	3,3	5100	5600	2,2
70	125	24	1,5	1	53	7214-BE-TVP	72	58	2,6	5800	6300	1,1
	125	24	1,5	1	53	7214-BE-MP	69	54	2,5	5900	6000	1,1
	150	35	2,1	1,1	64	7314-BE-TVP	125	91	3,9	4800	5300	2,7
	150	35	2,1	1,1	64	7314-BE-MP	118	83	3,6	4900	5300	2,7
75	130	25	1,5	1	56	7215-BE-TVP	75	62	2,8	5600	5600	1,2
	130	25	1,5	1	56	7215-BE-MP	72	58	2,6	5700	5600	1,2
	160	37	2,1	1,1	68	7315-BE-J	138	106	4,4	4500	5000	3,2
	160	37	2,1	1,1	68	7315-BE-MP	130	97	4,1	4600	5000	3,2
80	140	26	2	1	59	7216-BE-TVP	88	74	3,2	5200	5600	1,5
	140	26	2	1	59	7216-BE-MP	84	69	3,0	5300	5300	1,5
	170	39	2,1	1,1	72	7316-BE-MP	141	109	4,4	4400	5000	4,3
85	150	28	2	1	63	7217-BE-TVP	105	87	3,6	5000	5300	1,9
	150	28	2	1	63	7217-BE-MP	101	81	3,4	5100	5000	1,9
	180	41	3	1,1	76	7317-BE-MP	152	122	4,8	4200	4800	4,6
90	160	30	2	1	67	7218-BE-TVP	112	94	3,8	4900	4500	2,4
	160	30	2	1	67	7218-BE-MP	107	88	3,6	4900	4500	2,4
	190	43	3	1,1	80	7318-BE-TVP	173	147	5,6	4000	4500	5,3

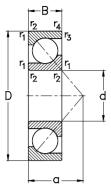

Empfohlene Anschlussmaße siehe Seite 454

For recommended abutment and fillet dimensions see page 454

	Hau	•	nessun ım]	igen		Lagertype	Tra	agzahl [kN]	en	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Gewicht [kg]
	Boui	•	dimens nm]	sions		Designation	Lo	ad ratii [kN]	J	Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Weight [kg]
d	D	В	r ₁ , r ₂ min	r ₃ , r ₄ min	а		C _r dyn.	C _{0r} stat.	C _u	n _{er}	n _G	m
90	190	43	3	1,1	80	7318-BE-MP	164	135	5,2	4000	4300	5,3
95	170	32	2,1	1,1	72	7219-BE-MP	121	101	4,0	4800	4300	3,1
	200	45	3	1,1	84	7319-BE-MP	175	149	5,6	3900	3800	6,2
100	180	34	2,1	1,1	76	7220-BE-MP	136	114	4,4	4600	4000	3,4
	215	47	3	1,1	90	7320-BE-MP	200	175	6,3	3700	3600	7,7
105	190	36	2,1	1,1	80	7221-BE-MP	149	129	4,8	4400	4000	4,4
	225	49	3	1,1	94	7321-BE-MP	211	194	6,9	3500	3400	9,5
110	200	38	2,1	1,1	84	7222-BE-MP	161	145	5,3	4300	3600	4,7
	240	50	3	1,1	98	7322-BE-TVP	236	226	7,7	3200	3200	10,4
	240	50	3	1,1	98	7322-BE-MP	223	207	7,1	3300	3400	10,4
120	215	40	2,1	1,1	90	7224-B-MP	158	151	5,3	4100	3600	6,2
	260	55	3	1,1	107	7324-B-MP	234	220	8,8	3000	3200	14,5
130	230	40	3	1,1	96	7226-B-MP	172	180	6,1	3600	3400	7
	280	58	4	1,5	115	7326-B-MP	250	268	8,5	2800	2800	17,5
140	250	42	3	1,1	103	7228-B-MP	197	212	6,9	3400	3000	8,9
	300	62	4	1,5	123	7328-B-MP	275	309	9,5	2500	2600	21,5
150	270	45	3	1,1	111	7230-B-MP	211	243	7,6	3100	2800	11
	320	65	4	1,5	131	7330-B-MP	303	366	10,9	2300	2400	26
160	290	48	3	1,1	118	7232-B-MP	200	237	7,2	3000	2600	13,8
	340	68	4	1,5	139	7332-B-MP	356	437	12,6	2100	2200	30
170	310	52	4	1,5	127	7234-B-MP	266	325	9,5	2800	2400	17,5
	360	72	4	1,5	147	7334-B-MP	359	548	12,8	1900	2200	36

Einreihige Schrägkugellager Single Row Angular Contact Ball Bearings

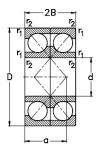
	Hau		nessun ım]	igen		Lagertype	Tra	agzahl [kN]	en	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Gewicht [kg]
	Bour	-	dimens nm]	sions		Designation	Loa	ad ratii [kN]	ngs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Weight [kg]
d	D	В	r ₁ , r ₂ min	r ₃ , r ₄ min	а		C _r dyn.	C _{0r} stat.	C _u	n _{er}	n _G	m
180	320	52	4	1,5	131	7236-B-MP	253	320	9,2	2600	2400	18
	380	75	4	2	156	7336-B-MP	373	489	13,3	1900	2000	42
190	340	55	4	1,5	139	7238-B-MP	273	353	9,9	2400	2200	22
	400	78	5	2	164	7338-B-MP	371	524	13,9	1800	1900	48,5
220	400	65	4	1,5	164	7244-B-MP	322	464	12	2100	1800	37
240	440	72	4	1,5	180	7248-B-MP	363	538	13,3	1900	1700	49


Empfohlene Anschlussmaße siehe Seite 454

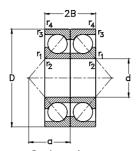
For recommended abutment and fillet dimensions see page 454

Einreihige Schrägkugellager in Universalausführung

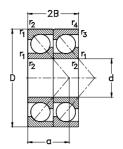
Single Row Angular Contact Ball Bearings in Universal Design


	Hau	•	nessu nm]	ngen		Lagertype	Tra	agzahl	en	Refernzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Gewicht [kg]
	Bour	-	dimen nm]	sions		Designation	Lo	adratin [kN]	gs	Thermal speed raitings [rpm]	Limited speed ratings [rpm]	Weight [kg]
d	D	В	r ₁ , r ₂ min	r ₃ , r ₄ min	а		C _r dyn,	C ₀r stat,	Cu	$\mathbf{n}_{ extsf{ heta}r}$	n _G	m
15	35	11	0,6	0,3	16	7202-BECB-TVP	8,8	4,4	0,2	19800	24000	0,05
17	40	12	0,6	0,6	18	7203-BECB-MP	10,8	5,5	0,3	17600	22000	0,07
	47	14	1	0,6	20	7303-BECB-MP	15,5	7,4	0,3	13100	19000	0,11
20	47	14	1	0,6	21	7204-BECB-TVP	14,8	8,3	0,4	15900	19000	0,11
	47	14	1	0,6	21	7204-BECB-MP	13,9	7,6	0,3	16000	18000	0,11
	52	15	1,1	0,6	23	7304-BECB-TVP	20,9	11,1	0,5	11600	18000	0,15
	52	15	1,1	0,6	23	7304-BECB-MP	19,5	10	0,5	11700	18000	0,15
25	52	15	1	0,6	24	7205-BECB-TVP	16,2	10,1	0,5	14000	17000	0,13
	52	15	1	0,6	24	7205-BECB-MP	15,5	9,4	0,4	14100	15000	0,13
	62	17	1,1	0,6	27	7305-BECB-TVP	27,2	15,6	0,7	9900	15000	0,23
	62	17	1,1	0,6	27	7305-BECB-MP	25,5	14,1	0,6	10000	14000	0,23
30	62	16	1	0,6	27	7206-BECB-TVP	24,9	15,6	0,7	11600	14000	0,2
	62	16	1	0,6	27	7206-BECB-MP	23,7	14,4	0,7	11600	13000	0,2
	72	19	1,1	0,6	31	7306-BECB-TVP	36,2	21,4	1	8700	13000	0,35
	72	19	1,1	0,6	31	7306-BECB-MP	33,9	19,4	0,9	8800	12000	0,35
35	72	17	1,1	0,6	31	7207-BECB-TVP	32,2	20,8	0,9	9900	12000	0,3
	72	17	1,1	0,6	31	7207-BECB-MP	30,6	19,2	0,9	10000	11000	0,3
	80	21	1,5	1	35	7307-BECB-TVP	40,2	24,4	1,1	8000	11000	0,46
	80	21	1,5	1	35	7307-BECB-MP	37,7	22,2	1	8100	10000	0,46
40	80	18	1,1	0,6	34	7208-BECB-MP	36,1	23,9	1,1	9000	10000	0,37

Empfohlene Anschlussmaße siehe Seite **454**For recommended abutment and fillet dimensions see page **454**



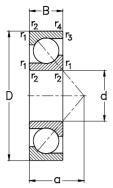
Einreihige Schrägkugellager in Universalausführung


Single Row Angular Contact Ball Bearings in Universal Design

X—Anordnung Face to face arrangement

O—Anordnung Back to back arrangement

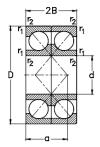
Tandem—Anordnung Tandem arrangement


	Hau		nessu nm]	ngen		Lagertype	Tra	agzahl	en	Refernzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Gewicht [kg]
	Bour	,	dimen nm]	sions		Designation	Lo	adratin [kN]	gs	Thermal speed raitings [rpm]	Limited speed ratings [rpm]	Weight [kg]
d	D	В	r ₁ , r ₂ min	r ₃ , r ₄ min	а		C _r dyn,	C ₀r stat,	Cu	n_{er}	n _G	m
40	90	23	1,5	1	39	7308-BECB-TVP	51	33	1,5	7200	10000	0,63
	90	23	1,5	1	39	7308-BECB-MP	48,6	30,3	1,4	7300	9000	0,63
45	85	19	1,1	0,6	37	7209-BECB-MP	37,8	26,3	1,2	8400	9000	0,41
	100	25	1,5	1	43	7309-BECB-TVP	61	40,1	1,8	6600	9000	0,84
	100	25	1,5	1	43	7309-BECB-MP	58	36,8	1,7	6700	8000	0,84
50	90	20	1,1	0,6	39	7210-BECB-MP	39,2	28,6	1,3	8000	8500	0,47
	110	27	2	1	47	7310-BECB-TVP	77,0	52	2,3	6100	8000	1,1
	110	27	2	1	47	7310-BECB-MP	73	47,3	2,2	6200	7500	1,1
55	100	21	1,5	1	43	7211-BECB-MP	48,5	36,1	1,6	7200	7500	0,64
	120	29	2	1	51	7311-BECB-TVP	88,0	60	2,7	5700	7000	1,4
	120	29	2	1	51	7311-BECB-MP	83	55	2,5	5800	6700	1,4
60	110	22	1,5	1	47	7212-BECB-TVP	59	44	2	6600	7500	0,8
	110	22	1,5	1	47	7212-BECB-MP	56	41,5	1,9	6600	7000	0,8
	130	31	2,1	1,1	55	7312-BECB-TVP	107	74	3,4	5300	6700	1,8
	130	31	2,1	1,1	55	7312-BECB-MP	101	68,2	3,1	5400	6000	1,8
65	120	23	1,5	1	50	7213-BECB-MP	67	50	2,3	6100	6300	1
	140	33	2,1	1,1	60	7313-BECB-TVP	108	80	3,6	5100	5600	2,2
	140	33	2,1	1,1	60	7313-BECB-MP	102	73	3,3	5100	5600	2,2
70	125	24	1,5	1	53	7214-BECB-MP	69	54	2,5	5900	6000	1,1
	150	35	2,1	1,1	64	7314-BECB-TVP	125	91	3,9	4800	5300	2,7

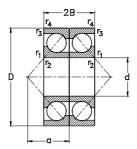
Empfohlene Anschlussmaße siehe Seite **454**For recommended abutment and fillet dimensions see page **454**

Einreihige Schrägkugellager in Universalausführung

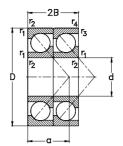
Single Row Angular Contact Ball Bearings in Universal Design


	Hauı		nessu nm]	ngen		Lagertype	Tra	agzahl	en	Refernzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Gewicht [kg]
	Bour	-	dimen nm]	sions		Designation	Lo	adratin [kN]	gs	Thermal speed raitings [rpm]	Limited speed ratings [rpm]	Weight [kg]
d	D	В	r ₁ , r ₂ min	r ₃ , r ₄ min	а		C _r dyn,	C ₀r stat,	Cu	$n_{\scriptscriptstyle{ hetar}}$	n _G	m
70	150	35	2,1	1,1	64	7314-BECB-MP	118	83	3,6	4900	5300	2,7
75	130	25	1,5	1	56	7215-BECB-MP	72	58	2,6	5700	5600	1,2
	160	37	2,1	1,1	68	7315-BECB-MP	130	97	4,1	4600	5000	3,2
80	140	26	2	1	59	7216-BECB-TVP	88	74	3,2	5200	5600	1,5
	140	26	2	1	59	7216-BECB-MP	84	69	3	5200	5300	1,5
	170	39	2,1	1,1	72	7316-BECB-MP	141	109	4,4	4400	5000	4,3
85	150	28	2	1	63	7217-BECB-MP	101	81	3,4	5100	5000	1,9
	180	41	3	1,1	76	7317-BECB-MP	152	122	4,8	4200	4800	4,6
90	160	30	2	1	67	7218-BECB-MP	107	88	3,6	4900	4500	2,4
	190	43	3	1,1	80	7318-BECB-TVP	173	147	5,6	4000	4500	5,3
	190	43	3	1,1	80	7318-BECB-MP	164	135	5,2	4000	4300	5,3
95	170	32	2,1	1,1	72	7219-BECB-MP	121	101	4	4800	4300	3,1
	200	45	3	1,1	84	7319-BECB-MP	175	149	5,6	3900	3800	6,2
100	180	34	2,1	1,1	76	7220-BECB-MP	136	114	4,4	4600	4000	3,4
	215	47	3	1,1	90	7320-BECB-MP	200	175	6,3	3700	3600	7,7
105	190	36	2,1	1,1	80	7221-BECB-MP	149	129	4,8	4400	4000	4,4
	225	49	3	1,1	94	7321-BECB-MP	211	194	6,9	3500	3400	9,5
110	200	38	2,1	1,1	84	7222-BECB-MP	161	145	5,3	4300	3600	4,7
	240	50	3	1,1	98	7322-BECB-TVP	236	226	7,7	3200	3200	10,4
	240	50	3	1,1	98	7322-BECB-MP	223	207	7,1	3300	3200	10,4

Empfohlene Anschlussmaße siehe Seite **454**For recommended abutment and fillet dimensions see page **454**



Einreihige Schrägkugellager in Universalausführung


Single Row Angular Contact Ball Bearings in Universal Design

X—Anordnung Face to face arrangement

O—Anordnung Back to back arrangement

Tandem—Anordnung Tandem arrangement

	Hau		nessu nm]	ngen		Lagertype	Tra	agzahl	en	Refernzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Gewicht [kg]
	Bour	-	dimen nm]	sions		Designation	Lo	adratin [kN]	ngs	Thermal speed raitings [rpm]	Limited speed ratings [rpm]	Weight [kg]
d	D	В	r ₁ , r ₂ min	r ₃ , r ₄ min	а		C _r dyn,	C _{or} stat,	Cu	n_{er}	n _G	m
120	215	40	2,1	1,1	90	7224-BCB-MP	158	150	5,3	4100	3600	6,2
	260	55	3	1,1	107	7324-BCB-MP	234	220	8,8	3000	3200	14,5
130	230	40	3	1,1	96	7226-BCB-MP	172	180	6,1	3600	3400	7
	280	58	4	1,5	115	7326-BCB-MP	250	268	8,5	2800	2800	17,5
140	250	42	3	1,1	103	7228-BCB-MP	197	212	6,9	3400	3000	8,9
	300	62	4	1,5	123	7328-BCB-MP	275	309	9,5	2500	2600	21,5
150	270	45	3	1,1	111	7230-BCB-MP	211	243	7,6	3100	2800	11
	320	65	4	1,5	131	7330-BCB-MP	303	366	10,9	2300	2400	26
160	290	48	3	1,1	118	7232-BCB-MP	200	237	7,2	3000	2600	13,8
	340	68	4	1,5	139	7332-BCB-MP	356	437	12,6	2100	2200	30
170	310	52	4	1,5	127	7234-BCB-MP	266	325	9,5	2800	2400	17,5
	360	72	4	1,5	147	7334-BCB-MP	359	548	12,8	1900	2200	36
180	320	52	4	1,5	131	7236-BCB-MP	253	320	9,2	2600	2400	18
	380	75	4	2	156	7336-BCB-MP	373	489	13,3	1900	2000	42
190	340	55	4	1,5	139	7238-BCB-MP	273	353	9,9	2400	2200	22
	400	78	5	2	164	7338-BCB-MP	371	524	13,9	1800	1900	48,5
220	400	65	4	1,5	164	7244-BCB-MP	322	464	12	2100	1800	37
240	440	72	4	1,5	180	7248-BCB-MP	363	538	13,3	1900	1700	49

Empfohlene Anschlussmaße siehe Seite **454**For recommended abutment and fillet dimensions see page **454**

Schrägkugellager, abgedichtet

Angular Contact Ball Bearings with Seals and Shields

Abgedichtete einreihige NKE Schrägkugellager

Normen, Hauptabmessungen

Maßpläne DIN 616

Ein- und zweireihige Schrägkugellager;

metrische Abmessungen DIN 628

Allgemeines

NKE fertigt einreihige Schrägkugellager der Reihen 72 und 73 mit verstärktem Innenaufbau (Nachsetzzeichen BE) auch mit berührenden Dichtungen, Bauform RSR (Nachsetzzeichen -2RSR) als auch mit Deckscheiben (Nachsetzzeichen -2Z).

Baureihen

Einreihige NKE Schrägkugellager mit Dichtbzw. Deckscheiben basieren auf Schrägkugellagern der Reihen 72 BE und 73 BE und weisen daher ähnliche technische Charakteristika wie Standard-Schrägkugellager dieser Baureihen auf (siehe Seite 456)

Auftragsbezogen können auch NKE Schrägkugellager anderer Baureihen (70, 74 etc.) mit Dicht- bzw. Deckscheiben produziert werden.

Da es sich dabei jedoch um eine ausgesprochene Sonderfertigung handelt, ersuchen wir die jeweilige Verfügbarkeit anzufragen.

NKE Sealed Single Row Angular Contact Ball Bearings

Standards, Boundary Dimensions

Standard plans DIN 616

Single and double row Angular contact ball bearings;

metric dimensions DIN 628

General

NKE produces **single row angular contact ball bearings** with reinforced internal design, series 72 BE and 73 BE, also with contacting **RSR**-type seals (suffix -2RSR) and pressed steel shields (suffix -2Z).

Bearing Series Available

NKE single row angular contact ball bearings with seals or shields are based on bearing series 72 BE and 73 BE.

Therefore, these bearings feature similar technical characteristics as described for the standard type metric single row angular contact ball bearings; see page 456.

However, NKE also produces **single row angular contact ball bearings** with seals or shields based on alternative bearing series to customer order.

This requires special batch production, therefore please check availability.

Angular Contact Ball Bearings with Seals and Shields

Druckwinkel a

Einreihige NKE Schrägkugellager mit Dichtbzw. Deckscheiben werden serienmäßig mit einem Druckwinkel von 40° (Nachsetzzeichen B) produziert.

Käfige

Abgedichtete einreihige NKE Schrägkugellager sind standardmäßig mit einem glasfaserverstärkten Polyamid-Fensterkäfig (Nachsetzzeichen TVP) ausgestattet.

Für Sonderanwendungen können auf Anfrage abgedichtete **NKE Schrägkugellager** auch mit Käfigen aus anderen Werkstoffen, wie etwa Stahlblechkäfigen (Nachsetzzeichen **J**) oder Messingblechkäfigen (Nachsetzzeichen **Y**) geliefert werden.

Sofern eine bestimmte vom Standard abweichende Käfigausführung gewünscht wird, ersuchen wir die jeweilige Verfügbarkeit anzufragen.

Lageranordnung

Einreihige NKE Schrägkugellager mit Dichtbzw. Deckscheiben werden serienmäßig in der Ausführung als Einzellager produziert.

Achtung:

Einreihige NKE Schrägkugellager mit Dicht- bzw. Deckscheiben in der Standard-Ausführung sind für einen paar- oder satzweisen Einbau NICHT geeignet!

Für andere Ausführungen ersuchen wir die jeweilige Verfügbarkeit anzufragen.

Contact Angle a

NKE single row angular contact ball bearings with seals or shields are produced as standard with 40° contact angle (suffix B).

Cages

NKE single row angular contact ball bearings with seals or shields are produced with **glass fibre** reinforced polyamide cages as standard, suffix TVP.

For special applications, other cage designs are available on order request, e.g. pressed steel cages (suffix **J**) or pressed brass cages (suffix **Y**) etc.

If a specific cage design is required, please check for availability.

Bearing Arrangements

NKE single row angular contact ball bearings with seals or shields are produced for use as individual bearings.

NOTE:

Standard design NKE single row angular contact ball bearings with seals or shields are NOT suitable for use as bearing pairs or sets!

For other design variants, please check availability.

Schrägkugellager, abgedichtet

Angular Contact Ball Bearings with Seals and Shields

Befettung

Abgedichtete einreihige NKE Schrägkugellager werden standardmäßig bis zu einem Bohrungsdurchmesser d ≤ 60 mm mit einer speziellen Fettfüllung geliefert.

Dabei handelt es sich um einen speziell auf die typischen Anforderungen dieser Lager abgestimmten geräuscharmen Hochleistungsschmierstoff (**K2N-30** nach DIN 51502).

Dieser Schmierstoff ist für einen Temperaturbereich von -50°C - +150°C geeignet.

Bei Lagern mit einem Bohrungsdurchmesser d > 60mm ist die Standardbefettung mit einem hochwertigen Schmierfett auf Lithium-Seifen-Basis (K3K-30 nach DIN51502) für einen Temperaturbereich von -30°C bis +120°C.

Montagehinweise

Abgedichtete einreihige **NKE** Schrägkugellager dürfen bei der Montage nicht im Ölbad erwärmt werden.

Toleranzen

Abgedichtete einreihige NKE Schrägkugellager werden standardmäßig in Normaltoleranz (PN) gefertigt. Auf Anfrage können diese auch mit eingeengten Toleranzen in den Toleranzklassen P6 und P5 gefertigt werden.

Detaillierte Werte für die einzelnen Toleranzklassen entnehmen Sie bitte den Tabellen im Abschnitt "Lagerdaten / Toleranzen", Seite 54.

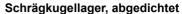
Grease Filling

NKE sealed single row angular contact ball bearings are produced and supplied up to a bore diameter $d \le 60$ mm with a specific grease filling as standard.

This is a high performance specific silent lubricant that has been specifically selected to fulfil normal application requirements. This grease fulfils the requirements of **K2N-30** according to DIN 51502. The grease is suitable for an operating temperature range from **-50°C** (or -58°F) up to **+150°C** (or +302°F).

For bearings with bore diameter d > 60mm the standard grease filling is a high quality lithium-soap-grease (K3K-30 according to DIN51502) for a temperature range of -30°C (-22°F) up to +120°C (+284°F).

Mounting Instructions


NKE sealed single row angular contact ball bearings must not be heated using hot oil baths.

Tolerances

NKE angular contact ball bearings with seals and shields are produced to normal tolerance class (PN) as standard.

On request these bearings are also produced to closer tolerances, such as tolerance classes **P6** and **P5**.

Detailed tolerance values are listed in the tables shown in the chapter "Bearing data / Tolerances" page 239.

Angular Contact Ball Bearings with Seals and Shields

Lagerberechnung

Einreihige NKE Schrägkugellager mit Dichtbzw. Deckscheiben basieren auf Schrägkugellagern der Reihen 72 BE und 73 BE.

Für die Berechnung der Lagerlebensdauer können daher die selben Formeln und Berechnungsverfahren wie für die Standard-Schrägkugellager der Reihen 72 BE und 73 BE bei einer Verwendung als Einzellager verwendet werden, siehe Seite 14

Achtung:

Bei Dauer-Betriebstemperaturen wesentlich über 70°C wird zusätzlich zur Abschätzung der Lagerlebensdauer auch eine Überprüfung der Schmierstoff-Gebrauchsdauer empfohlen.

Weitere Informationen dazu entnehmen Sie bitte dem Abschnitt "Schmierung von Wälzlagern", ab Seite 198.

Bearing Life Calculation

NKE single row angular contact ball bearings with seals or shields, respectively, are based on bearing series 72 BE and 73 BE.

Thus, the same procedures and formulas may be used for estimating the bearing life ratings as described for standard angular contact ball bearings when used as individual bearings, see page 14.

Note:

When the actual operating temperature is constantly above +70°C (+158 °F), a check of the grease service life is recommended in addition to an estimation of the bearing life rating.

For further specific information please refer to "Lubrication of Rolling Bearings", page 330.

Zweireihige Schrägkugellager Double Row Angular Contact Ball Bearings

Zweireihige Schrägkugellager

Normen, Hauptabmessungen

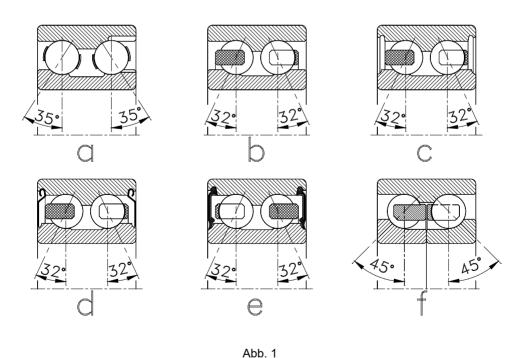
Maßpläne DIN 616 Zweireihige Schrägkugellager DIN 628

Allgemeines

Zweireihige Schrägkugellager entsprechen in ihrer Funktion einem Paar einreihiger Schrägkugellager in O-Anordnung, weisen aber eine geringere Baubreite auf.

Zweireihige Schrägkugellager ergeben sehr starre Lagerungen und eignen sich gut zur Übertragung kombinierter Belastungen, können aber auch Kippmomente gut aufnehmen.

Double Row Angular Contact Ball Bearings


Standards, Boundary Dimensions

Standard plans DIN 616
Double row angular contact bearings DIN 628

General

Double row angular contact ball bearings provide the function of a pair of single row angular contact ball bearings, arranged back-to-back, but requiring less space.

Double row angular contact bearings provide very stiff, rigid bearing arrangements. They are also able to accommodate combined loads and are very suitable in supporting tilting moments.

470 www.nke.at

Fig. 1

Bauformen (siehe Seite 470, Abb. 1)

Zweireihige Schrägkuggellager (Abb. 1a) haben einen Druckwinkel von 35°, einen Stahlblechkäfig und weisen auf einer Seite Füllnuten auf.

Diese Lager sind so einzubauen, dass die jeweils größeren Axialkräfte in Richtung der Laufbahnen ohne Füllnuten wirken.

Neuere Konstruktionen weisen keine Füllnuten auf und sind daher in beiden Richtungen gleich gut zur Aufnahme von Axiallasten geeignet.

Die Ausführung ohne Füllnuten (siehe Abb. 1b) weist einen **Druckwinkel von 32°** auf und ist mit Kunststoffkäfigen ausgestattet.

Zweireihige NKE Schrägkugellager dieser Ausführung werden durch das Nachsetzzeichen B-TV identifiziert

Aus fertigungstechnischen Gründen können auch offene Lager der Ausführung **B-TV** eingedrehte Nuten am Innen- und Außenring, die normalerweise zur Befestigung von Dicht- oder Deckscheiben dienen, aufweisen (siehe Abb. 1c).

Zweireihige NKE Schrägkugellager der Ausführung **B-TV** werden auch mit beidseitigen Deckscheiben (Nachsetzzeichen **B-2Z-TV**, siehe Abb. 1d) bzw. mit zwei schleifenden Dichtungen, Nachsetzzeichen **B-2RSR-TV** (Abb. 1e) hergestellt.

Für spezielle Anwendungsfälle, wie etwa Ritzellagerungen, werden **zweireihige NKE Schrägkugellager** auftragsbezogen auch in zerlegbarer Ausführung mit geteiltem Innenring hergestellt (Nachsetzzeichen **D**, siehe Abb. 1f). Diese Lager haben einen Druckwinkel von 45° und weisen keine Füllnuten auf, daher werden Axialkräfte in beiden Richtungen gleich gut aufgenommen.

Diese Lager sind großteils mit Messingmassivkäfigen ausgestattet und ergeben sehr starre Lagerungen.

Design Variants (see page 470, fig.1)

Double row angular contact ball bearings (fig. 1a) feature a contact angle of **35°**, a pressed steel cage and filling slots on one side.

These bearings must be mounted in such a way that the large thrust force acts towards the raceways without the filling slots.

The latest designs do not have such filling slots and are capable of accommodating thrust forces equally well in both directions.

The design without filling slots (fig. 1b) have contact angles of 32° and are fitted with polyamide cages; these designs are designated by the suffix (**B-TV**).

For manufacturing reasons, the open design bearings (suffix **B-TV**) may have grooves in their inner and outer rings that are used to locate either seals or shields (fig. 1c).

NKE double row angular contact ball bearings of the **B-TV** design are available with shields suffix **B-2Z-TV** (fig. 1d) or with two contacting seals, (suffix **B-2RSR-TV**), (fig. 1e) fitted on both sides.

NKE double row angular contact ball bearings are also available as special design to meet customer order requirements. Such an application could be the bearing arrangement for pinion shafts (fig. 1f) These bearings are separable and feature a contact angle of 45°, machined solid brass cages, 2-half inners and no filling slots.

These bearings provide a very rigid bearing arrangement, and are capable of accommodating thrust forces equally well in both directions. This bearing design is identified by the suffix **D**.

Zweireihige Schrägkugellager

Double Row Angular Contact Ball Bearings

Schiefstellung

Zweireihige Schrägkugellager sind für einen Ausgleich von Schiefstellungen ungeeignet.

Toleranzen

Zweireihige NKE Schrägkugellager werden standardmäßig in Normaltoleranz (**PN**) gefertigt. Auf Anfrage können diese auch mit eingeengten Toleranzen, wie beispielsweise in den Toleranzklassen **P6** und **P5** gefertigt werden.

Detaillierte Werte für die einzelnen Toleranz klassen entnehmen Sie bitte den Tabellen im Abschnitt "Lagerdaten / Toleranzen", Seite 54.

Lager mit Dicht- und Deckscheiben

Zweireihige NKE Schrägkugellager in abgedeckter (Nachsetzzeichen B-2Z-TV, siehe Abb. 1d) oder abgedichteter Ausführung (Nachsetzzeichen B-2RSR-TV, Abb.1e) werden bereits werksseitig mit einem hochwertigen Wälzlagerfett befüllt.

Als **Standardfett** verwenden wir ein qualitativ hochwertiges Wälzlagerfett, das für Betriebstemperaturen von **–30°C** bis **+120°C** geeignet ist.

Für spezielle Anwendungsbereiche können zweireihige NKE Schrägkugellager auch mit Fetten nach Kundenvorgaben geliefert wird.

Zweireihige Schrägkugellager mit Deckscheiben

Die in den Außenring eingepressten Stahlblech-Deckscheiben (Nachsetzzeichen **B-2Z-TV**, siehe Abb. 1d) bilden eine einfache, berührungsfreie Spaltdichtung.

Im Betrieb kann sich durch den Dichtspalt ein Fettkragen am Innenring bilden. Bei Anwendungen mit rotierendem Außenring ist bei höheren Drehzahlen ein Fettverlust möglich.

Misalignment

Double row angular contact ball bearings must not be exposed to any misalignment.

Tolerances

NKE double row angular contact ball bearings are produced to normal tolerance class (**PN**) as standard.

On request these bearings are also produced to closer tolerances, such as tolerance classes **P6** and **P5**.

Detailed tolerance values are listed in the tables shown in the chapter "Bearing data/ Tolerances" page 237.

Sealed and Shielded Bearings

NKE double row angular contact ball bearings with shields, suffix **B-2Z-TV**, (fig. 1d), or with contacting seals, suffix **B-2RSR-TV**, (fig. 1e) are already supplied with a proven high quality bearing grease fill.

NKE uses a high quality rolling bearing grease as standard, suitable for a temperature range of -30°C to +120°C.(-22°F to +248°F)

To meet special operating conditions NKE also produces double row angular contact bearings with special grease pack according to customer's specific requests.

Shielded Double Row Angular Contact Ball Bearings

Incorporated shields (suffix **B-2Z-TV**, see fig. 1d) are steel disks that are pressed into the outer ring and form a simple gap seal to the bearing inner rings.

During operation a grease collar may develop on the inner rings. Some grease escape is possible for applications where the outer ring rotates at high speeds.

Zweireihige NKE Schrägkugellager mit Dichtscheiben

Der Standardwerkstoff der bei den mit Dichtscheiben versehenen zweireihigen Schrägkugellagern (Nachsetzzeichen **B-2RSR-TV**, Abb. 1e) verwendeten Dichtungen ist ein verschleißfester synthetischer Kautschuk, Kurzzeichen **NBR**, in den zur Versteifung Stahlscheiben einvulkanisiert sind.

NBR-Dichtscheiben sind für Einsatztemperaturen von -30°C bis +120°C geeignet.

Für Sonderanwendungen sind auch Dichtungen aus anderen Werkstoffen lieferbar.

Weitere Informationen dazu finden Sie im Abschnitt "Lagerdaten allgemein".

Mindestbelastung

Zum kinematisch korrekten Betrieb benötigen Wälzlager in allen Betriebszuständen eine Mindestbelastung.

Für NKE zweireihige Schrägkugellager muss die Mindestbelastung 1% der dynamischen Tragzahl betragen.

Äquivalente dynamische Lagerbelastung

Bei den zweireihigen Schrägkugellagern hängen die zur Berechnung erforderlichen Faktoren von den Druckwinkeln der jeweils verwendeten Lagerausführung ab:

NKE Double Row Angular Contact Ball Bearings with Seals

The standard material used for the contacting seals in NKE double row angular contact ball bearings suffix **B-2RSR-TV**, (fig. 1e) is a special wear-resistant synthetic rubber (**NBR**) with an integrated steel stiffening washer.

NBR-seals are suitable for operating temperatures of -30°C up to +120°C (-22°F to +248°F).

For special applications, however, seals are also available in other materials.

For more detailed information see the chapter "General Bearing Data".

Minimum Load

Bearings require a minimum load under all operating conditions to ensure kinematically correct rolling element function.

For NKE double row angular contact ball bearings the minimum load must be **1%** of the dynamic load rating.

Equivalent Dynamic Bearing Load

In the case of **double row angular contact ball bearings** the calculation factors depend upon the contact angle of the selected bearing:

Zweireihige Schrägkugellager Double Row Angular Contact Ball Bearings

Käfige

Sofern nicht anders spezifiziert, werden **Zweireihige NKE Schrägkugellager** mit den vorher beschriebenen Standardkäfigen geliefert.

Da bei den zweireihigen Schrägkugellagern ein enger Zusammenhang zwischen Innenaufbau und den verfügbaren Käfigbauarten besteht, ersuchen wir die Liefermöglichkeit von Lagern mit von der Standardausführung abweichenden Käfigen anzufragen.

Lagerluft

Bei zweireihigen Schrägkugellagern wird die Axialluft angegeben. Zweireihige NKE Schrägkugellager werden standardmäßig in der Axialluftklasse CN (Normalluft) gefertigt.

Auf Anfrage liefert NKE aber auch zweireihige Schrägkugellager mit größerer Axialluftklassen (C3, C4) oder kleinerer Axialluft (C2).

Werte für die axiale Lagerluft der **Zweireihige Schrägkugellager** sind in untenstehender Tabelle angegeben.

Cages

NKE double row angular contact ball bearings are, depending upon their design and size, produced and fitted with pressed steel, polyamide or solid brass cages as standard.

Because there is a close connection between the internal design of double row angular contact ball bearings and the cages available, we kindly ask to clarify this point prior to placing an order.

Internal Clearance

NKE double row angular contact ball bearings are produced to axial clearance group **CN** (Normal) as standard.

NKE also produces double row angular contact ball bearings with enlarged axial clearance (groups **C3** or **C4**) and with reduced axial clearance (**C2**) on request.

Values for these clearance groups are listed in the table below.

Axiale Lagerluft der zweireihigen NKE Schrägkugellager (Luftwerte in [µm])
Internal axial clearance of NKE double row angular contact ball bearings (Clearance in [µm])

Lagerbohrung	[mm]	>		10	18	24	30	40	50	65	80	100	120
Bore diameter	[mm]	≤	10	18	24	30	40	50	65	80	100	120	140
Luftgruppe	C2	min	1	1	2	2	2	2	3	3	3	4	4
Clearance group	62	max	11	12	14	15	16	18	22	24	26	30	34
Luftgruppe	CN	min	5	6	7	8	9	11	13	15	18	22	25
Clearance group(NORMAL)	CN	max	21	23	25	27	29	33	36	40	46	53	59
Luftgruppe	C3	min	12	13	16	18	21	23	26	30	35	42	48
Clearance group	CS	max	28	31	34	37	40	44	48	54	63	73	82
Luftgruppe	C4	min	25	27	28	30	33	36	40	46	55	65	74
Clearance group		max	45	47	48	50	54	58	63	71	83	96	108

- für Lager der Standardausführung B mit einem Druckwinkel α = 32°:

hei

$$\frac{F_a}{F_r} \le 0.86 \text{ gilt}$$
 P = F_r + 0.73 * F_a

bzw. wenn

$$\frac{F_a}{F_r}$$
 > 0,86 dann P = 0,62*F_r + 1,17*F_a

für Lager der alten Ausführung (Füllnuten) mit einem Druckwinkel α = 35°:

bei

$$\frac{F_a}{F_r} \le 0.95 \text{ gilt} \quad P = F_r + 0.66 * F_a$$

bzw. wenn

$$\frac{F_a}{F_r}$$
 > 0,95 dann P = 0,6*F_r + 1,07*F_a

Äquivalente statische Lagerbelastung

 - für Lager der Standardausführung B mit einem Druckwinkel α = 32° gilt:

$$P_0 = F_r + 0.63 * F_a$$

- bei Lagern der alten Ausführung mit einem Druckwinkel α = **35**°:

$$P_0 = F_r + 0.58 * F_a$$

- for Bearings of Standard Design B with a Contact Angle of α = 32°

when

$$\frac{F_a}{F_r} \le 0.86$$
, then $P = F_r + 0.73 * F_a$

or, when

$$\frac{F_a}{F_r}$$
 > 0,86, then P = 0,62*F_r + 1,17*F_a

for Bearings of the Old Design (Filling Slots) with a Contact Angle of α = 35°:

when

$$\frac{F_a}{F_r} \le 0.95$$
, then $P = F_r + 0.66 * F_a$

or when

$$\frac{F_a}{F_s}$$
 > 0,95, then P = 0,6*F_r + 1,07*F_a

Equivalent Static Bearing Load

- for standard bearings B with a contact angle of $\alpha = 32^{\circ}$:

$$P_0 = F_r + 0.63 * F_3$$

- for bearings of the old design with a contact angle of α = 35°:

$$P_0 = F_r + 0.58 * F_a$$

Zweireihige Schrägkugellager

Double Row Angular Contact Ball Bearings

Anschlussmaße

Die Radien der Kantenverrundung dürfen nicht an den Hohlkehlen von Wellenbund oder Gehäuse anliegen. Daher muss der größte Hohlkehlradius an den Anschlussteilen ($\mathbf{r_g}$ bzw. $\mathbf{r_{g1}}$) kleiner sein als der kleinste Radius für die Kantenverrundung ($\mathbf{r_s}$) der Lagerringe.

Empfehlungen für Einbaumaße sind auch in **DIN** 5418 definiert, die Werte der Kantenverrundung der Lagerringe sind in den Produkttabellen angegeben.

Montagehinweise

Zweireihige Schrägkugellager mit **Füllnuten** müssen so eingebaut werden, dass die jeweils größeren Axialkräfte in Richtung der Laufbahnen ohne Füllnuten wirken.

Vorgefettete Lager, das sind alle Lager mit Dicht- oder Deckscheiben, Nachsetzzeichen **B-2Z** und **B-2RSR**, dürfen vor dem Einbau nicht ausgewaschen werden.

Abutment and Fillet Dimensions

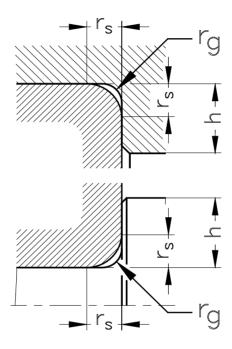
The bearing rings, must only contact adjacent parts with their side faces.

The radii of bearing corners must not touch the corner fillet radii of either the shaft or housing shoulders. Therefore, the largest fillet radius (\mathbf{r}_g or \mathbf{r}_{g1} , respectively) must always be smaller than the minimum fillet dimension of the bearing rings (\mathbf{r}_s). Recommendations for the dimensions of adjacent parts are listed in **DIN 5418**, the values for the bearing fillet dimensions are stated in the bearing tables.

Mounting Instructions

Double row angular contact ball bearings with **filling slots** must be mounted in such a way that the larger thrust forces act towards the raceways without the filling slots.

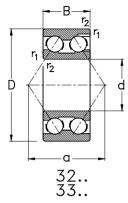
Pre-greased bearings, such as sealed or shielded bearings (suffixes **B-2Z** and **B-2RSR**) must not be washed out prior to mounting.

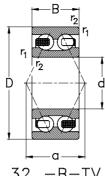


Anschlussmaße für Zweireihige Schrägkugellager

Abutment and Fillet Dimensions for Double Row Angular Contact Ball Bearings

Alle Abmessungen in [mm]

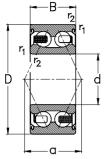

All Dimensions are in [mm]

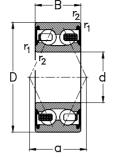


r _{s min}	r _{g max}	h _{min} Lagerreihen Bearing series 32 / 32B 33 / 33B
0,6	0,6	2,1
1	1	2,8
1,1	1	3,5
1,5	1,5	4,5
2	2	5,5
2,1	2,1	6
3	2,5	7
4	3	8,5

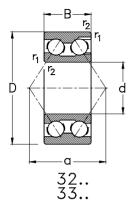
Zweireihige SchrägkugellagerDouble Row Angular Contact Ball Bearings

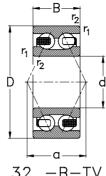
NKE




32..-B-TV 33..-B-TV

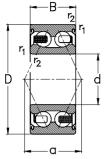
	Haupta	bmes [mm]	sungen	l	Lagertype	Tra	agzahl [kN]	en	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Gewicht [kg]
	Bounda	ary dim [mm]	ensions	;	Designation	Lo	ad ratir [kN]	ngs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Weight [kg]
d	D	В	r ₁ , r ₂ min	а		C _r dyn.	C ₀r stat.	C _u	$n_{ hetar}$	n _G	m
10	30	14	0,6	15	3200-B-TV	7,5	4,3	0,2	17300	24000	0,05
	30	14	0,6	15	3200-B-2RSR-TV	7,5	4,3	0,2	-	17000	0,05
	30	14	0,6	15	3200-B-2Z-TV	7,5	4,3	0,2		24000	0,05
12	32	15,9	0,6	17	3201-B-TV	10,3	5,6	0,3	16500	22000	0,06
	32	15,9	0,6	17	3201-B-2RSR-TV	10,3	5,6	0,3	-	15000	0,06
	32	15,9	0,6	17	3201-B-2Z-TV	10,3	5,6	0,3	-	22000	0,06
15	35	15,9	0,6	18	3202-B-TV	11,3	6,8	0,3	14100	18000	0,07
	35	15,9	0,6	18	3202-B-2RSR-TV	11,3	6,8	0,3	-	14000	0,07
	35	15,9	0,6	18	3202-B-2Z-TV	11,3	6,8	0,3	-	18000	0,07
	42	19	1	22	3302-B-TV	15,5	9,4	0,4	13300	16000	0,13
17	40	17,5	0,6	20	3203-B-TV	14,0	8,7	0,4	12700	16000	0,1
	40	17,5	0,6	20	3203-B-2RSR-TV	14,0	8,7	0,4	-	12000	0,1
	40	17,5	0,6	20	3203-B-2Z-TV	14,0	8,7	0,4	-	16000	0,1
	47	22,2	1	24	3303-B-TV	20,2	11,9	0,4	10700	14000	0,2
	47	22,2	1	24	3303-B-2RSR-TV	20,2	11,9	0,5	-	11000	0,2
	47	22,2	1	24	3303-B-2Z-TV	20,2	11,9	0,5	-	14000	0,2
20	47	20,6	1	24	3204-B-TV	18,8	12,1	0,6	11500	14000	0,2
	47	20,6	1	24	3204-B-2RSR-TV	18,8	12,1	0,6	-	10000	0,2
	47	20,6	1	24	3204-B-2Z-TV	18,8	12,1	0,6	-	14000	0,2
	52	22,2	1,1	26	3304-B-TV	22,3	14,3	0,7	9100	13000	0,2
	52	22,2	1,1	26	3304-B-2RSR-TV	22,3	14,3	0,7	-	9000	0,2
	52	22,2	1,1	26	3304-B-2Z-TV	22,3	14,3	0,7	-	13000	0,2

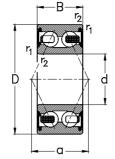

Anschlussmaße siehe Seite 477


Abutment and fillet dimensions see on page 477

	На	upta	bmess [mm]	sungen		Lagertype	Tra	agzahl [kN]	en	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Gewicht [kg]
	Во	unda	ry dim [mm]	ensions	;	Designation	Lo	ad ratin [kN]	igs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Weight [kg]
	d	D	В	r ₁ , r ₂ min	а		C _r dyn.	C ₀r stat.	C _u	$n_{ hetar}$	n _G	m
	25	52	20,6	1	27	3205-B-TV	20,3	14,1	0,6	9700	12000	0,2
		52	20,6	1	27	3205-B-2RSR-TV	20,3	14,1	0,6	-	8500	0,2
		52	20,6	1	27	3205-B-2Z-TV	20,3	14,1	0,6	-	12000	0,2
		62	25,4	1,1	31	3305-B-TV	28,5	19,2	0,9	7900	11000	0,4
		62	25,4	1,1	31	3305-B-2RSR-TV	28,5	19,2	0,9	-	7500	0,4
		62	25,4	1,1	31	3305-B-2Z-TV	28,5	19,2	0,9	-	11000	0,4
;	30	62	23,8	1	31	3206-B-TV	28,2	20,2	0,9	8500	10000	0,3
		62	23,8	1	31	3206-B-2RSR-TV	28,2	20,2	0,9	-	7500	0,3
		62	23,8	1	31	3206-B-2Z-TV	28,2	20,2	0,9	-	10000	0,3
		72	30,2	1,1	36	3306-B-TV	39,5	27,5	1,2	7200	9000	0,6
		72	30,2	1,1	36	3306-B-2RSR-TV	39,5	27,5	1,2	-	6300	0,6
		72	30,2	1,1	36	3306-B-2Z-TV	39,5	27,5	1,2	-	9000	0,6
_;	35	72	27	1,1	36	3207-B-TV	37,2	27,4	1,2	7600	9000	0,4
		72	27	1,1	36	3207-B-2RSR-TV	37,2	27,4	1,2	-	6300	0,4
		72	27	1,1	36	3207-B-2Z-TV	37,2	27,4	1,2	-	9000	0,4
		80	34,9	1,5	41	3307-B-TV	49,4	33,2	1,5	6800	8500	0,8
		80	34,9	1,5	41	3307-B-2RSR-TV	49,4	33,2	1,5	-	6000	0,8
		80	34,9	1,5	41	3307-B-2Z-TV	49,4	33,2	1,5	-	8500	0,8
	40	80	30,2	1,1	41	3208-B-TV	46	34,6	1,6	7100	8000	0,6
		80	30,2	1,1	41	3208-B-2RSR-TV	46	34,6	1,6	-	5600	0,6
		80	30,2	1,1	41	3208-B-2Z-TV	46	34,6	1,6	-	8000	0,6
		90	36,5	1,5	46	3308-B-TV	59,6	43,4	2	6000	7000	1

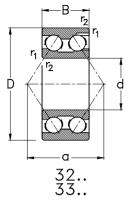
Zweireihige SchrägkugellagerDouble Row Angular Contact Ball Bearings

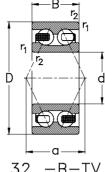



32..-B-TV 33..-B-TV

ı	Haupta	bmess [mm]	sungen	l	Lagertype	Tra	agzahl [kN]	en	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Gewicht [kg]
	Bounda	ry dim [mm]	ensions	:	Designation	Lo	ad ratir [kN]	igs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Weight [kg]
d	D	В	r ₁ , r ₂ min	а		C _r dyn.	C ₀r stat.	C _u	n _{θr}	n _G	m
40	90	36,5	1,5	46	3308-B-2RSR-TV	59,6	43,4	2	-	5000	1
	90	36,5	1,5	46	3308-B-2Z-TV	59,6	43,4	2	-	7000	1
45	85	30,2	1,1	43	3209-B-TV	45,8	35,4	1,6	6500	7500	0,6
	85	30,2	1,1	43	3209-B-2RSR-TV	45,8	35,4	1,6	-	5300	0,6
	85	30,2	1,1	43	3209-B-2Z-TV	45,8	35,4	1,6	-	7500	0,6
	100	39,7	1,5	50	3309-B-TV	65,4	48,9	2,2	5500	6300	1,4
	100	39,7	1,5	50	3309-B-2RSR-TV	65,4	48,9	2,2	-	4800	1,4
	100	39,7	1,5	50	3309-B-2Z-TV	65,4	48,9	2,2	-	6300	1,4
50	90	30,2	1,1	45	3210-B-TV	48,9	40,2	1,9	5900	7000	0,7
	90	30,2	1,1	45	3210-B-2RSR-TV	48,9	40,2	1,9	-	4800	0,7
	90	30,2	1,1	45	3210-B-2Z-TV	48,9	40,2	1,9	-	7000	0,7
	110	44,4	2	55	3310-B-TV	77,6	59,2	2,7	5200	6000	2
	110	44,4	2	55	3310-B-2RSR-TV	77,6	59,2	2,7	-	4300	2
	110	44,4	2	55	3310-B-2Z-TV	77,6	59,2	2,7	-	6000	2
55	100	33,3	1,5	50	3211-B-TV	55,9	47,1	2,1	5500	6300	1,1
	100	33,3	1,5	50	3211-B-2RSR-TV	55,9	47,1	2,1	-	4500	1,1
	100	33,3	1,5	50	3211-B-2Z-TV	55,9	47,1	2,1	-	6300	1,1
	120	49,2	2	61	3311-B-TV	97,8	75,6	3,4	5000	4800	2,6
	120	49,2	2	61	3311-B-2RSR-TV	97,8	75,6	3,4	-	3800	2,6
	120	49,2	2	61	3311-B-2Z-TV	97,8	75,6	3,4	-	4800	2,6
60	110	36,5	1,5	55	3212-B-TV	68,5	58,6	2,7	5200	5600	1,4
	110	36,5	1,5	55	3212-B-2RSR-TV	68,5	58,6	2,7	-	4000	1,4

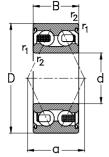
Anschlussmaße siehe Seite 477

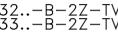

Abutment and fillet dimensions see on page 477

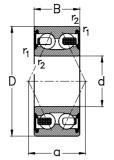

	Haup		mess mm]	ungen		Lagertype	Tra	agzahl [kN]	en	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Gewicht [kg]
	Boun	,	/ dime mm]	ensions	;	Designation	Loa	ad ratir [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Weight [kg]
(d D)	В	r ₁ , r ₂ min	а		C _r dyn.	C ₀r stat.	C _u	$n_{ hetar}$	n _G	m
6	0 11	0	36,5	1,5	55	3212-B-2Z-TV	68,5	58,6	2,7	-	5600	1,4
	13	0	54	2,1	67	3312-B-TV	119,8	94,1	4,3	4700	5000	3,3
	13	0	54	2,1	67	3312-B-2RSR-TV	119,8	94,1	4,3	-	3000	3,3
	13	0	54	2,1	67	3312-B-2Z-TV	119,8	94,1	4,3	-	5000	3,3
6	5 12	0	38,1	1,5	60	3213-B-TV	76,1	68,8	3,1	4800	4800	1,8
	12	0	38,1	1,5	60	3213-B-2RSR-TV	76,1	68,8	3,1	-	3000	1,8
	12	0	38,1	1,5	60	3213-B-2Z-TV	76,1	68,8	3,1	-	4800	1,8
	14	0	58,7	2,1	71	3313-B-TV	135,7	108,3	4,9	4700	4800	4,1
	14	0	58,7	2,1	71	3313-B-2RSR-TV	135,7	108,3	4,9	-	3600	4,1
	14	0	58,7	2,1	71	3313-B-2Z-TV	135,7	108,3	4,9	-	4800	4,1
7	0 12	5	39,7	1,5	62	3214-B	79,2	72,6	3,3	4600	4500	1,9
	12	5	39,7	1,5	62	3214-B-2RSR-TV	79,2	72,6	3,3	-	3400	1,9
	12	5	39,7	1,5	62	3214-B-2Z-TV	79,2	72,6	3,3	-	4500	1,9
	15	0	63,5	2,1	109	3314	143,3	167,8	7,3	4200	4300	5,1
7	'5 13	0	41,3	1,5	65	3215-B-TV	86,5	80,2	3,6	4400	4500	2,1
	16	0	68,3	2,1	117	3315	163	193	8,1	4000	4000	6,2
8	0 14	0	44,4	2	69	3216-B-TV	93,7	88,3	3,8	4300	4300	2,7
	17	0	68,3	2,1	123	3316	177	213	8,6	3700	3600	7
8	5 15	0	49,2	2	106	3217	112	151	6,3	4000	3800	3,4
	18	0	73	3	131	3317	190	228	7	3600	3400	8,3
9	0 16	0	52,4	2	113	3218	135	183	7,4	3800	3600	4,2
	19	0	73	3	136	3318	215	277	10,6	3200	3200	9,3

Zweireihige Schrägkugellager

Double Row Angular Contact Ball Bearings




	Haupta	bmess [mm]	sunger	1	Lagertype	Tra	agzahl [kN]	en	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Gewicht [kg]
	Bounda	ry dim [mm]	ensions	S	Designation	Lo	ad ratii [kN]	ngs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Weight [kg]
d	D	В	r ₁ , r ₂ min	а		C _r dyn.	C _{or} stat.	Cu	$n_{ hetar}$	n _G	m
95	170	55,6	2,1	120	3219	140	186	4,3	4000	3400	5,1
	200	77,8	3	143	3319	219	283	10,5	3000	3000	11,1
100	180	60,3	2,1	127	3220	160	234	7,9	3500	3200	6,1
	215	82,6	3	153	3320	240	320	8,9	2900	2800	13,5
110	200	69,8	2,1	144	3222	190	260	5,6	3500	2800	8,8
	240	92,1	3	171	3322	280	400	10,6	2600	2600	19



Zweireihige Schrägkugellager

Double Row Angular Contact Ball Bearings

32..-B-2RSR-TV 33..-B-2RSR-TV

Anschlussmaße siehe Seite 477

Abutment and fillet dimensions see on page 477

Vierpunktlager

Normen, Hauptabmessungen

Maßpläne DIN 616 Vierpunktlager DIN 628 / Teil 4

Allgemeines

Vierpunktlager sind eine Sonderform der einreihigen Schrägkugellager.

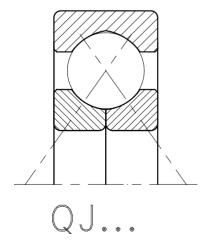
Sie weisen einen **Druckwinkel** von α = 35° auf und können axiale Belastungen in beiden Richtungen sowie - in beschränktem Umfang - auch Radiallasten aufnehmen.

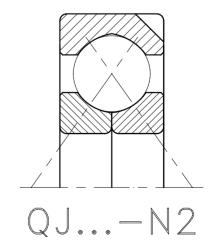
NKE Vierpunktlager der Bauform **QJ** haben zur Aufnahme einer möglichst großen Anzahl von Kugeln einen radial geteilten **Innenring** und sind somit zerlegbar.

Dadurch erleichtert sich auch deren Einbau, da der Außenring mit Kugelsatz getrennt von den Innenringhälften verbaut werden kann.

Four-Point Contact Ball Bearings

Standards, Boundary Dimensions


Standard plans DIN 616 Four-point contact ball bearings DIN 628 / part 4


General

Four-point contact ball bearings, also called "Duplex Bearings", belong to the single row angular contact ball bearings family. But, unlike bearings of the series 7.., four-point contact bearings are able to support thrust loads in either direction including limited radial loads.

NKE four-point contact ball bearings of the QJ design feature a contact angle of α = 35° and have **split inner rings** to allow the bearing to accept the maximum number of balls.

Due to the split inner rings, these bearings are separable. This facilitates mounting because the bearing outer ring together with cage and ball set and the inner ring halves may be mounted separately.

Bauformen

Vierpunktlager werden häufig zur Aufnahme rein axialer Belastungen vorgesehen.

Um eine versehentliche Radiallastaufnahme aus-schließen zu können, werden solche Lager radial freigestellt. Dies geschieht üblicherweise durch eine um 1 mm größere Gehäusebohrung. Um ein Mitdrehen des Außenringes zu verhindern, werden Vierpunktlager daher häufig mit Haltenuten versehen

NKE Vierpunktlager mit Außendurchmessern über Ø160 mm sind daher standardmäßig mit zwei in den Außenring eingefrästen Haltenuten versehen (Nachsetzzeichen **N2**).

Sonderformen der Vierpunktlager stellen Lager der Reihe **QJ 10..** sowie Vierpunktlager mit geteiltem Außenring (Bauform **Q**) dar, die wir auf Anfrage ebenfalls anbieten.

Schiefstellung

Vierpunktlager sind zum Ausgleich von Schiefstellungen grundsätzlich wenig geeignet.

Werden Vierpunktlager in Kombination mit Radiallagern als reine Axiallager verwendet, dürfen überhaupt keine Schiefstellungen auftreten.

Toleranzen

NKE Vierpunktlager werden standardmäßig in Normaltoleranz (**PN**) gefertigt. Auf Anfrage können diese auch mit eingeengten Toleranzen in den Toleranzklassen **P6** und **P5** gefertigt werden.

Detaillierte Werte für die einzelnen Toleranzklassen entnehmen Sie bitte den Tabellen im Abschnitt "Lagerdaten / Toleranzen", Seite 52.

Design Variants

Four-point contact ball bearings are frequently used to accommodate thrust loads only.

To avoid unwanted radial loading to the bearing they used to be mounted to oversized housing seats.

To prevent the outer ring from rotating in the housing, four-point contact ball bearing outer rings are often equipped with locating slots.

For this reason, **NKE four-point contact ball bearings** with outer diameters of more than Ø160 mm are produced with two locating slots in their outer ring (suffix **N2**).

Special series of four-point contact ball bearings are available on request represented by the series **QJ 10** and four-point contact ball bearings with split outer ring (series **Q**).

Misalignment

Four-point contact ball bearings are less suitable to operate with misalignments.

When they are used in combination with a radial bearing as pure thrust bearings, they must not be exposed to any misalignment.

Tolerances

NKE four-point contact bearings are produced to normal tolerance class (PN) as standard. On request these bearings are also produced to closer tolerances, such as tolerance classes P6 and P5.

Detailed tolerance values are listed in the tables shown in the chapter "Bearing data / Tolerances" page 237.

Käfige

Sofern nicht anders definiert, werden **NKE Vierpunktlager** standardmäßig mit Messing-Massivkäfigen (Nachsetzzeichen **MPA**) gefertigt.

Auf Wunsch können auch andere Käfige, wie etwa Massivkäfige aus Stahl (Nachsetzzeichen **FPA**), einige Typen auch mit Polyamidkäfigen (Nachsetzzeichen **TVP**) geliefert werden.

Lagerluft

Bei Vierpunktlagern wird die **Axialluft** angegeben. **NKE Vierpunktlager** werden standardmäßig in Axialluftklasse **CN** (**Normal**) gefertigt.

Auf Anfrage liefert **NKE** aber auch Vierpunktlager mit größerer (Axialluftklassen **C3**, **C4**) oder kleinerer Axialluft (Klasse **C2**).

Werte für die axiale Lagerluft der **NKE Vierpunktlager** sind in untenstehender Tabelle angegeben.

Cages

Unless otherwise specified, **NKE four-point** contact ball bearings are fitted with solid brass cages (suffix **MPA**) as standard.

Also, other cage types and materials are produced upon order; One-piece machined steel solid cage (suffix **FPA**) moulded polyamide cage (suffix **TVP**).

Internal Clearance

NKE four-point contact bearings are produced to axial clearance group **CN** (Normal) as standard.

NKE also produces four-point contact ball bearings with enlarged (axial clearance groups **C3** or **C4**) and/or with reduced axial clearance (Clearance group **C2**) on request.

Values for these clearance groups are listed in the table below.

Axiale Lagerluft der NKE Vierpunktlager (Luftwerte in [µm])
Internal Axial Clearance of NKE Four-Point Contact Ball Bearings (Clearances in [µm])

Lagerbohrung	[mm]	>		18	40	60	80	100	140	180	220
Bore diameter	[mm]	≤	18	40	60	80	100	140	180	220	260
Luftgruppe	C2	min	20	30	40	50	60	70	80	100	120
Clearance group	62	max	60	70	90	100	120	140	160	180	200
Luftgruppe		min	50	60	80	90	100	120	140	160	180
Clearance group (NORMAL)	CN	max	90	110	130	140	160	180	200	220	240
Luftgruppe	C3	min	80	100	120	130	140	160	180	200	220
Clearance group	CS	max	120	150	170	180	200	220	240	260	300
Luftgruppe	C4	min	115	135	155	165	185	205	225	250	275
Clearance group		max	165	185	205	225	245	265	295	325	355

Mindestbelastung

Vierpunktlager sind für hohe Drehzahlen geeignet. Für optimale Laufverhältnisse erfordern Vierpunktlager überwiegend **axiale Belastungen**.

Zufriedenstellende Kontaktverhältnisse liegen erst ab einem Lastverhältnis von

$$F_a \ge 1.27 * F_r$$

vor.

Wird dies nicht erreicht, ist mit einem Auftreten erhöhter Gleitreibung und daher mit hohem Laufgeräusch und Verschleiß zu rechnen.

Bei Vierpunktlagern sollte für eine zufriedenstellende Funktion unter normalen Betriebsbedingungen eine Mindestbelastung von etwa 1 bis 2% der dynamischen Tragzahl C, gegeben sein.

Äquivalente dynamische Lagerbelastung

Bei Vierpunktlagern gilt:

bei

$$\frac{F_a}{F_a} \le 0.95$$
 gilt $P = F_r + 0.66 * F_a$

bzw., wenn

$$\frac{F_a}{F_r}$$
 > 0,95 dann **P = 0,6*F**_r + 1,07*F_a

Äguivalente statische Lagerbelastung

$$P_0 = F_r + 0.58 * F_s$$

Minimum Load

Four-point contact ball bearings are suitable to operate at high speeds. For optimum contacti behaviour, however, four-point contact ball bearings should be mainly exposed to **axial acting** loads.

An effective function is given, if

If this ratio is not attained or achieved, high sliding friction may occur in the bearing and thus generate high noise and excessive wear.

To function effectively, four-point contact ball bearings should run under a minimum bearing load of approximately 1 to 2% of the dynamic load rating (\mathbf{C}_r) .

Equivalent Dynamic Bearing Load

In the case of **four-point contact ball bearings** the following formula should be used:

when

$$\frac{F_a}{F_r} \le 0.95$$
 then **P = F_r + 0.66 * F_a**

or, when

$$\frac{F_a}{F_r}$$
 > 0,95 , then **P = 0,6*F_r + 1,07*F_a**

Equivalent static bearing load

$$P_0 = F_r + 0.58 * F_a$$

Anschlussmaße

Vierpunktlager werden überwiegend zur Aufnahme axialer Belastungen eingesetzt. Daher ist besonders auf eine ausreichende axiale Unterstützung der Lagerringe durch die Anlageflächen an Wellenbunden bzw. Gehäuseschultern zu achten.

Die Radien der Kantenverrundung dürfen dabei nicht an den Hohlkehlen von Wellenbund oder Gehäuse anliegen. Daher muss der größte Hohlkehlradius an den Anschlussteilen (\mathbf{r}_g bzw. \mathbf{r}_{g1}) kleiner sein als der kleinste Radius für die Kantenverrundung (\mathbf{r}_1 , \mathbf{r}_2) der Lagerringe (siehe Zeichnung bei Tabelle auf der Folgeseite).

Empfehlungen für Einbaumaße sind auch in **DIN 5418** definiert, die Werte der Kantenverrundung der Lagerringe sind in den Produkttabellen angegeben.

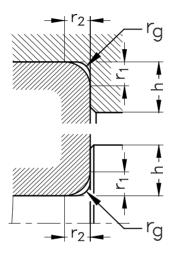
Empfehlungen zur Gestaltung der Anschlussteile sind in der Tabelle auf der folgenden Seite angegeben.

Abutment and Fillet Dimensions

Four-point contact ball bearings are often used to accommodate thrust loads, so they do require optimum support of the bearing rings by the machine components surrounding the bearing. To gain adequate support the shaft and housing shoulders require a certain minimum height.

The bearing rings, however, must only contact adjacent parts with their side faces.

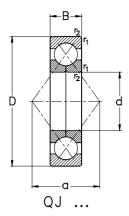
The radii of bearing corners must not touch the corner fillet radii of either the shaft or housing shoulders. Therefore, the largest fillet radius ($\mathbf{r_g}$ or $\mathbf{r_{g1}}$) must always be smaller than the minimum fillet dimension of the bearing rings ($\mathbf{r_1}$, $\mathbf{r_2}$).


Recommendations for the dimensions of adjacent parts listed in **DIN 5418**, the values for the bearing fillet dimensions are stated in the bearing tables, also refer to the details on the following page.

Anschlussmaße für Vierpunktlager Abutment and Fillet Dimensions for Four-Point Contact Ball Bearings

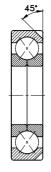
Alle Abmessungen in [mm]

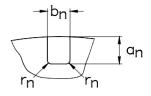
All Dimensions in [mm]



r ₁ , r _{2 min}	r _{g max}	h _{min} Lagerreihen <i>Bearing series</i> QJ 2 / QJ 3
1,1	1	3,5
1,5	1,5	4,5
2	2	5,5
2,1	2,1	6
3	2,5	7
4	3	8,5
5	4	10

Vierpunktlager


Four-Point Contact Ball Bearings



Für D≥160mm Standardausführung mit 2 Haltenuten im Außenring (N2)

For D≥160mm standard design with 2 location slots in outer ring (N2)

QJ ... N2

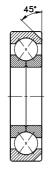
	Н	laupi	tabme: [mm		gen			Lagertype	Tra	agzahle [kN]	en	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Gewicht [kg]
	В	ound	dary dir [mm		ions			Designation	Los	ad ratin [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Weight [kg]
d	D	В	r ₁ , r ₂ min	а	a _n	b _n	r _n		C _r dyn.	C₀r stat.	C _u	$\mathbf{n}_{ heta r}$	n _G	m
20	47	14	1	23				QJ204-MPA	22,7	16,0	0,7	13800	28000	0,14
	52	15	1,1	26				QJ304-MPA	28,7	18,2	0,8	10800	24000	0,18
25	52	15	1	27				QJ205-MPA	25,3	19,8	0,9	12100	22000	0,17
	62	17	1,1	31				QJ305-MPA	40,7	27,8	1,3	9000	20000	0,25
30	62	16	1	32				QJ206-MPA	40,3	30	1,4	9800	19000	0,3
	72	19	1,1	36	-	-		QJ306-MPA	58	40,5	1,8	7800	17000	0,37
35	72	17	1,1	38				QJ207-MPA	52	40,0	1,8	8300	17000	0,46
	80	21	1,5	41				QJ307-MPA	64	46,5	2,1	7200	15000	0,5
40	80	18	1,1	42		-		QJ208-MPA	62	50	2,3	7300	15000	0,39
	90	23	1,5	46				QJ308-MPA	83	64	2,9	6400	14000	0,69
45	85	19	1,1	45				QJ209-MPA	65	55	2,5	6900	14000	0,48
	100	25	1,5	51				QJ309-MPA	98	77	3,5	5800	12000	0,95
50	90	20	1,1	49				QJ210-MPA	67	60	2,7	6600	13000	0,64
	110	27	2	56				QJ310-MPA	123	99	4,5	5300	11000	1,37
55	100	21	1,5	54	-	-	-	QJ211-MPA	83	76	3,5	5800	11000	0,68
	120	29	2	61	-			QJ311-MPA	142	116	5,3	4900	10000	1,74
60	110	22	1,5	60				QJ212-MPA	96	87	4,0	5400	10000	0,87
	130	31	2,1	67				QJ312-MPA	161	134	6,1	4600	9000	2,18
65	120	23	1,5	65			-	QJ213-MPA	114	106	4,8	4900	9500	1,24
	140	33	2,1	72				QJ313-MPA	182	154	6,9	4400	8500	2,69
70	125	24	1,5	68		-	-	QJ214-MPA	119	115	5,2	4700	9000	1,39
	150	35	2,1	77				QJ314-MPA	201	174	7,6	4100	8000	3,25

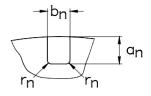
Anschlussmaße siehe Seite 489

Abutment and fillet dimensions see on page 489

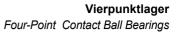
Hauptabmessungen [mm]								Lagertype	Tragzahlen [kN]		en	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Gewicht [kg]
Boundary dimensions [mm]					Designation	Load ratings [kN]			Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Weight [kg]			
d	D	В	r ₁ , r ₂ min	а	a _n	b _n	r _n		C _r dyn.	C _{0r} stat.	C _u	$\mathbf{n}_{ heta r}$	n _G	m
75	130	25	1,5	72				QJ215-MPA	124	123	5,5	4500	8500	1,77
	160	37	2,1	82	10,1	8,5	2	QJ315-N2-MPA	212	204	8,6	3900	7500	3,93
80	140	26	2	77				QJ216-MPA	145	146	6,3	4200	8000	1,8
	170	39	2,1	88	10,1	8,5	2	QJ316-N2-MPA	230	229	9,3	3700	7000	4,61
85	150	28	2	82				QJ217-MPA	160	161	6,7	4000	7500	2,25
	180	41	3	93	11,7	10,5	2	QJ317-N2-MPA	248	255	10,1	3500	6700	5,49
90	160	30	2	88	8,1	6,5	1	QJ218-N2-MPA	175	186	7,5	3900	7000	2,89
	190	43	3	98	11,7	10,5	2	QJ318-N2-MPA	267	283	10,9	3400	6300	6,34
95	170	32	2,1	93	8,1	6,5	1	QJ219-N2-MPA	199	213	8,4	3700	6700	3,37
	200	45	3	103	11,7	10,5	2	QJ319-N2-MPA	285	313	11,7	3200	6000	7,4
100	180	34	2,1	98	10,1	8,5	2	QJ220-N2-MPA	224	242	9,3	3500	6300	4,03
	215	47	3	110	11,7	10,5	2	QJ320-N2-MPA	325	368	13,3	3000	5600	8,98
105	190	36	2,1	103	10,1	8,5	2	QJ221-N2-MPA	244	272	10,2	3400	5900	6,11
	225	49	3	116	11,7	10,5	2	QJ321-N2-MPA	344	406	14,4	2900	5200	10,5
110	200	38	2,1	109	10,1	8,5	2	QJ222-N2-MPA	264	305	11,1	3300	5600	5,67
	240	50	3	123	11,7	10,5	2	QJ322-N2-MPA	363	434	14,9	2700	4800	12,2
120	215	40	2,1	117	11,7	10,5	2	QJ224-N2-MPA	284	341	12,0	3100	5000	6,74
	260	55	3	133	11,7	10,5	2	QJ324-N2-MPA	384	485	16,0	2500	4500	15,6
130	230	40	3	127	11,7	10,5	2	QJ226-N2-MPA	304	380	12,9	2800	4800	7,67
	280	58	4	144	12,7	10,5	2	QJ326-N2-MPA	426	563	17,9	2200	4000	19,2
140	250	42	3	137	11,7	10,5	2	QJ228-N2-MPA	327	436	14,2	2600	4300	9,69
	300	62	4	154	12,7	10,5	2	QJ328-N2-MPA	469	646	19,8	2000	3800	23,2

Vierpunktlager


Four-Point Contact Ball Bearings



Für D≥160mm Standardausführung mit 2 Haltenuten im Außenring (N2)


For D≥160mm standard design with 2 location slots in outer ring (N2)

QJ ... N2

Hauptabmessungen [mm]								Lagertype	Tragzahlen [kN]		en	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Gewicht [kg]
Boundary dimensions [mm]							Designation	Load ratings [kN]		ngs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Weight [kg]	
d	D	В	r ₁ , r ₂ min	а	a _n	b _n	r _n		C _r dyn.	C _{0r} stat.	C _u	n _{θr}	n_{G}	m
150	270	45	3	147	11,7	10,5	2	QJ230-N2-MPA	349	483	15,1	2400	4000	12,2
	320	65	4	165	12,7	10,5	2	QJ330-N2-MPA	514	735	21,8	1900	3600	27,8
160	290	48	3	158	12,7	10,5	2	QJ232-N2-MPA	382	544	16,5	2200	3800	20
	340	68	4	175	12,7	10,5	2	QJ332-N2-MPA	583	872	25,1	1700	3400	32,5
170	310	52	4	168	12,7	10,5	2	QJ234-N2-MPA	421	631	18,5	2000	3400	18,9
	360	72	4	186	12,7	10,5	2	QJ334-N2-MPA	589	917	25,6	1600	3200	38,4
180	320	52	4	175	12,7	10,5	2	QJ236-N2-MPA	430	670	19,26	1900	3400	23,1
	380	75	4	196	12,7	10,5	2	QJ336-N2-MPA	703	1134	30,8	1400	3000	44,9
190	340	55	4	186	12,7	10,5	2	QJ238-N2-MPA	459	736	20,5	1800	3200	24
200	360	58	4	196	12,7	10,5	2	QJ240-N2-MPA	513	853	23,2	1600	3000	33,3
220	400	65	4	217	12,7	10,5	2	QJ244-N2-MPA	633	1156	28,8	1400	2800	49,3
240	440	72	4	238	15	12,5	2,5	QJ248-N2-MPA	624	1139	28,1	1300	2600	68,3

Anschlussmaße siehe Seite 489

Abutment and fillet dimensions see on page 489

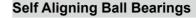
Pendelkugellager Self Aligning Ball Bearings

Pendelkugellager Self Aligning Ball Bearings

Pendelkugellager mit Spannhülsen Self Aligning Ball Bearings with Adapter Sleeves

Pendelkugellager mit verbreitertem InnenringSelf Alignig Ball Bearings with Extended Inner Rings

Pendelkugellager


Normen, Hauptabmessungen

Maßpläne DIN 616 Pendelkugellager DIN 630

Allgemeines:

Pendelkugellager sind zweireihige, nicht zerlegbare Radiallager mit einer hohlkugeligen Außenringlaufbahn. Dadurch sind sie winkeleinstellbar und gleichen Schiefstellungen durch Fluchtungsfehler oder Wellendurchbiegungen sehr gut aus.

Pendelkugellager sind nicht zerlegbar und eignen sich für geringe bis mittlere radiale und axiale Belastungen.

Standards, Boundary Dimensions

Standard plans DIN 616 Self Aligning Ball Bearings DIN 630

General:

Self aligning ball bearings are non-separable double-row radial bearings. Both rows of balls rotate, in parallel, within the spherical outer ring. This allows an excellent alignment compensation, caused by machining and mounting errors, between the shaft and housing.

Self aligning ball bearings are suitable for low to medium radial loads and low amounts of thrust forces.

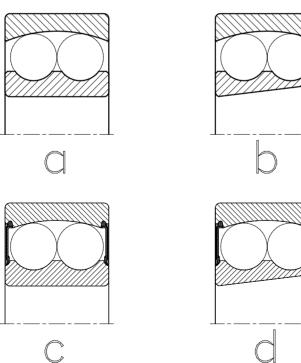
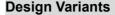


Abb. 1 Fig. 1

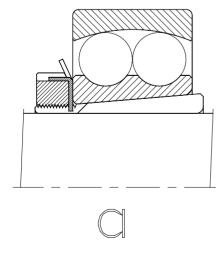

Bauformen

Pendelkugellager werden neben der offenen Grundausführung (siehe Abb. 1a) häufig auch mit kegeliger Bohrung (Kegel 1:12, Abb. 1b) zur Montage auf Spannhülsen eingesetzt, siehe Abb. 1b. Diese Ausführung wird durch das Nachsetzzeichen Kidentifiziert.

Durch die Montage dieser Lager auf Spannhülsen ist es möglich, bei Anwendungen ohne allzu große Ansprüche hinsichtlich Laufgenauigkeit, die Lager ohne aufwendige Bearbeitung der Lagersitze direkt auf blankgezogene Wellen bzw. auf gedrehte Wellensitze zu montieren (siehe Abb. 2).

Verschiedene Pendelkugellager sind auch mit berührenden Dichtscheiben (Nachsetzzeichen -2RS), sowohl mit zylindrischer (siehe Abb. 1c) als auch mit kegeliger Bohrung (Nachsetzzeichen K-2RS, siehe Abb. 1d bzw. 2b) verfügbar.

Bei abgedichteten Bauarten ist sowohl die Höchstdrehzahl als auch die Winkeleinstellbarkeit eingeschränkt.


Beside the **standard design** with cylindrical bore, (fig. **1a**), **NKE self aligning ball bearings** with tapered bore, **suffix K** (i.e. taper 1:12), are available, for ease of mounting (see fig. **1b**).

The possibility of mounting these bearing types, using adaptor sleeves, enables mounting directly onto drawn or fine turned shaft seats for applications where high running accuracy is not necessary (see fig 2.).

Some types of self aligning ball bearings are available with either cylindrical or tapered inner bores, with incorporated contacting seals (i.e. suffix -2RS, see fig. 1c, and suffix K-2RS, fig. 1d and fig. 2b respectively).

The standard material used for contacting seals is a wear-resistant synthetic rubber (**NBR**).

When selecting self aligning ball bearing with contacting seals fitted, consideration must be given to the reduction of their maximum operating speeds and their limited misalignment abilities.

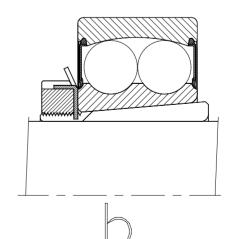


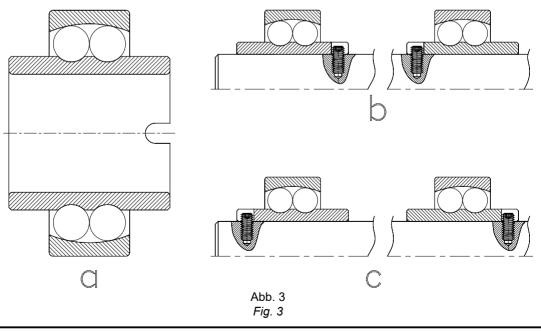
Abb. 2 Fig. 2

Eine weitere Bauform von Pendelkugellagern zur Montage auf gezogenen Wellen sind **Pendelkugellager mit verbreitertem Innenring** (Abb. 3a).

Abweichend von den für Wälzlager ansonsten üblichen Toleranzen weisen die Bohrungen von Pendelkugellagern mit verbreiterten Innenringen Toleranzen nach dem ISO-Toleranzfeld **J7** auf.

Dadurch ergibt sich ein loser Schiebesitz, wodurch die Lager sehr einfach zu montieren sind.

Da eine Fixierung der Innenringe auf den Wellensitzen nicht gegeben ist, weisen die Innenringe dieser Lager Nuten zur Aufnahme von Stiften zur Verdrehsicherung auf.


Bei Lagerungen, bei denen zwei Pendelkugellager mit verbreitertem Innenring verwendet werden, sollten die Lager so montiert werden, dass die Nuten an den Innenringen entweder beide nach innen (siehe Abb. 3b) oder beide nach außen gerichtet sind (Abb. 3c).

Another design variant is self aligning ball bearings with extended inner rings (fig. 3a).

Unlike standard bearing bores, the bore diameter of self aligning ball bearings with extended inner rings have tolerances according to ISO-tolerance field **J7**.

This tolerance **J7** provides a loose sliding fit, of inner to shaft, for ease of mounting. As this fit provides adequate location on the shaft, the inner ring features a location slot to accept locator pins to prevent the inner ring rotating on the shaft.

In the case of bearing arrangements consisting of two self aligning ball bearings with extended inner rings, the bearings must be mounted in such a way that the two location grooves on the inner rings either both face inwards (fig. **3b**) or both face outwards (fig. **3c**).

Schiefstellung

Pendelkugellager sind zum Ausgleich von Schiefstellungen optimal geeignet. Die jeweils zulässige **Verkippung** Ψ um die Mittelachse hängt von der Lagerreihe sowie der Ausführung ab.

Folgende Werte sind zulässig:

- offene Lager der Reihen 112 und 113:	Ψ ≤ 2,5°
- offene Lager der Reihen 12 und 22	Ψ ≤ 2,5°
- offene Lager der Reihen 13 und 23	Ψ ≤ 3°
- abgedichtete Lager (-2RS)	Ψ ≤ 1,5°

Toleranzen

NKE Pendelkugellager werden in Normaltoleranz (**PN**) gefertigt.

Drehzahleinschränkungen bei Lagern mit Dichtscheiben

Abgedichtete Pendelkugellager der Bauform -2RS weisen durch die vorgespannten Dichtlippen eine zusätzliche Wärmeentwicklung auf, wodurch deren zulässige Höchstdrehzahl um ein Drittel unter der offener Lager liegt.

Misalignment

Self aligning ball bearings have excellent ability to compensate for misalignments. The maximum permissible misalignment from their centre axis (Ψ) is dependant upon the bearing design, series and actual operating conditions.

The following values are permissible:

for bearings of series 112 and 113:	Ψ ≤ 2,5°
for open bearings of series	Ψ ≤ 2,5°
for open bearings of series 13 and 23	Ψ ≤ 3°
for sealed bearings (-2RS)	Ψ ≤ 1,5°

Tolerances

NKE self aligning ball bearings are produced to normal tolerance class (**PN**) as standard.

Speed limitations for Sealed Self Aligning Ball Bearings

Sealed self aligning ball bearings with suffix -2RS have limited speed ratings due to the additional heat generated by the rubbing of their sealing lips.

For this reason, the maximum speed must not exceed **2/3** of the speed rating recommended for open bearings with grease lubrication.

Pendelkugellager Self Aligning Ball Bearings

Käfige

Kleine und mittelgroße **NKE Pendelkugellager** werden standardmäßig mit Kunststoffkäfigen bzw. Stahlblechkäfigen geliefert, größere Lager mit Messing-Massivkäfigen.

Verschiedene Pendelkugellager sind auch mit Kunststoffkäfigen verfügbar.

Lagerluft

Bei der Lagerluft von Pendelkugellagern wird grundsätzlich zwischen Lagern mit **zylindrischer** und **kegeliger** Bohrung unterschieden.

Da bei Lagern mit kegeliger Bohrung das Risiko einer unbeabsichtigten Verspannung bei der Montage besteht, weisen diese bei gleicher Luftklasse größere Luftwerte im Vergleich zu Lagern mit zylindrischer Bohrung auf.

NKE Pendelkugellager mit zylindrischer oder kegeliger Bohrung werden standardmäßig mit der Luftklasse **CN** (Normalluft) gefertigt.

Zusätzlich liefert NKE auch Pendelkugellager mit größerer (C3, C4) oder kleinerer Radialluft (Klasse C2).

Werte für die Lagerluft von NKE Pendelkugellagern mit zylindrischer und kegeliger Bohrung sind in den beiden Tabellen auf der Seite 501 angegeben.

Diese entsprechen, soweit genormt, den in DIN 620 / Teil 4 bzw. ISO 5753 - 1981 definierten Werten.

Cages

Small and medium sized **NKE self aligning** ball bearings are fitted with polyamide cages or rather pressed steel cages as standard. Larger sizes are fitted with solid brass cages.

Several types and sizes of self aligning ball bearings are also produced with polyamide cages fitted.

Internal Clearance

For the internal clearance group of self aligning ball bearings distinction is made between bearings with **cylindrical** or **tapered** bores.

Because of the risk of applying a preload force to the bearing during mounting, bearings with tapered bore feature a larger radial internal clearance when compared to cylindrical bore bearings of the same clearance group.

NKE self aligning ball bearings with cylindrical or tapered bores are produced with normal internal clearance (**CN**) as standard.

Other internal clearance groups are produced upon order request.

The values of clearance groups for self aligning ball bearings with cylindrical and tapered bores are given in the tables listed on page 501.

These values correspond, where standardised, to DIN 620 / part 4 and ISO 5753 - 1981.

Lagerluft der NKE Pendelkugellager Internal Clearance for NKE Self Aligning Ball Bearings

Luftwerte in [µm]
Clearance Values are in [µm]

Lagerluft der NKE Pendelkugellager mit zylindrischer Bohrung Internal clearance groups for NKE self aligning ball bearings with cylindrical bore

Lagerbohrung	[mm]	>		6	10	14	18	24	30	40	50	65	80	100
Bore diameter	[mm]	≤	6	10	14	18	24	30	40	50	65	80	100	120
Luftgruppe	C2	min	1	2	2	3	4	5	6	6	7	8	9	10
Clearance group		max	8	9	10	12	14	16	18	19	21	24	27	31
Luftgruppe	CN	min	5	6	6	8	10	11	13	14	16	18	22	25
Clearance group(NORMAL)	CN	max	15	17	19	21	23	24	29	31	36	40	48	56
Luftgruppe	C3	min	10	12	13	15	17	19	23	25	30	35	42	50
Clearance group	CS	max	20	25	26	28	30	35	40	44	50	60	70	83
Luftgruppe	C4	min	15	19	21	23	25	29	34	37	45	54	64	75
Clearance group		max	25	33	35	37	39	46	53	57	69	83	96	114

Lagerluft der NKE Pendelkugellager mit kegeliger Bohrung Internal clearance groups for NKE self aligning ball bearings with tapered bore

Lagerbohrung	[mm]	>		24	30	40	50	65	80	100
Bore diameter	[mm]	≤	24	30	40	50	65	80	100	120
Luftgruppe	C2	min	7	9	12	14	18	23	29	35
Clearance group	CZ	max	17	20	24	27	32	39	47	56
Luftgruppe	CN	min	13	15	19	22	27	35	42	50
Clearance group(NORMAL)	CN	max	26	28	35	39	47	57	68	81
Luftgruppe	С3	min	20	23	29	33	41	50	62	75
Clearance group	CS	max	33	39	46	52	61	75	90	108
Luftgruppe	C4	min	28	33	40	45	56	69	84	100
Clearance group	C4	max	42	50	59	65	80	98	116	139

Self Aligning Ball Bearings

Mindestbelastung:

Bei Pendelkugellagern sollte für eine zufriedenstellende Funktion unter normalen Betriebsbedingungen eine Mindestbelastung von etwa 2% der dynamischen Tragzahl C_r gegeben sein.

Äquivalente dynamische Lagerbelastung

$$\frac{F_a}{F_r} \le e \text{ gilt } P = F_r + Y * F_a$$

wenn

$$\frac{F_a}{F_r}$$
 > e dann P = 0,65 * F_r + Y * F_a

Werte für Y und e sind in den Produkttabellen angegeben.

Äguivalente statische Lagerbelastung

$$P_0 = F_r + Y_0 * F_a$$

Werte für \mathbf{Y}_0 sind in den Produkttabellen angegeben.

Anschlussmaße

Die Radien der Kantenverrundungen der Lagerringe dürfen nicht an den Hohlkehlen von Wellenbund oder Gehäuse anliegen. Dazu muss der größte Hohlkehlradius an den Anschlussteilen ($\mathbf{r_g}$ bzw. $\mathbf{r_{g1}}$) kleiner sein als der kleinste Radius für die Kantenverrundung ($\mathbf{r_s}$) der Lagerringe. Siehe dazu die Abweichungen auf der Seiten 504.

Minimum Load:

To perform effectively, self aligning ball bearings should run under a minimum bearing load of approximately 2% of the dynamic load rating $\mathbf{C}_{\mathbf{r}}$.

Equivalent Dynamic Bearing Load

$$\frac{F_a}{F_r} \le e \text{ then } P = F_r + Y * F_a$$

or, if

$$\frac{F_a}{F_r}$$
 > e then P = 0,65 * F_r + Y * F_a

Values of **Y** and **e** are stated in the product tables.

Equivalent Static Bearing Load

$$P_0 = F_r + Y_0 * F_a$$

Values of \mathbf{Y}_0 are stated in the product tables.

Abutment and Fillet Dimensions

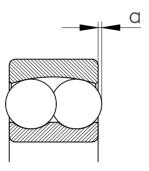
The bearing ring corner profile must not contact the shaft or housing corner profiles.

Therefore the largest fillet radius (\mathbf{r}_g) must always clear the minimum fillet dimension of the bearing (\mathbf{r}_g) on the page 504.

Empfehlungen für Einbaumaße sind auch in ISO 5418 definiert, die Werte der Kantenverrundung der Lagerringe sind in den Produkttabellen angegeben.

Kugelüberstand

Bei einigen Typen von Pendelkugellagern stehen die Kugeln seitlich etwas über die Planfläche vor. Diese Besonderheit muß bei der Gestaltung der Anschlußteile sowie beim Einbau beachtet werden. Größere Kugelüberstände weisen folgende Lagertypen auf:


Recommendations for the dimensions of adjacent parts are defined in ISO 5418, the values of the bearing fillet dimensions are given in the appropriate bearing tables.

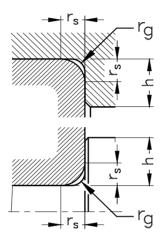
Ball Protrusion

For several self aligning ball bearings the balls protrude beyond the bearing face sides.

This feature must be considered when designing the application arrangement. Ball protrusion values are given for the following bearings:

Kugelüberstand bei NKE Pendelkugellagern Ball Protrusion of NKE Self Aligning Ball Bearings

Lagertype Bearing types	Kugelüberstand Ball protrusion
	[mm]
1318, 1318 K	≈ 1,1
1319, 1319 K	≈ 1,5
1320, 1320 K	≈ 2,5
1321, 1321 K	≈ 2,6
1322, 1322 K	≈ 2,6



Anschlussmaße für Pendelkugellager

Abutment and Fillet Dimensions for Self Aligning Ball Bearing

Alle Abmessungen in [mm]

All Dimensions are in [mm]

r _{s min}	r _{g max}	Lager	reihen g series 12 / 22 13 / 23 112 / 113
0,3	0,3	1	1,2
0,6	0,6		2,1
1	1		2,8
1,1	1		3,5
1,5	1,5		4,5
2	2		5,5
2,1	2,1		6
3	2,5		7

Pendelkugellager mit kegeliger Bohrung und Spannhülse

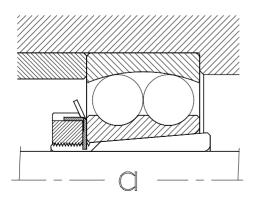
Durch die Verwendung von Lagern mit kegeliger Bohrung (1:12) auf Spannhülsen kann bei geringen Ansprüchen an die Laufgenauigkeit der Lagerung eine aufwendige Feinbearbeitung der Lagersitze vermieden werden.

Die Pendelkugellager können damit direkt auf blankgezogene Wellen bzw. auf gedrehte Wellensitze montiert werden

Wenn allerdings, wie in Abb. 4 dargestellt, Pendelkugellager auf Spannhülsen ohne festen seitlichen Anschlag auf glatten Wellen montiert werden, darf die auf das Lager wirkende Axialkraft eine bestimmte Höhe allerdings nicht überschreiten, da diese nur durch die Reibung zwischen Spannhülse und Welle aufgenommen wird.

Die Höhe der zulässigen Axiallast lässt sich wie folgt abschätzen:

$$F_{amax} \le 3 * d * B$$


wobei:

F_{amax} maximal zulässige Axiallast bei

Pendelkugellagern auf Spannhülse [N]

B Lagerbreite [mm]

d Bohrungsdurchmesser des Lagers [mm]

Self Aligning Ball Bearings with Tapered Bore and Adapter Sleeve

When using tapered bore bearings with adapter sleeves the time consuming and expensive fine machining of the bearing seats may be avoided for applications where less running accuracy is required.

Using adapter sleeves self aligning ball bearings may be mounted directly onto drawn or fine turned shaft seats.

In applications where self aligning ball bearings are mounted on straight shafts without additional axial supports, as shown (fig. 4) their ability to accept thrust loads is limited by the amount of friction between adapter sleeve and shaft.

The permissible thrust load may be estimated using the following formula:

$$F_{amax} \le 3 * d * B$$

where:

F_{amax} maximum permissible thrust load for self aligning ball bearings mounted on to

adapter sleeves [N]

B Bearing width [mm]

d Bearing bore diameter [mm]

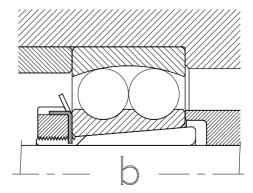
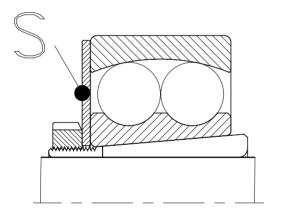


Abb. 4

Fig. 4

Montagehinweise

Speziell beim Einbau von Pendelkugellagern mit kegeliger Bohrung auf Spannhülsen ist besonders auf die Einhaltung einer verbleibenden Mindest-Radialluft nach der Montage zu achten. Bitte beachten Sie dazu die ausführlichen diesbezüglichen Hinweise im Abschnitt "Handling, Ein- und Ausbau von Wälzlagern" ab Seite 167.

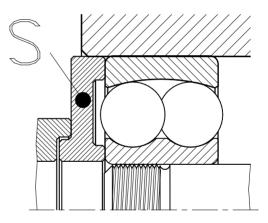
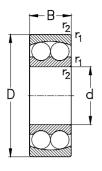
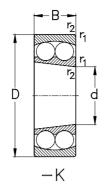

Bei einer Montage von Pendelkugellagern kann sich die Verkippung des Außenringes mitunter störend auswirken. Durch die Verwendung einfacher Hilfsmittel wie beispielsweise von **Montagescheiben** (s) wie in Abb. 5 dargestellt, kann der Einbau vereinfacht werden.

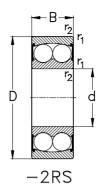
Mounting Instructions

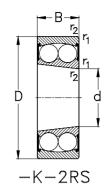
When using self aligning ball bearings with tapered bores, in conjunction with adapter sleeves, particular attention must be paid to retain a minimum radial residual internal clearance following mounting.

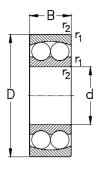
Also, when mounting, outer ring tilting may cause complications. This problem may be overcome using simple methods, such as mounting disks, (s) (fig. 5).

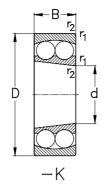
Please see chapter "Handling, Fitting and Dismounting Rolling Bearings" for more detailed information.

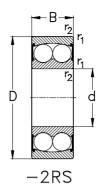




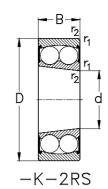

Abb. 5 Fig. 5

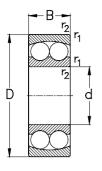


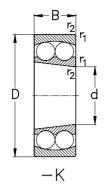

На	uptabm	essung	jen	Lagertype	Ti	ragzahle	en	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]
Во	undary ([m		ons	Designation	Lo	oad ratin [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]
d	D	В	r ₁ , r ₂ min		C _r dyn.	C _{or} stat.	C _u	$n_{\scriptscriptstyle{ hetar}}$	n _G
10	30	9	0,6	1200	5,4	1,2	0,1	21200	36000
	30	14	0,6	2200	8,1	1,8	0,1	24800	34000
	35	11	0,6	1300	7,2	1,6	0,1	17000	32000
12	32	10	0,6	1201	6,2	1,4	0,1	20200	32000
	32	14	0,6	2201	8,5	1,9	0,1	22100	30000
	32	14	0,6	2201-2RS	6,2	1,4	0,1		30000
	37	12	1	1301	9,7	2,2	0,01	16200	28000
15	35	11	0,6	1202	7,4	1,7	0,1	18300	28000
	35	14	0,6	2202	8,7	2	0,1	19000	26000
	35	14	0,6	2202-2RS	7,4	1,7	0,1	-	26000
	42	13	1	1302	12	2,9	0,1	14100	24000
	42	17	1	2302	11,9	2,9	0,1	15300	24000
17	40	12	0,6	1203	8,8	2,2	0,1	16500	24000
	40	16	0,6	2203	10,6	2,5	0,1	17600	24000
	40	16	0,6	2203-2RS	8,8	2,2	0,1		24000
	47	14	1	1303	12,8	3,4	0,2	12900	20000
	47	19	1	2303	14,5	3,6	0,2	14300	22000
	47	19	1	2303-2RS	12,8	3,4	0,2		22000
20	47	14	1	1204	12,7	3,4	0,2	14900	20000
	47	14	1	1204-K	12,7	3,4	0,2	14900	20000
	47	18	1	2204	14,2	3,5	0,2	15500	20000
	47	18	1	2204-2RS	12,7	3,4	0,2		20000

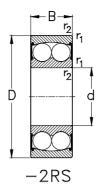


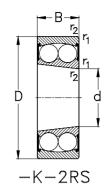

Abutment and fillet dimensions see on page 504

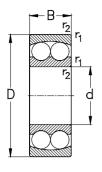

	Gewicht [kg] Weight [kg]		Berechnungsfaktoren Calculation factors						
			Υ	Υ	\mathbf{Y}_{0}				
d	m	е	F _a /F _r ≤ e	$F_a/F_r > e$					
10	0,03	0,32	1,95	3,02	2,05	1200			
	0,05	0,58	1,1	1,7	1,1	2200			
	0,06	0,34	1,8	2,9	1,9	1300			
12	0,04	0,37	1,69	2,62	1,77	1201			
	0,05	0,53	1,2	1,9	1,3	2201			
	0,05	0,37	1,7	2,6	1,8	2201-2RS			
	0,07	0,35	1,8	2,8	1,9	1301			
15	0,05	0,34	1,86	2,88	1,95	1202			
	0,06	0,46	1,4	2,1	1,4	2202			
	0,06	0,34	1,9	2,9	2	2202-2RS			
	0,1	0,35	1,8	2,8	1,9	1302			
	0,13	0,51	1,2	1,9	1,3	2302			
17	0,08	0,33	1,93	2,99	2,03	1203			
	0,09	0,46	1,4	2,1	1,4	2203			
	0,09	0,33	1,9	3	2	2203-2RS			
	0,14	0,32	1,9	3	2	1303			
	0,18	0,53	1,2	1,9	1,3	2303			
	0,18	0,32	1,9	3	2	2303-2RS			
20	0,13	0,28	2,24	3,46	2,34	1204			
	0,12	0,28	2,24	3,46	2,34	1204-K			
	0,14	0,44	1,5	2,2	1,5	2204			
	0,14	0,28	2,2	3,5	2,3	2204-2RS			

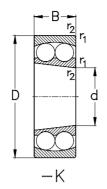

На	uptabm	essung	jen	Lagertype	Tragzahlen		Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	
Во	undary ([m	dimensio m]	ons	Designation	Lo	oad ratin [kN]	ıgs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]
d	D	В	r ₁ , r ₂ min		C _r dyn.	C ₀r stat.	C _u	$n_{ hetar}$	n _G
20	52	15	1,1	1304	14,3	4	0,2	11600	18000
	52	15	1,1	1304-K	14,3	4	0,2	11600	18000
	52	21	1,1	2304	18,2	4,7	0,2	13200	19000
	52	21	1,1	2304-2RS	14,3	4	0,2	-	19000
25	52	15	1	1205	14,3	4	0,2	13100	18000
	52	15	1	1205-K	14,3	4	0,2	13100	18000
	52	18	1	2205	16,8	4,4	0,2	13100	18000
	52	18	1	2205-K	16,8	4,4	0,2	13100	18000
	52	18	1	2205-K-2RS	14,3	4	0,2		18000
	52	18	1	2205-2RS	14,3	4	0,2	-	18000
	62	17	1,1	1305	18,9	5,5	0,3	10000	15000
	62	17	1,1	1305-K	18,9	5,5	0,3	10000	15000
	62	24	1,1	2305	24,4	6,5	0,3	11400	16000
	62	24	1,1	2305-K	24,4	6,5	0,3	11400	16000
	62	24	1,1	2305-2RS	18,9	5,5	0,3		16000
30	62	16	1	1206	15,6	4,7	0,2	11000	15000
	62	16	1	1206-K	15,6	4,7	0,2	11000	15000
	62	20	1	2206	23,8	6,6	0,3	11300	15000
	62	20	1	2206-K	23,8	6,6	0,3	11300	15000
	62	20	1	2206-K-2RS	15,6	4,7	0,3	-	15000
	62	20	1	2206-2RS	15,6	4,7	0,3	-	15000
	72	19	1,1	1306	21,3	6,3	0,3	8800	13000

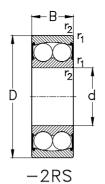


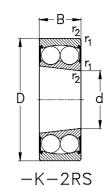

Abutment and fillet dimensions see on page 504

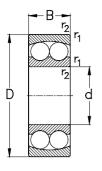

	Gewicht [kg] Weight [kg]		Berechnun Calculatio			Lagertype Designation
			Y	Y	Y_0	
d	m	е	F _a /F _r ≤ e	$F_a/F_r > e$		
20	0,17	0,29	2,2	3,3	2,3	1304
	0,17	0,29	2,2	3,3	2,3	1304-K
	0,24	0,51	1,2	1,9	1,3	2304
	0,24	0,29	2,2	3,3	2,3	2304-2RS
25	0,14	0,27	2,37	3,66	2,48	1205
	0,14	0,27	2,37	3,66	2,48	1205-K
	0,16	0,35	1,8	2,8	1,9	2205
	0,16	0,35	1,8	2,8	1,9	2205-K
	0,16	0,27	2,4	3,7	2,5	2205-K-2RS
	0,16	0,27	2,4	3,7	2,5	2205-2RS
	0,28	0,28	2,3	3,5	2,4	1305
	0,28	0,28	2,3	3,5	2,4	1305-K
	0,37	0,48	1,3	2	1,4	2305
	0,37	0,48	1,3	2	1,4	2305-K
	0,37	0,28	2,3	3,5	2,4	2305-2RS
30	0,22	0,25	2,53	3,91	2,65	1206
	0,22	0,25	2,53	3,91	2,65	1206-K
	0,25	0,3	2,1	3,3	2,2	2206
	0,25	0,3	2,1	3,3	2,2	2206-K
	0,25	0,25	2,5	3,9	2,7	2206-K-2RS
	0,25	0,25	2,5	3,9	2,7	2206-2RS
	0,41	0,26	2,4	3,7	2,5	1306

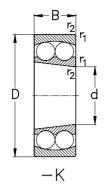

На	uptabm	essunç	jen	Lagertype	Т	Tragzahlen		Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]
Во	undary ([m	dimensi m]	ons	Designation	Lo	oad ratin [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]
d	D	В	r ₁ , r ₂ min		C _r dyn.			$n_{\scriptscriptstyle{ hetar}}$	n _G
30	72	19	1,1	1306-K	21,3	6,3	0,3	8800	13000
	72	27	1,1	2306	31,4	8,7	0,4	10100	13000
	72	27	1,1	2306-K	31,4	8,7	0,4	10100	13000
	72	27	1,1	2306-2RS	21,3	6,3	0,3	-	13000
35	72	17	1,1	1207	18,8	5,9	0,3	9500	13000
	72	17	1,1	1207-K	18,8	5,9	0,3	9500	13000
	72	23	1,1	2207	30,5	8,7	0,4	10200	12000
	72	23	1,1	2207-K	30,5	8,7	0,4	10200	12000
	72	23	1,1	2207-K-2RS	18,8	5,9	0,3		12000
	72	23	1,1	2207-2RS	18,8	5,9	0,3		12000
	80	21	1,5	1307	26,2	8,5	0,4	8100	11000
	80	21	1,5	1307-K	26,2	8,5	0,4	8100	11000
	80	31	1,5	2307	39,5	11,2	0,5	9500	12000
	80	31	1,5	2307-K	39,5	11,2	0,5	9500	12000
	80	31	1,5	2307-2RS	26,2	8,5	0,4		12000
40	80	18	1,1	1208	20	6,9	0,3	8600	11000
	80	18	1,1	1208-K	20	6,9	0,3	8600	11000
	80	23	1,1	2208	31,7	10	0,5	8900	11000
	80	23	1,1	2208-K	31,7	10	0,5	8900	11000
	80	23	1,1	2208-K-2RS	20	6,9	0,3	-	11000
	80	23	1,1	2208-2RS	20	6,9	0,3		11000
	90	23	1,5	1308	33,8	11,3	0,5	7400	9500

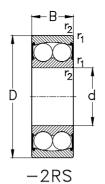


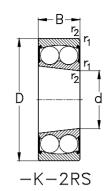

Abutment and fillet dimensions see on page 504

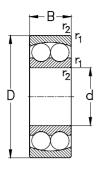

	Gewicht [kg] Weight [kg]		Berechnun Calculatio			Lagertype Designation
			Υ	Υ	Y_0	
d	m	е	F _a /F _r ≤ e	$F_a/F_r > e$		
30	0,41	0,26	2,4	3,7	2,5	1306-K
	0,55	0,45	1,4	2,2	1,5	2306
	0,55	0,45	1,4	2,2	1,5	2306-K
	0,55	0,26	2,4	3,7	2,5	2306-2RS
35	0,33	0,22	2,8	4,34	2,94	1207
	0,33	0,22	2,8	4,34	2,94	1207-K
	0,4	0,3	2,1	3,3	2,2	2207
	0,4	0,3	2,1	3,3	2,2	2207-K
	0,4	0,22	2,8	4,3	2,9	2207-K-2RS
	0,4	0,22	2,8	4,3	2,9	2207-2RS
	0,54	0,26	2,5	3,8	2,6	1307
	0,54	0,26	2,5	3,8	2,6	1307-K
	0,74	0,47	1,4	2,1	1,4	2307
	0,74	0,47	1,4	2,1	1,4	2307-K
	0,74	0,26	2,5	3,8	2,6	2307-2RS
40	0,42	0,22	2,9	4,49	3,04	1208
	0,42	0,22	2,9	4,49	3,04	1208-K
	0,49	0,26	2,4	3,8	2,5	2208
	0,49	0,26	2,4	3,8	2,5	2208-K
	0,49	0,22	2,9	4,5	3	2208-K-2RS
	0,49	0,22	2,9	4,5	3	2208-2RS
	0,74	0,25	2,5	3,9	2,6	1308

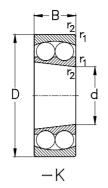

Ha	auptabm	essung	jen	Lagertype	Ti	ragzahle	Tragzahlen		Grenzdrehzahlen [min ⁻¹]
Вс	oundary o [m		ons	Designation	Lo	oad ratin [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]
d	D	В	r ₁ , r ₂ min		C _r dyn.	C ₀r stat.	C _u	$n_{\scriptscriptstyle{ hetar}}$	n _G
40	90	23	1,5	1308-K	33,8	11,3	0,5	7400	9500
	90	33	1,5	2308	54	15,9	0,7	8500	10000
	90	33	1,5	2308-K	54	15,9	0,7	8500	10000
	90	33	1,5	2308-2RS	33,8	11,3	0,5	-	10000
45	85	19	1,1	1209	23,5	8,2	0,4	8100	11000
	85	19	1,1	1209-K	23,5	8,2	0,4	8100	11000
	85	23	1,1	2209	31,7	10,6	0,5	8100	10000
	85	23	1,1	2209-K	31,7	10,6	0,5	8100	10000
	85	23	1,1	2209-K-2RS	23,5	8,2	0,4		10000
	85	23	1,1	2209-2RS	23,5	8,2	0,4		10000
	100	25	1,5	1309	38,7	13,4	0,6	6800	8500
	100	25	1,5	1309-K	38,7	13,4	0,6	6800	8500
	100	36	1,5	2309	64	19,1	0,9	7800	9000
	100	36	1,5	2309-K	64	19,1	0,9	7800	9000
	100	36	1,5	2309-2RS	38,7	13,4	0,6		9000
50	90	20	1,1	1210	26,3	9,5	0,4	7600	10000
	90	20	1,1	1210-K	26,3	9,5	0,4	7600	10000
	90	23	1,1	2210	32,8	11,3	0,5	7400	9500
	90	23	1,1	2210-K	32,8	11,3	0,5	7400	9500
	90	23	1,1	2210-K-2RS	26,3	9,5	0,4		9500
	90	23	1,1	2210-2RS	26,3	9,5	0,4		9500
	110	27	2	1310	42,5	15,3	0,7	6300	8000

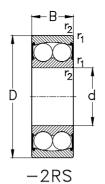


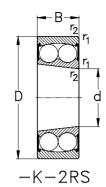

Abutment and fillet dimensions see on page 504

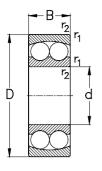

	Gewicht [kg] Weight [kg]		Berechnun Calculatio			Lagertype Designation
			Υ	Υ	Y_0	
d	m	e	F _a /F _r ≤ e	F _a /F _r > e	0.0	4000 1/
40	0,72	0,25	2,5	3,9	2,6	1308-K
	1	0,43	1,5	2,3	1,5	2308
	1	0,43	1,5	2,3	1,5	2308-K
	1	0,25	2,5	3,9	2,6	2308-2RS
45	0,46	0,21	3,04	4,7	3,18	1209
	0,46	0,21	3,04	4,7	3,18	1209-K
	0,53	0,26	2,4	3,8	2,5	2209
	0,53	0,26	2,4	3,8	2,5	2209-K
	0,53	0,21	3	4,7	3,2	2209-K-2RS
	0,53	0,21	3	4,7	3,2	2209-2RS
	0,99	0,25	2,5	3,9	2,6	1309
	0,99	0,25	2,5	3,9	2,6	1309-K
	1,32	0,43	1,5	2,3	1,6	2309
	1,32	0,43	1,5	2,3	1,6	2309-K
	1,32	0,25	2,5	3,9	2,6	2309-2RS
50	0,53	0,2	3,17	4,9	3,32	1210
	0,53	0,2	3,17	4,9	3,32	1210-K
	0,6	0,24	2,6	4,1	2,7	2210
	0,6	0,24	2,6	4,1	2,7	2210-K
	0,6	0,2	3,2	4,9	3,3	2210-K-2RS
	0,6	0,2	3,2	4,9	3,3	2210-2RS
	1,29	0,24	2,6	4	2,7	1310

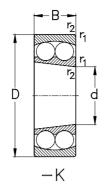

На	Hauptabmessungen Boundary dimensions		gen	Lagertype	Ti	ragzahle	en	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]
Во	oundary o [m		ons	Designation	Lo	oad ratin [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]
d	D	В	r ₁ , r ₂ min		C _r dyn.	C _{or} stat.	C _u	$n_{\scriptscriptstyle{ hetar}}$	n _G
50	110	27	2	1310-K	42,5	15,3	0,7	6300	8000
	110	40	2	2310	65	20,1	0,9	7400	9500
	110	40	2	2310-K	65	20,1	0,9	7400	9500
	110	40	2	2310-2RS	42,5	15,3	0,7	-	9500
55	100	21	1,5	1211	27,6	10,6	0,5	6900	9000
	100	21	1,5	1211-K	27,6	10,6	0,5	6900	9000
	100	25	1,5	2211	39,2	13,3	0,6	6900	8500
	100	25	1,5	2211-K	39,2	13,3	0,6	6900	8500
	100	25	1,5	2211-K-2RS	27,6	10,6	0,5		8500
	100	25	1,5	2211-2RS	27,6	10,6	0,5		8500
	120	29	2	1311	53	18,9	0,9	5900	7500
	120	29	2	1311-K	53	18,9	0,9	5900	7500
	120	43	2	2311	75	23,9	1,1	6900	7500
	120	43	2	2311-K	75	23,9	1,1	6900	7500
60	110	22	1,5	1212	31,2	12,1	0,6	6400	8500
	110	22	1,5	1212-K	31,2	12,1	0,6	6400	8500
	110	28	1,5	2212	46,4	16,1	0,7	6600	8000
	110	28	1,5	2212-K	46,4	16,1	0,7	6600	8000
	110	28	1,5	2212-K-2RS	31,2	12,1	0,6		8000
	110	28	1,5	2212-2RS	31,2	12,1	0,6	-	8000
	130	31	2,1	1312	58	21,1	1	5600	6300
	130	31	2,1	1312-K	58	21,1	1	5600	6300

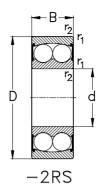


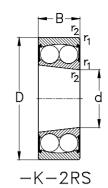

Abutment and fillet dimensions see on page 504

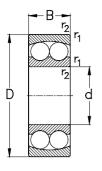

Lagertype Designation		gsfaktoren on factors			Gewicht [kg] Weight [kg]	
	Y_0	Υ	Υ			
		$F_a/F_r > e$	F _a /F _r ≤ e	е	m	d
1310-K	2,7	4	2,6	0,24	1,29	50
2310	1,5	2,3	1,5	0,43	1,78	
2310-K	1,5	2,3	1,5	0,43	1,78	
2310-2RS	2,7	4	2,6	0,24	1,78	
1211	3,47	5,2	3,31	0,19	0,69	55
1211-K	3,47	5,12	3,31	0,19	0,69	
2211	3,1	4,5	2,9	0,22	0,75	
2211-K	3,1	4,5	2,9	0,22	0,75	
2211-K-2RS	3,5	5,1	3,3	0,19	0,8	
2211-2RS	3,5	5,1	3,3	0,19	0,8	
1311	2,8	4,1	2,7	0,24	1,6	
1311-K	2,8	4,1	2,7	0,24	1,6	
2311	1,6	2,3	1,5	0,42	2,3	
2311-K	1,6	2,3	1,5	0,42	2,3	
1212	3,64	5,37	3,47	0,18	0,9	60
1212-K	3,64	5,37	3,47	0,18	0,9	
2212	2,8	4,2	2,7	0,23	1,1	
2212-K	2,8	4,2	2,7	0,23	1,1	
2212-K-2RS	3,6	5,4	3,5	0,18	1,1	
2212-2RS	3,6	5,4	3,5	0,18	1,1	
1312	2,9	4,3	2,8	0,23	2	
1312-K	2,9	4,3	2,8	0,23	2	

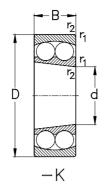

На	uptabm	essung	jen	Lagertype	Ti	ragzahle	en	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]
Во	undary o		ons	Designation	Lo	oad ratin [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]
d	D	В	r ₁ , r ₂ min		C _r dyn.	C _{or} stat.	C _u	$n_{\scriptscriptstyle{ hetar}}$	n _G
60	130	46	2,1	2312	86	28,6	1,3	6600	7000
	130	46	2,1	2312-K	86	28,6	1,3	6600	7000
65	120	23	1,5	1213	37,1	14,1	0,6	5900	7000
	120	23	1,5	1213-K	37,1	14,1	0,6	5900	7000
	120	31	1,5	2213	57	20,1	0,9	6300	7000
	120	31	1,5	2213-K	57	20,1	0,9	6300	7000
	140	33	2,1	1313	63	22,8	1	5300	6000
	140	33	2,1	1313-K	63	22,8	1	5300	6000
	140	48	2,1	2313	97	31,8	1,4	6100	6300
	140	48	2,1	2313-K	97	31,8	1,4	6100	6300
70	125	24	1,5	1214	34,5	13,6	0,6	5700	7000
	125	24	1,5	1214-K	34,5	14,1	0,6	5700	7000
	125	31	1,5	2214	55	19,6	0,9	6000	6700
	125	31	1,5	2214-K	55	19,6	0,9	6000	6700
	150	35	2,1	1314	75	27,7	1,2	5100	6000
	150	35	2,1	1314-K	75	27,7	1,2	5100	6000
	150	51	2,1	2314	112	37,3	1,6	5800	6000
	150	51	2,1	2314-K	112	37,3	1,6	5800	6000
75	130	25	1,5	1215	38,9	15,5	0,7	5500	6700
	130	25	1,5	1215-K	38,9	15,5	0,7	5500	6700
	130	31	1,5	2215	57	20,7	0,9	5600	6300
	130	31	1,5	2215-K	57	20,7	0,9	5600	6300

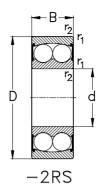


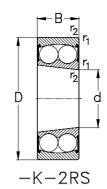

Abutment and fillet dimensions see on page 504

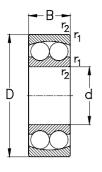

	Gewicht [kg] Weight [kg]		Berechnun Calculatio			Lagertype Designation
			Υ	Y	\mathbf{Y}_{0}	
d	m	е	$F_a/F_r \le e$	$F_a/F_r > e$		
60	2,9	0,41	1,6	2,4	1,6	2312
	2,9	0,41	1,6	2,4	1,6	2312-K
65	1,2	0,18	3,57	5,52	3,74	1213
	1,2	0,18	3,57	5,52	3,74	1213-K
	1,4	0,23	2,8	4,3	2,9	2213
	1,4	0,23	2,8	4,3	2,9	2213-K
	2,5	0,23	2,8	4,3	2,9	1313
	2,5	0,23	2,8	4,3	2,9	1313-K
	3,4	0,39	1,6	2,5	1,7	2313
	3,4	0,39	1,6	2,5	1,7	2313-K
70	1,3	0,19	3,36	5,21	3,52	1214
	1,3	0,19	3,36	5,21	3,52	1214-K
	1,6	0,27	2,3	3,6	2,5	2214
	1,6	0,27	2,3	3,6	2,5	2214-K
	3,1	0,23	2,8	4,3	2,9	1314
	3,1	0,23	2,8	4,3	2,9	1314-K
	4,2	0,38	1,7	2,6	1,7	2314
	4,2	0,38	1,7	2,6	1,7	2314-K
75	1,4	0,19	3,32	5,15	3,48	1215
	1,4	0,19	3,32	5,15	3,48	1215-K
	1,7	0,26	2,5	3,8	2,6	2215
	1,7	0,26	2,5	3,8	2,6	2215-K

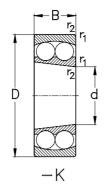

На	auptabm	essunç	gen	Lagertype	Ti	ragzahle	en	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]
Во	oundary o [m		ons	Designation	Lo	oad ratin [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]
d	D	В	r ₁ , r ₂ min		C _r dyn.	C _{or} stat.	C _u	$n_{\scriptscriptstyle{ hetar}}$	n _G
75	160	37	2,1	1315	79	29,9	1,2	4800	5600
	160	37	2,1	1315-K	79	29,9	1,2	4800	5600
	160	55	2,1	2315	126	42,1	1,8	5600	5600
	160	55	2,1	2315-K	126	42,1	1,8	5600	5600
80	140	26	2	1216	39,6	16,1	0,7	5200	6000
	140	26	2	1216-K	39,6	16,1	0,7	5200	6000
	140	33	2	2216	65	25,5	1,1	5300	6000
	140	33	2	2216-K	65	24,1	1	5400	6000
	170	39	2,1	1316	85	32,9	1,3	4600	5300
	170	39	2,1	1316-K	85	33,5	1,4	4600	5300
	170	58	2,1	2316	137	47,5	1,9	5400	5300
	170	58	2,1	2316-K	137	47,5	1,9	5400	5300
85	150	28	2	1217	48	19,5	0,8	5000	5600
	150	28	2	1217-K	48	19,5	0,8	5000	5600
	150	36	2	2217	66	26	1,1	5200	5600
	150	36	2	2217-K	66	24,6	1	5200	5600
	180	41	3	1317	98	38,6	1,5	4400	4800
	180	41	3	1317-K	98	38,6	1,5	4400	4800
	180	60	3	2317	139	52	2	5100	4800
	180	60	3	2317-K	139	52	2	5100	4800
90	160	30	2	1218	52	21,7	0,9	4800	5300
	160	30	2	1218-K	52	21,7	0,9	4800	5300

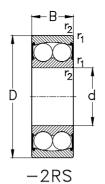


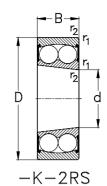

Abutment and fillet dimensions see on page 504


Lagertype Designation		i gsfaktoren on factors	Calculatio		Gewicht [kg] Weight [kg]	
	\mathbf{Y}_{0}	Υ	Υ			
4045	0.0	F _a /F _r > e	F _a /F _r ≤ e	e	m	d
1315	2,9	4,3	2,8	0,23	3,6	75
1315-K	2,9	4,3	2,8	0,23	3,6	
2315	1,7	2,5	1,6	0,38	5,2	
2315-K	1,7	2,5	1,6	0,38	5,2	
1216	4,08	6,03	3,9	0,16	1,7	80
1216-K	4,08	6,03	3,9	0,16	1,7	
2216	2,6	3,8	2,5	0,25	2,1	
2216-K	2,6	3,8	2,5	0,25	2,1	
1316	3	4,4	2,9	0,22	4,2	
1316-K	3	4,4	2,9	0,22	4,2	
2316	1,8	2,6	1,7	0,37	6,5	
2316-K	1,8	2,6	1,7	0,37	6,5	
1217	3,91	5,78	3,73	0,17	2,2	85
1217-K	3,91	5,78	3,73	0,17	2,2	
2217	2,6	3,8	2,5	0,26	2,6	
2217-K	2,6	3,8	2,5	0,26	2,6	
1317	3	4,5	2,8	0,22	5,1	
1317-K	3	4,5	2,8	0,22	5,1	
2317	1,8	2,6	1,7	0,37	7,5	
2317-K	1,8	2,6	1,7	0,37	7,5	
1218	3,92	5,79	3,74	0,17	2,6	90
1218-K	3,92	5,79	3,74	0,17	2,6	

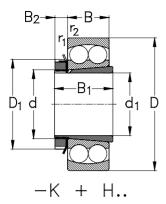

На	uptabm	essung	jen	Lagertype	Ti	ragzahle	en	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]
Во	oundary o [m		ons	Designation	Lo	oad ratin [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]
d	D	В	r ₁ , r ₂ min		C _r dyn.	C _{or} stat.	C _u	$n_{\scriptscriptstyle{ hetar}}$	n _G
90	160	40	2	2218	70	28,5	1,2	5200	5300
	160	40	2	2218-K	70	28,5	1,2	5200	5300
	190	43	3	1318	116	46,2	1,8	4300	4500
	190	43	3	1318-K	116	46,2	1,8	4300	4500
	190	64	3	2318	151	58	2,2	4900	4500
	190	64	3	2318-K	151	58	2,2	4900	4500
95	170	32	2,1	1219	64	26,9	1,1	4700	5000
	170	32	2,1	1219-K	64	26,9	1,1	4700	5000
	170	43	2,1	2219	83	34,1	1,3	5000	5000
	170	43	2,1	2219-K	83	34,1	1,3	5000	5000
	200	45	3	1319	132	52	1,9	4100	4300
	200	45	3	1319-K	132	52	1,9	4100	4300
	200	67	3	2319	164	64	2,4	4600	4500
	200	67	3	2319-K	164	64	2,4	4600	4500
100	180	34	2,1	1220	69	29,4	1,1	4600	4800
	180	34	2,1	1220-K	69	29,4	1,1	4600	4800
	180	46	2,1	2220	97	40,5	1,6	4900	4800
	180	46	2,1	2220-K	97	40,5	1,6	4900	4800
	215	47	3	1320	145	59	2,1	3900	4000
	215	47	3	1320-K	145	59	2,1	3900	4000
	215	73	3	2320	191	79	2,8	4400	4000
	215	73	3	2320-K	191	79	2,8	4400	4000

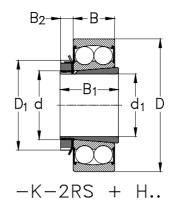



Abutment and fillet dimensions see on page 504


	Gewicht [kg] Weight		Berechnun Calculation			Lagertype Designation
	[kg]		Υ	Υ	Y ₀	
d	m	е	F _a /F _r ≤ e	F _a /F _r > e	• 0	
90	3,3	0,27	2,3	3,6	2,4	2218
	3,3	0,27	2,3	3,6	2,4	2218-K
	6,1	0,22	2,8	4,4	3	1318
	6,1	0,22	2,8	4,4	3	1318-K
	8,8	0,39	1,6	2,5	1,7	2318
	8,8	0,39	1,6	2,5	1,7	2318-K
95	3,2	0,17	3,73	5,78	3,91	1219
	3,2	0,17	3,73	5,78	3,91	1219-K
	4,3	0,27	2,3	3,6	2,4	2219
	4,3	0,27	2,3	3,6	2,4	2219-K
	7,2	0,23	2,7	4,2	2,9	1319
	7,2	0,23	2,7	4,2	2,9	1319-K
	10,3	0,38	1,7	2,6	1,7	2319
	10,3	0,38	1,7	2,6	1,7	2319-K
100	3,8	0,18	3,58	5,53	3,75	1220
	3,8	0,18	3,58	5,53	3,75	1220-K
	5,2	0,27	2,3	3,6	2,4	2220
	5,2	0,27	2,3	3,6	2,4	2220-K
	8,8	0,23	2,7	4,2	2,8	1320
	8,8	0,23	2,7	4,2	2,8	1320-K
	13,1	0,38	1,7	2,6	1,8	2320
	13,1	0,38	1,7	2,6	1,8	2320-K

На	Hauptabmessungen		Lagertype	Tragzahlen			Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	
Во	undary o [m		ons	Designation	Lo	Load ratings [kN]		Thermal speed ratings [rpm]	Limited speed ratings [rpm]
d	D	В	r ₁ , r ₂ min		C _r dyn.	C ₀r stat.	C _u	$n_{\scriptscriptstyle{ hetar}}$	n_{G}
105	190	36	2,1	1221	75	32,1	1,2	4400	4500
	225	49	3	1321	151	64	2,2	3800	4300
110	200	38	2,1	1222	88	38,5	1,4	4300	4300
	200	38	2,1	1222-K	88	38,5	1,4	4300	4300
120	215	42	2,1	1224	119	52	1,8	4200	4000

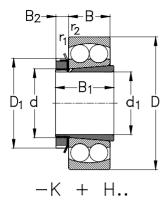

Abutment and fillet dimensions see on page 504

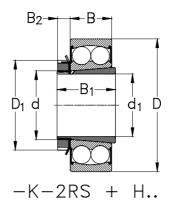

	Gewicht [kg]		Berechnun		Lagertype				
	Weight Calculation factors [kg]								
			Υ	Υ	Y_0				
d	m	е	F _a /F _r ≤ e	$F_a/F_r > e$					
105	4,5	0,18	3,54	5,48	3,71	1221			
	10	0,23	2,8	4,3	2,9	1321			
110	5,3	0,17	3,61	5,59	3,78	1222			
	5,3	0,17	3,61	5,59	3,78	1222-K			
120	7.1	0.2	3.11	4.81	3.25	1224			

Pendelkugellager mit Spannhülsen

Self Aligning Ball Bearings with Adapter Sleeves

Ø Welle	Hau	ptabm	essui	ngen	Lagertype	Spannhülse	Ti	ragzahle	n	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]
Ø Shaft	Bou	ndary o		sions	Designation	Adapter sleeve	Lo	Load ratings [kN]		Thermal speed ratings [rpm]	Limited speed ratings [rpm]
d ₁	d	D	В	r ₁ , r ₂ min			C _r dyn.	C ₀r stat.	C _u	$n_{\scriptscriptstyle{ hetar}}$	n _G
20	25	52	15	1	1205-K	H205	11	4	0,2	13100	18000
	25	52	18	1	2205-K	H305	12,9	4,4	0,2	13100	18000
	25	52	18	1	2205-K-2RS	H305	11	4	0,2		9000
25	30	62	16	1	1206-K	H206	12	4,7	0,2	11000	15000
	30	62	20	1	2206-K	H306	18,3	6,6	0,3	11300	15000
	30	62	20	1	2206-K-2RS	H306	12	4,7	0,2		7500
	30	72	19	1,1	1306-K	H306	16,3	6,3	0,3	8800	13000
30	35	72	17	1,1	1207-K	H207	14,5	5,9	0,3	9500	13000
	35	72	23	1,1	2207-K	H307	23,4	8,7	0,4	10200	12000
	35	72	23	1,1	2207-K-2RS	H307	14,5	5,9	0,3		6300
	35	80	21	1,5	1307-K	H307	20,1	8,5	0,4	8100	11000
	35	80	31	1,5	2307-K	H2307	30,4	11,4	0,5	9500	12000
35	40	80	18	1,1	1208-K	H208	15,4	6,9	0,3	8600	11000
	40	80	23	1,1	2208-K	H308	24,4	10	0,5	8900	11000
	40	80	23	1,1	2208-K-2RS	H308	15,4	6,9	0,3		5600
	40	90	23	1,5	1308-K	H308	26	11,3	0,5	7400	9500
	40	90	33	1,5	2308-K	H2308	41,6	15,9	0,7	8500	10000
40	45	85	19	1,1	1209-K	H209	18,1	8,2	0,4	8100	11000
	45	85	23	1,1	2209-K	H309	24,9	10,6	0,5	8100	10000
	45	85	23	1,1	2209-K-2RS	H309	18,1	8,2	0,4		5300
	45	100	25	1,5	1309-K	H309	29,8	13,4	0,6	6800	8500
	45	100	36	1,5	2309-K	H2309	49,1	19,1	0,9	7800	9000

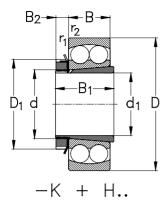

Abutment and fillet dimensions see on page 504

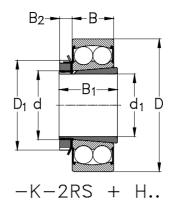

Ø Welle				Gewicht des Lagers mit Spannhülse			Lagertype		
Ø Shaft				Weight of bearing with adapter sleeve	Calculation factors				Designation
						Υ	Υ	\mathbf{Y}_{0}	
d ₁	\mathbf{D}_{1}	B ₁	B_2	[kg]	е	F _a /F _r ≤ e	$F_a/F_r > e$		
20	38	26	9	0,2	0,27	2,37	3,66	2,48	1205-K
	38	29	9	0,24	0,35	1,8	2,8	1,9	2205-K
	38	29	9	0,22	0,27	2,4	3,7	2,5	2205-K-2RS
25	45	27	9	0,32	0,25	2,53	3,91	2,65	1206-K
	45	31	9	0,37	0,3	2,1	3,3	2,2	2206-K
	45	31	9	0,38	0,25	2,5	3,9	2,7	2206-K-2RS
	45	31	9	0,51	0,26	2,4	3,7	2,5	1306-K
30	52	29	10	0,45	0,22	2,8	4,34	2,94	1207-K
	52	35	10	0,53	0,3	2,1	3,3	2,2	2207-K
	52	35	10	0,58	0,22	2,8	4,3	2,9	2207-K-2RS
	52	35	10	0,66	0,26	2,5	3,8	2,6	1307-K
	52	43	10	0,91	0,47	1,4	2,1	1,4	2307-K
35	58	31	11	0,6	0,22	2,9	4,49	3,04	1208-K
	58	36	11	0,66	0,26	2,4	3,8	2,5	2208-K
	58	36	11	0,736	0,22	2,9	4,5	3	2208-K-2RS
	58	36	11	0,91	0,25	2,5	3,9	2,6	1308-K
	58	46	11	1,15	0,43	1,5	2,3	1,5	2308-K
40	65	33	12	0,7	0,21	3,04	4,7	3,18	1209-K
	65	39	12	0,78	0,26	2,4	3,8	2,5	2209-K
	65	39	12	0,81	0,21	3	4,7	3,2	2209-K-2RS
	65	39	12	1,2	0,25	2,5	3,9	2,6	1309-K
	65	50	12	1,5	0,43	1,5	2,3	1,6	2309-K

Pendelkugellager mit Spannhülsen

Self Aligning Ball Bearings with Adapter Sleeves

Ø Welle	Hauptabmessungen				Lagertype	Spannhülse	Tragzahlen			Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]
Ø Shaft	Boundary dimensions [mm]		Designation	Adapter sleeve	Load ratings [kN]		igs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]		
d₁	d	D	В	r ₁ , r ₂ min			C _r dyn.	C ₀r stat.	C _u	$n_{\scriptscriptstyle{ hetar}}$	n _G
45	50	90	20	1,1	1210-K	H210	20,2	9,5	0,4	7600	10000
	50	90	23	1,1	2210-K	H310	25,8	11,3	0,5	7400	9500
	50	90	23	1,1	2210-K-2RS	H310	20,2	9,5	0,4		4800
	50	110	27	2	1310-K	H310	33,6	15,3	0,7	6300	8000
	50	110	40	2	2310-K	H2310	49,7	20,1	0,9	7400	9500
50	55	100	21	1,5	1211-K	H211	21,2	10,6	0,5	6900	9000
	55	100	25	1,5	2211-K	H311	30,1	13,3	0,6	6900	8500
	55	100	25	1,5	2211-K-2RS	H311	21,2	10,6	0,5		8500
	55	120	29	2	1311-K	H311	40,6	18,9	0,9	5900	7500
	55	120	43	2	2311-K	H2311	58	23,9	1,1	6900	7500
55	60	110	22	1,5	1212-K	H212	24	12,1	0,6	6400	8500
	60	110	28	1,5	2212-K	H312	35,7	16,1	0,7	6600	8000
	60	130	31	2,1	1312-K	H312	44,8	21,1	1	5600	6300
	60	130	46	2,1	2312-K	H2312	68	28,6	1,3	6600	7000
60	65	120	23	1,5	1213-K	H213	28,5	14,1	0,6	5900	7000
	65	120	31	1,5	2213-K	H313	43,7	20,1	0,9	6300	7000
	70	125	24	1,5	1214-K	H214	28,5	13,6	0,6	5700	6000
	65	140	33	2,1	1313-K	H313	48,3	22,8	1	5300	6000
	65	140	48	2,1	2313-K	H2313	75	31,8	1,4	6100	6300
65	75	130	25	1,5	1215-K	H215	29,9	15,5	0,7	5500	6700
	75	130	31	1,5	2215-K	H315	43,5	20,7	0,9	5600	6300
	75	160	37	2,1	1315-K	H315	61	29,9	1,2	4800	5600

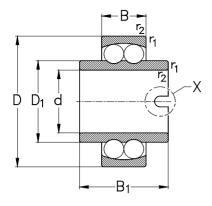

Abutment and fillet dimensions see on page 504

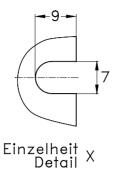

Ø Welle				Gewicht des Lagers mit Spannhülse		Berechnungsfaktoren				
Ø Shaft				Weight of bearing with adapter sleeve	•					
						Υ	Υ	\mathbf{Y}_{0}		
d ₁	D ₁	B ₁	B_2	[kg]	е	F _a /F _r ≤ e	$F_a/F_r > e$			
45	70	35	13	0,82	0,2	3,17	4,9	3,32	1210-K	
	70	42	13	0,88	0,24	2,6	4,1	2,7	2210-K	
	70	42	13	0,91	0,2	3,2	4,9	3,3	2210-K-2RS	
	70	42	13	1,54	0,24	2,6	4	2,7	1310-K	
	70	55	13	2	0,43	1,5	2,3	1,5	2310-K	
50	75	37	14	1	0,19	3,31	5,12	3,47	1211-K	
	75	45	14	1,1	0,22	2,9	4,5	3,1	2211-K	
	75	45	14	1,2	0,19	3,3	5,1	3,5	2211-K-2RS	
	75	45	14	1,9	0,24	2,7	4,1	2,8	1311-K	
	75	59	14	2,5	0,42	1,5	2,3	1,6	2311-K	
55	80	38	14	1,3	0,18	3,47	5,37	3,64	1212-K	
	80	47	14	1,5	0,23	2,7	4,2	2,8	2212-K	
	80	47	14	2,4	0,23	2,8	4,3	2,9	1312-K	
	80	62	14	2,7	0,41	1,6	2,4	1,6	2312-K	
60	85	40	15	1,6	0,18	3,57	5,52	3,74	1213-K	
	85	50	15	1,4	0,23	2,8	4,3	2,9	2213-K	
	92	41	14	1,9	0,19	3,36	5,21	3,52	1214-K	
	85	50	15	3	0,23	2,8	4,3	2,9	1313-K	
	85	65	15	3,9	0,39	1,6	2,5	1,7	2313-K	
65	98	43	16	2	0,19	3,32	5,15	3,48	1215-K	
	98	55	16	1,2	0,26	2,5	3,8	2,6	2215-K	
	98	55	16	3,2	0,23	2,8	4,3	2,9	1315-K	

Pendelkugellager mit Spannhülsen

Self Aligning Ball Bearings with Adapter Sleeves

Ø Welle	Hau	ptabm	essu	ngen	Lagertype	Spannhülse	Tragzahlen			Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]
Ø Shaft	Boundary dimensions [mm]		Designation	Adapter sleeve	Load ratings [kN]			Thermal speed ratings [rpm]	Limited speed ratings [rpm]		
d₁	d	D	D B r ₁ , r ₂ min				C _r dyn.	C ₀r stat.	C _u	n _{er}	n _G
65	75	160	55	2,1	2315-K	H2315	97	42,1	1,8	5600	5600
70	80	140	26	2	1216-K	H216	30,5	16,1	0,7	5200	6000
	80	140	33	2	2216-K	H316	48,3	24,1	1	5400	6000
	80	170	39	2,1	1316-K	H316	68	33,5	1,4	4600	5300
	80	170	58	2,1	2316-K	H2316	105	105 47,5 1,9		5400	5300
75	85	150	28	2	1217-K	H217	36,7	19,5	0,8	5000	5600
	85	150	36	2	2217-K	H317	49	24,6	1	5200	5600
	85	180	41	3	1317-K	H317	75	38,6	1,5	4400	4800
	85	180	60	3	2317-K	H2317	107	52	2	5200	4800
80	90	160	30	2	1218-K	H218	40,3	21,7	0,9	4800	5300
	90	160	40	2	2218-K	H318	54	28,5	1,2	5200	5300
	90	190	43	3	1318-K	H318	89	46,2	1,8	4300	4500
	90	190	64	3	2318-K	H2318	117	58	2,2	4900	4500
85	95	170	32	2,1	1219-K	H219	49	26,9	1,1	4700	5000
	95	170	43	2,1	2219-K	H319	64	34,1	1,3	5000	5000
	95	200	45	3	1319-K	H319	102	52	1,9	4100	4300
	95	200	67	3	2319-K	H2319	126	64	2,4	4600	4000
90	100	180	34	2,1	1220-K	H220	53	29,4	1,1	4600	4800
	100	180	46	2,1	2220-K	H320	75	40,5	1,6	4900	4800
	100	215	47	3	1320-K	H320	111	59	2,1	3900	4000
	100	215	73	3	2320-K	H2320	147	79	2,8	4400	4000
100	110	200	38	2,1	1222-K	H222	68	38,5	1,4	4300	4300


Abutment and fillet dimensions see on page 504


Ø Welle Ø				Gewicht des Lagers mit Spannhülse Weight of bearing		Berechnungsfaktoren Calculation factors				
Shaft				with adapter sleeve						
	_	_	_	floral.		Y F _a /F, ≤ e	Y F _a /F _r > e	Y ₀		
d₁ 65	D ₁ 98	B ₁	B ₂	[kg] 6,3	e 0,38	F_a/F_r ≥ e 1,6	F_a/F_r > e 2,5	1,7	2315-K	
70	105	46	18		· ·				1216-K	
70				2,5	0,16	3,9	6,03	4,08		
	105	59	18	3,1	0,25	2,5	3,8	2,6	2216-K	
	105	59	18	5,8	0,22	2,9	4,4	3	1316-K	
	105	78	18	6,8	0,37	1,7	2,6	1,8	2316-K	
75	110	50	19	3,1	0,17	3,73	5,78	3,91	1217-K	
	110	63	19	3,9	0,26	2,5	3,8	2,6	2217-K	
	110	63	19	6,3	0,22	2,8	4,5	3	1317-K	
	110	82	19	8,4	0,37	1,7	2,6	1,8	2317-K	
80	120	52	19	3,7	0,17	3,74	5,79	3,92	1218-K	
	120	65	19	4,7	0,27	2,3	3,6	2,4	2218-K	
	120	65	19	7,4	0,22	2,8	4,4	3	1318-K	
	120	86	19	9,9	0,39	1,6	2,5	1,7	2318-K	
85	125	55	20	3,5	0,17	3,73	5,78	3,91	1219-K	
	125	68	20	5,6	0,27	2,3	3,6	2,4	2219-K	
	125	68	19	8,5	0,23	2,7	4,2	2,9	1319-K	
	125	90	20	11,6	0,38	1,7	2,6	1,7	2319-K	
90	130	58	21	4,8	0,18	3,58	5,53	3,75	1220-K	
	130	71	21	6,6	0,27	2,3	3,6	2,4	2220-K	
	130	71	21	10,4	0,23	2,7	4,2	2,8	1320-K	
	130	97	21	12,5	0,38	1,7	2,6	1,8	2320-K	
100	145	63	21	7,6	0,17	3,61	5,59	3,78	1222-K	

Pendelkugellager mit verbreitertem Innenring

Self Alignig Ball Bearings with Extended Inner Rings

	Н	lauptabm [mi	essungen m]			Lagertype Tragzahlen				
	В	oundary o	limensions m]			Designation	L	s		
d	D	В	r₁, r₂ min	B ₁	D ₁		C , dyn.	C ₀r stat.	C _u	
20	47	14	1	40	29,2	11204	12,7	3,4	0,2	
25	52	15	1	44	33,3	11205	14,3	4	0,2	
	62	17	1,1	48	38	11305	18,9	5,5	0,3	
30	62	16	1	48	40,1	11206	15,6	4,7	0,2	
	72	19	1,1	52	45	11306	21,6	6,3	0,3	
35	72	17	1,1	52	47,7	11207	18,8	5,9	0,3	
	80	21	1,5	56	51,7	11307	26,2	8,5	0,4	
40	80	18	1,1	56	54	11208	20	6,9	0,3	
	90	23	1,5	58	57,7	11308	33,8	11,3	0,5	
45	85	19	1,1	58	57,7	11209	23,5	8,2	0,4	
	100	25	1,5	60	63,9	11309	38,7	13,4	0,6	
50	90	20	1,1	58	62,7	11210	22,9	8,1	0,4	
	110	27	2	62	70,3	11310	69	30,6	1,4	
55	100	21	1,5	60	69,5	11211	27,6	10,6	0,5	
60	110	22	1.5	62	78	11212	31.2	12.1	0.6	

Abutment and fillet dimensions see on page 504

	Gewicht [kg]	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Lagertype				
	Weight [kg]	Thermal speed ratings [rpm]	Limited speed ratings [rpm]		Calculation	factors		Designation
d	m	$\mathbf{n}_{\theta r}$	n _G	е	Υ	Υ	\mathbf{Y}_{0}	
					F _a /F _r ≤ e	$F_a/F_r > e$		
20	0,12	11700	9000	0,28	2,24	3,46	2,34	11204
25	0,2	10000	8000	0,27	2,37	3,66	2,48	11205
	0,43	9900	6700	0,28	2,3	3,5	2,4	11305
30	0,36	8200	6700	0,25	2,53	3,91	2,65	11206
	0,64	8600	5600	0,26	2,4	3,7	2,5	11306
35	0,55	6700	5600	0,22	2,8	4,34	2,94	11207
	0,85	7100	5000	0,26	2,5	3,8	2,6	11307
40	0,72	5800	5000	0,22	2,9	4,49	3,04	11208
	1,1	5800	4500	0,25	2,5	3,9	2,6	11308
45	0,78	5100	4500	0,21	3,04	4,7	3,18	11209
	1,45	5000	3800	0,25	2,5	3,9	2,6	11309
50	0,86	4900	4300	0,2	3,17	4,9	3,32	11210
	1,8	2700	3600	0,24	2,6	4	2,7	11310
55	1,13	4100	4600	0,19	3,31	5,2	3,47	11211
60	1,51	3500	3400	0,18	3,47	5,37	3,64	11212

Zylinderrollenlager *Cylindrical Roller Bearings*

Einreihige Zylinderrollenlager Single Row Cylindrical Roller Bearings

Vollrollige Zylinderrollenlager, einreihigSingle Row Full Complement Cylindrical Roller Bearings

Vollrollige Zylinderrollenlager, zweireihig Double Row Full Complement Cylindrical Roller Bearings

Vollrollige Zylinderrollenlager, zweireihig, abgedichtetSealed Double Row Full Complement Cylindrical Roller Bearings

Normen, Hauptabmessungen

Maßpläne DIN 616 Einreihige Zylinderrollenlager,

Winkelringe DIN 5412 / Teil 1

Allgemeines:

Einreihige Zylinderrollenlager sind zerlegbare Radiallager. Eine Ausnahme bilden hierbei lediglich einige vollrollige Zylinderrollenlager, bei denen verschiedene Ausführungen aufgrund ihrer Innenkonstruktion nicht zerlegbar sind.

Die Möglichkeit, Innen- und Außenringe von Zylinderrollenlagern getrennt zu montieren, stellt beim Ein- und Ausbau eine wesentliche Erleichterung dar, insbesondere auch bei einem Serienverhau

Weiters wird dadurch die Verwendung fester Passungen für beide Ringe eines Lagers ermöglicht.

Die radiale Tragfähigkeit sowie die mit einreihigen Zylinderrollenlagern erzielbaren Drehzahlen sind im Vergleich mit anderen Wälzlagerbauarten relativ hoch.

Je nach Ausführung bzw. nach Anordnung der Borde stellen einreihige Zylinderrollenlager ideale Loslager dar, verschiedene Ausführungen können aber in beschränktem Umfang auch Axialkräfte in eine oder beide Richtungen aufnehmen.

Bei Lagerungen mit beschränktem Einbauraum, wie beispielsweise in Getrieben, finden auch oftmals Zylinderrollenlager ohne lose Ringe Verwendung, bei denen die Wälzkörper direkt auf den als Laufbahnen ausgebildeten Anschlußteilen an Welle oder Gehäuse laufen (Bauformen RN bzw. RNU).

In diesen Fällen muss allerdings die Qualität der Gegenflächen dem eines Lagerringes entsprechen (z.B. gehärtet und geschliffen).

Single Row Cylindrical Roller Bearings

Standards, Boundary Dimensions

Standard plans DIN 616
Single row cylindrical roller bearings,
thrust collars DIN 5412 / part 1

General:

Single row cylindrical roller bearings are separable radial bearings, except for some full complement cylindrical roller bearings where several variations are not separable due to their internal design features.

Due to the possibility of fitting the outer and inner rings separately, the bearing mounting becomes easier and simpler even for volume assembly mounting.

Furthermore, this enables the use of tight fits where appropriate for both outer and inner rings. This is of advantage in applications where vibrations or shock loads occur.

For single row cylindrical roller bearings the radial loads and speed ratings are relatively high when compared to other roller bearings.

Depending on their particular design the single row cylindrical roller bearings are ideal non - locating radially loaded bearings, although several design variations will also accept limited magnitude of axial loading in one or both directions.

In the case of bearing arrangements with limited available space (i.e. gear boxes) cylindrical roller bearings may be used without their respective outer or inner rings (execution, RN- RNU, respectively). These bearing design types allow the rolling elements to run directly onto the adjacent contacting surface of either the housing or shaft. In these bearing arrangements the adjacent contacting surface parts must be designed as for bearing raceways (i.e. hardened and ground etc).

Bauformen einreihiger Zylinderrollenlager

Einreihige Zylinderrollenlager sind standardmäßig in mehreren Grundausführungen verfügbar, die sich in Anzahl und Anordnung der Borde unterscheiden. Die wichtigsten Bauformen sind in Abb. 1 dargestellt.

Die Bauform **N** hat zwei Borde am Innenring und einen bordlosen Außenring. Bei der Bauform **NU** hat der Außenring zwei Borde, der Innenring ist bordlos.

Zylinderrollenlager der Ausführung **N** bzw. **NU** können keine axialen Kräfte aufnehmen, erlauben aber einen Längenausgleich innerhalb des Lagers, wodurch sie ideale Loslager darstellen.

Beide Ringe können daher mit Preßpassungen befestigt werden.

Design Variants of Single Row Cylindrical Roller Bearings

Single row cylindrical roller bearings are available in several basic designs that differ from each other in the number and arrangement of their flanges, as standard. The most important design variants are shown below (see Fig. 1).

The **N**-design features two integral flanges on the inner ring and a plain outer ring. In the case of **NU**-type bearings, however, the inner ring is plain whilst the outer ring features two integral flanges.

Cylindrical roller bearings of the ${\bf N}$ and ${\bf NU}$ design allow a compensation of length changes within the bearing and thus are ideal non-locating bearings.

These bearings are not able to accommodate any axial loads

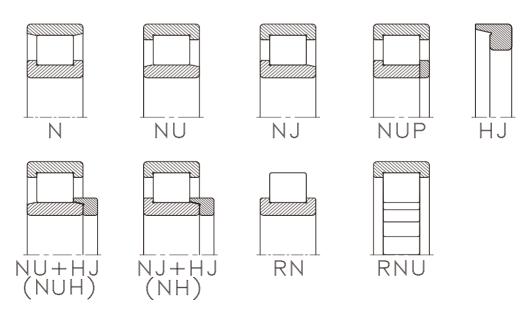


Abb. 1 *Fig. 1*

Zylinderrollenlager

Cylindrical Roller Bearings

Zylinderrollenlager der Bauform **NJ** haben zwei Borde am Außenring und einen Bord am Innenring. Axialkräfte können dadurch in einer Richtung aufgenommen werden.

Typische Festlager sind hingegen Zylinderrollenlager der Bauform **NUP**. Diese weisen neben zwei festen Borden am Außenring auch einen festen Bord und eine Bordscheibe am Innenring auf. Dadurch können Axialkräfte in beiden Richtungen aufgenommen werden.

Winkelringe (**HJ**) dienen der axialen Führung einer Welle bei Verwendung von Zylinderrollenlagern.

Ergänzt mit einem Winkelring HJ bilden auch Zylinderrollenlager der Bauform NJ Festlager (NJ + HJ = NH) und führen die Welle axial in beiden Richtungen.

Standard-Zylinderrollenlager der Bauform **NU** dürfen allerdings nur mit einem Winkelring **HJ** ergänzt werden, um ein Klemmen der Rollen zu vermeiden.

Die Lager können dann Axialkräfte in einer Richtung übertragen.

Verstärkte Ausführungen

NKE liefert den Großteil der Zylinderrollenlager standardmäßig mit verstärktem Innenaufbau, Nachsetzzeichen "E".

Diese Lager weisen bei gleichen Außenabmessungen durch optimierte Innenkonstruktionen eine höhere radiale Tragfähigkeit auf und haben sich daher in weiten Bereichen des Maschinenbaus als Standard durchgesetzt.

Ausnahmen davon sind beispielsweise Zylinderrollenlager der Reihen **10** und **4** sowie bei großen Zylinderrollenlagern, die nur in Standardausführung verfügbar sind.

Für bestimmte Anwendungsfälle, speziell im Reparaturbedarf, sind Zylinderrollenlager in der alten, nicht "E" Ausführung erforderlich.

Auf Anfrage liefert NKE Zylinderrollenlager sowohl in "E" als auch in **nicht** "E"-Ausführung. Cylindrical roller bearings of NJ-design have two integral flanges on their outer ring and one integral flange on the inner ring. This allows them to accommodate axial loads in one direction only. Typical locating bearings are NUP-design cylindrical roller bearings. These have two integral flanges on their outer ring, one integral flange on the inner ring and a loose rib. NUP-type bearings are able to accept axial loads in either direction.

Separate thrust collars, type **HJ**, are designed to guide shafts when used in conjunction with cylindrical roller bearings.

NJ-type cylindrical roller bearings in conjunction with thrust collars, locating bearings, are that provide shaft guidance in both directions (**NJ + HJ = NH**).

When standard cylindrical roller bearings of the **NU**-type, are used in conjunction with a separate **HJ**-separate thrust collar, care must be taken to avoid the possibility of clamping the rollers in error.

These bearing types are able to accommodate axial forces acting in one direction only.

Reinforced Internal Design

NKE single row cylindrical roller bearings are normally produced with reinforced internal design (suffix **E**), as standard.

This incorporates an optimised internal design providing increased load carrying capabilities.

The exception to this "standard" are some of the larger cylindrical roller bearings and bearing types of the **10** and **4** series for which the **NON-E**-design remains the standard.

However, in certain applications, particularly in the "aftermarket" the historic NON-E-design remains, therefore, for all sizes these are produced on customer order request.

Schiefstellung

Zylinderrollenlager sind durch die Linienberührung grundsätzlich nur beschränkt zum Ausgleich von Schiefstellungen geeignet.

NKE Zylinderrollenlager haben Rollen mit optimierter Rollengeometrie, um schädliche Kantenspannungen zwischen Rollen und Laufbahnen zu minimieren. Unter normalen Betriebsverhältnissen sind daher Schiefstellungen bis maximal 2 Winkelminuten aus der Mittellage zulässig.

Allerdings weisen Lager, die unter Schiefstellungen laufen, erheblich höhere Laufgeräusche auf. Weiters ist in diesen Fällen auch mit einer Verringerung der Gebrauchsdauer durch die Zusatzbelastungen zu rechnen.

Für Anwendungsfälle, in denen mit größeren Schiefstellungen im Betrieb zu rechnen ist, fertigt **NKE** auch Zylinderrollenlager mit speziell balliger Innenringlaufbahn, Nachsetzzeichen "**B**".

Toleranzen

NKE Zylinderrollenlager werden standardmäßig in Normaltoleranz (**PN**) gefertigt. Auf Anfrage können diese auch mit eingeengten Toleranzen in den Toleranzklassen **P6** und **P5** gefertigt werden.

Detaillierte Werte für die einzelnen Toleranzklassen entnehmen Sie bitte den Tabellen im Abschnitt "Lagerdaten / Toleranzen", Seite 54.

Käfige

Sofern nicht anders spezifiziert, werden **NKE** Zylinderrollenlager der **E-Ausführung** mit Polyamidkäfigen (Nachsetzzeichen "TVP") gefertigt.

Misalignment

Due to the line contact cylindrical roller bearings have limited capacity to cope with misalignment.

NKE single row cylindrical roller bearings feature rolling elements with modified contact geometry to minimise edge loading stresses between the rollers and contacting raceways. For applications operating under normal conditions the misalignment must not exceed 2 angular minutes from their centre position. It must be accepted that when bearings run misaligned they are subjected to additional forces which result in a reduced service life and additionally generate higher noise.

For applications where higher misalignments occur, (e.g. vibrating screens or compactors for road rollers), **NKE** also produces cylindrical roller bearings with special crowned inner ring raceways, (suffix "**B**").

Tolerances

NKE cylindrical roller bearings are produced to normal tolerance class (**PN**) as standard.On request these bearings are also produced to closer tolerances, such as tolerance classes **P6** and **P5**.

Detailed tolerance values are listed in the tables shown in the chapter "Bearing data / Tolerances" page 239.

Cages

NKE single row cylindrical roller bearings of the **E** design are normally equipped with polyamide cages (suffix "TVP") as standard.

Zylinderrollenlager

Cylindrical Roller Bearings

Ausgenommen davon sind große Zylinderrollenlager sowie Lager der Reihe 4 und 10. die standardmäßig mit Messingmassivkäfigen erzeugt werden (Nachsetzzeichen M, M6, MPA, etc.).

Auf Anfrage können NKE Zylinderrollenlager auch mit einer Vielzahl anderer Käfigbauformen und Käfigwerkstoffe geliefert werden.

Lagerluft

Einreihige NKE Zylinderrollenlager werden standardmäßig in Normalluft (Luftgruppe CN) geliefert.

Auf Anfrage werden NKE Zylinderrollenlager auch mit anderen Lagerluftwerten gefertigt.

Werte für die unterschiedlichen Lagerluftgruppen von ein-und zweireihigen NKE Zylinderrollenlagern sind in den untenstehenden Tabellen (1-4) angegeben.

Diese Werte entsprechen, soweit diese genormt sind, den Vorgaben der DIN 620/Teil 4 bzw. der ISO 5753-1991.

Sonder - Lagerluft:

Für Anwendungsfälle, die mit diesen Luftklassen nicht oder nicht optimal abgedeckt werden können, können NKE Zylinderrollenlager auftragsbezogen auch mit speziell definierten Luftwerten erzeugt werden.

Beispiel:

R100&180 Spezielle Radialluft.

Luft zwischen 100 und 180 µm

Falls erforderlich kann auch der Bereich einer Lagerluftklasse eingeschränkt werden.

Diese Halbierung der Lagerluft wird durch einen dem Symbol der Lagerluftklasse folgenden Buchstaben H, M oder L angezeigt.

Beispiel:

C4H Lagerluft auf die obere Hälfte der

Luftklasse C4 eingeschränkt.

Exceptions to this standard are the larger cylindrical roller bearings and bearings of the 4 and 10 serie which are produced with machined solid brass cages (suffix M, M6, MPA, etc.) as standard.

NKE cylindrical roller bearings are also available with other cage designs and cage materials on order request.

Internal Clearance

NKE single row cylindrical roller bearings are produced to the normal internal clearance group (CN), as standard.

On request NKE cylindrical roller bearings are produced with other internal clearances. Values of internal clearance groups are listed in the tables (1-4), below.

These values are standardised and conform to both DIN 620/part 4 and ISO 5753-1991, respectively.

Special Clearance:

For bearing applications where the standard internal clearances and ranges do not satisfy optimum performance NKE cylindrical roller bearings are produced with either individual or special internal clearance groups on order request.

Example:

R100&180 Special Radial clearance between **100** and **180 µm** (microns)

If required, the values of an internal clearance may be halved and controlled within a part of a

standard. Such a restriction is indicated by a letter (H, M or L), that follows the symbol of the bearing clearance group.

Example:

C4H Clearance controlled within the upper half of clearance group C4.

Lagerluft ein- und zweireihiger NKE Zylinderrollenlager, Bohrungsdurchmesser ≤ 250 mm
Clearance Groups of NKE Single and Double Row Cylindrical Roller Bearings; Bore Diameters ≤ 250 mm.

Zylinderrollenlager mit zylindrischer Bohrung (Luftwerte in µm)

Cylindrical roller bearings with cylindrical bore (clearance values in μm)

Lagerbohrung	[mana]	>		24	30	40	50	65	80	100	120	140	160	180	200	225
Bore diameter	[mm]	≤	24	30	40	50	65	80	100	120	140	160	180	200	225	250
Luftgruppe	C1	min	5	5	5	5	5	10	10	10	10	10	10	15	15	15
Clearance group	C1	max	15	15	15	18	20	25	30	30	35	35	40	45	50	50
Luftgruppe	C2	min	0	0	5	5	10	10	15	15	15	20	25	35	45	45
Clearance group	C2	max	25	25	30	35	40	45	50	55	60	70	75	90	105	110
Luftgruppe	CN	min	20	20	25	30	40	40	50	50	60	70	75	90	105	110
Clearance group (NORMAL)	CN	max	45	45	50	60	70	75	85	90	105	120	125	145	165	175
Luftgruppe	C3	min	35	35	45	50	60	65	75	85	100	115	120	140	160	170
Clearance group	CS	max	60	60	70	80	90	100	110	125	145	165	170	195	220	235
Luftgruppe	C4	min	50	50	60	70	80	90	105	125	145	165	170	195	220	235
Clearance group	C4	max	75	75	85	100	110	125	140	165	190	215	220	250	280	300
Luftgruppe	C5	min	75	75	85	100	110	125	140	165	190	215	220	250	280	300
Clearance group	Co	max	100	100	110	130	140	160	175	205	235	265	270	305	340	365

Tabelle 1 / Table 1

Zylinderrollenlager mit **kegeliger** Bohrung (Luftwerte in **µm**)

Cylindrical roller bearings with tapered bore (clearance values in µm)

Luftgruppe	C1	min	10	15	15	17	20	25	35	40	45	50	55	60	60	65
Clearance group	C1	max	20	25	25	30	35	40	55	60	70	75	85	90	95	100
Luftgruppe	C2	min	15	20	20	25	30	35	40	50	55	60	75	85	95	105
Clearance group	C2	max	40	45	45	55	60	70	75	90	100	110	125	140	155	170
Luftgruppe	CN	min	30	35	40	45	50	60	70	90	100	110	125	140	155	170
Clearance group (NORMAL)	CIV	max	55	60	65	75	80	95	105	130	145	160	175	195	215	235
Luftgruppe	C3	min	40	45	55	60	70	85	95	115	130	145	160	180	200	220
Clearance group	<u> </u>	max	65	70	80	90	100	120	130	155	175	195	210	235	260	285
Luftgruppe	C4	min	50	55	70	75	90	110	120	140	160	180	195	220	245	270
Clearance group	C4	max	75	80	95	105	120	145	155	180	205	230	245	275	305	335
Luftgruppe	C5	min	75	80	95	105	120	145	155	180	205	230	245	275	305	335
Clearance group	Co	max	100	105	120	135	150	180	190	220	250	280	295	330	365	400

Tabelle 2 / Table 2

Lagerluft ein- und zweireihiger NKE Zylinderrollenlager, Bohrungsdurchmesser > 250 mm
Clearance Groups of NKE Single and Double Row Cylindrical Roller Bearings; Bore Diameters > 250 mm.

Zylinderrollenlager mit **zylindrischer** Bohrung (Luftwerte in μ m) Cylindrical roller bearings with **cylindrical** bore (clearance values in μ m)

Lagerbohrung	[mama]	>	250	280	315	355	400	450	500	560	630	710	800	900	1000
Bore diameter	[mm]	≤	280	315	355	400	450	500	560	630	710	800	900	1000	1120
Luftgruppe	C1	min	20	20	20	25	25	25	25	30	30	35	35	35	50
Clearance group		max	55	60	65	75	85	95	100	110	130	140	160	180	200
Luftgruppe	C2	min	55	55	65	100	110	110	120	140	145	150	180	200	220
Clearance group	C2	max	125	130	145	190	210	220	240	260	285	310	350	390	430
Luftgruppe	CN	min	125	130	145	190	210	220	240	260	285	310	350	390	430
Clearance group (NORMAL)	CN	max	195	205	225	280	310	330	360	380	425	470	520	580	640
Luftgruppe	C3	min	190	200	225	280	310	330	360	380	425	470	520	580	640
Clearance group	CS	max	260	275	305	370	410	440	480	500	565	630	690	770	850
Luftgruppe	C4	min	260	275	305	370	410	440	480	500	565	630	690	770	850
Clearance group	C4	max	330	350	385	460	510	550	600	620	705	790	860	960	1060
Luftgruppe	C5	min	330	350	385	460	510	550	600	620	705	790	860	960	1060
Clearance group		max	400	425	465	550	610	660	720	740	845	950	1030	1150	1270

Tabelle 3 / Table 3

Zylinderrollenlager mit **kegeliger** Bohrung (Luftwerte in **μm**)
Cylindrical roller bearings with **tapered** bore (clearance values in **μm**)

Luftgruppe	C1	min	75	80	90	100	110	120	130	140	160	170	190	210	230
Clearance group	Ci	max	110	120	135	150	170	190	210	230	260	290	330	360	400
Luftgruppe	C2	min	115	130	145	165	185	205	230	260	295	325	370	410	455
Clearance group	CZ	max	185	205	225	255	285	315	350	380	435	485	540	600	665
Luftgruppe	CN	min	185	205	225	255	285	315	350	380	435	485	540	600	665
Clearance group (NORMAL)	CIN	max	255	280	305	345	385	425	470	500	575	645	710	790	875
Luftgruppe	C3	min	240	265	290	330	370	410	455	500	565	630	700	780	865
Clearance group	<u> </u>	max	310	340	370	420	470	520	575	620	705	790	870	970	1075
Luftgruppe	C4	min	295	325	355	405	455	505	560	620	695	775	860	960	1065
Clearance group	<u> </u>	max	365	400	435	495	555	615	680	740	835	935	1030	1150	1275
Luftgruppe	C5	min	365	400	435	495	555	615	680	740	835	935	1030	1150	1275
Clearance group		max	435	475	515	585	655	725	800	860	975	1095	1200	1340	1485

Tabelle 4 / Table 4

Achtung:

Bei ein-und zweireihigen Zylinderrollenlagern der Luftgruppe C1 dürfen die Komponenten verschiedener Lager untereinander nicht vertauscht werden!

Mindestbelastung:

Zum kinematisch korrekten Betrieb benötigen Wälzlager in allen Betriebszuständen eine Mindestbelastung.

Für **NKE** Zylinderrollenlager muss die Mindestradialbelastung **2%** der dynamischen Tragzahl betragen.

Maximale axiale Belastbarkeit

Zylinderrollenlager sind primär zur Aufnahme radialer Belastungen vorgesehen, jedoch können verschiedene Bauformen auch zusätzlich einseitige oder in beide Richtungen wirkende Axialkräfte in begrenzter Höhe aufnehmen.

Bei Zylinderrollenlagern entsteht durch eine axiale Belastung Gleitreibung zwischen den Rollenstirnflächen und den Führungsborden, wodurch eine optimale Schmierung erforderlich ist.

Die Höhe der Axialbelastung sollte auch unter optimalen Betriebsbedingungen folgende Werte nicht überschreiten:

$$F_{amax} \leq 0.4 * F_{r}$$

sowie

$$F_{amax} \leq 0,1 * C_r$$

Note:

The individual components of single and double row cylindrical roller bearings of the internal clearance group (C1) are not interchangeable.

Minimum Load:

Bearings require a minimum load under all operating conditions to ensure kinematically correct rolling element function.

For **NKE** cylindrical roller bearings the minimum radial load must be **2%** of the dynamic load rating.

Maximum Thrust Loads

Although cylindrical roller bearings are primarily designed to accommodate radial loads there are several designs which are suitable to accept additionally thrust forces of limited magnitude acting in either one or both directions.

Every thrust force applied to a cylindrical roller bearing will generate sliding friction between the roller end faces and the guiding flanges which make optimum lubrication essential.

The magnitude of thrust forces applied to the bearing must not exceed the following ratio even with optimum operating conditions:

$$F_{amax} \leq 0.4 * F_{r}$$

and

$$F_{amax} \leq 0.1 * C_r$$

Voraussetzungen dafür sind allerdings:

- optimale Schmierung
- keine stoßartigen Belastungen
- optimale Wärmeabfuhr
- ausreichende axiale Unterstützung der Borde

This only applies under the following conditions:

- optimum lubrication
- no shock loads
- optimum heat dissipation
- adequate axial support of the bearing flanges

Äquivalente dynamische Lagerbelastung

Zylinderrollenlager der Bauformen N, NU, NN, NNU usw., die als reine Loslager eingesetzt werden, können keine Axialkräfte aufnehmen, daher gilt:

$$P = F_r$$

Für ein- und zweireihige Zylinderrollenlager mit Borden an Innen- und Außenringen gilt:

wenn

$$\frac{\mathsf{F}_{\mathsf{a}}}{\mathsf{F}_{\mathsf{r}}} \leq \mathsf{e} \; \; \mathsf{gilt} \quad \; \mathsf{P} = \mathsf{F}_{\mathsf{r}}$$

bzw. . bei

$$\frac{F_a}{F_r}$$
 > e dann P = X * F_r + Y * F_a

Equivalent Dynamic Bearing Load

Cylindrical roller bearings of the types N, NU, NN, NNU etc are to be used as non-locating bearings only as they are unable to accommodate any thrust loads. For these bearings applies:

$$P = F_r$$

In the case of single and double row cylindrical roller bearings with flanges on inner or their outer rings, the following formate must be applied:

where

$$\frac{F_a}{F_c} \le e$$
 , then $P = F_r$

or, where

$$\frac{F_a}{F_r}$$
 > e , then P = X * F_r + Y * F_a

Lagerreihe Bearing series		hnungsfal	
Dearing Series	е	х	Υ
10, 18, 19, 2, 3, 4	0,2	0,92	0,6
22, 23	0,3	0,92	0,4

Äquivalente statische Lagerbelastung

Für ein- und zweireihige Zylinderrollenlager gilt:

$$P_0 = F_r$$

Anschlussmaße ein- und zweireihiger Zylinderrollenlager

Die Umgebungsteile der Lager müssen so gestaltet sein, dass eine ausreichende axiale Fixierung der Lagerringe gewährleistet ist. Bei axial unbelasteten Lagern ist auch eine kraftschlüssige Festlegung der Ringe zulässig, jedoch ist Formschluss zu bevorzugen. Für die Schulterhöhen der Anlageflächen an den Wellenbunden bzw. den Gehäuseschultern gilt:

Für **axial unbelastete** Zylinderrollenlager sind die empfohlenen Mindesthöhen der Anlageflächen (\mathbf{h}_{\min}) auf Seite 549 und 606 angeführt. Der zu Ablesezwecken benötigte kleinste Radius für die Kantenverrundung (\mathbf{r}_{s} min) des zu stützenden Lagerringes ist den jeweiligen Produkttabellen zu entnehmen.

Bei **axial belasteten** Zylinderrollenlagern sind die belasteten Borde der Lager über die gesamte Bordhöhe zu unterstützen. Die Anschlußmaße bestimmen sich hier wie folgt:

für den Wellenschulterdurchmesser:

$$d_{wmin} = d1$$

für den Gehäuseschulterdurchmesser:

$$D_{G max} = D1$$

wobei:

d_{W min} = kleinster zulässiger Durchmesser der Wellenschulter

d₁ = Innenring-Schulterdurchmesser,(siehe Produkttabellen)

 $D_{G max}$ = größter zulässiger Durchmesser der Gehäuseschulter

D₁ = Außenring-Schulterdurchmesser, (siehe Produkttabellen)

Equivalent Static Bearing Load

For single and double row cylindrical roller bearings:

$$P_0 = F_r$$

Abutment and Fillet Dimensions for Single and Double Row Cylindrical Roller Bearings

The machine components surrounding the bearing must be designed in such a way that adequate axial fixation of bearing rings is ensured. For **axially unloaded** bearings frictional closure is permissible, though form closure is recommended. The shoulders on shaft and the housing shall have a certain minimum height as follows:

In case of **axially unloaded** cylindrical roller bearings the recommended minimum shoulder heights of the adjacent parts (\mathbf{h}_{min}) are given on page 549 and 606. The minimum fillet dimension of the bearing ring ($\mathbf{r}_{\text{s min}}$) that is to be support is listed in the respective product tables; this value is then used for look-up of \mathbf{h}_{min} .

In the case of **axially loaded** cylindrical roller bearings the loaded bearing flanges must be supported over the entire flange height. The abutment dimensions are defined as follows:

for shaft shoulder diameter:

$$d_{W min} = d1$$

for housing shoulder diameter:

$$D_{G max} = D1$$

where:

d_{W min} = minimum permissible diameter of shaft shoulder

d₁ = outer diameter of inner ring shoulder, (see product tables)

D_{G max} = maximum permissible diameter of housing shoulder

D₁ = inner diameter of outer ring shoulder, (see product tables)

Zylinderrollenlager

Cylindrical Roller Bearings

Die Radien der Kantenverrundung der Lagerringe dürfen nicht an Hohlkehlen von Wellenbund oder Gehäuse anliegen. Daher muss der größte Hohlkehlradius an den Anschlußteilen (\mathbf{r}_g) kleiner sein als der kleinste Radius für die Kantenverrundung (\mathbf{r}_s) der Lagerringe, welcher den Produkttabellen zu entnehmen ist. Die zulässigen Radien der Anschlussteile sind auf Seite 549 angeführt.

Weitere Empfehlungen zur Gestaltung der Lagerstelle damit sich das Gehäuse oder die Welle auch bei montiertem Innenring problemloses abziehen lässt sind in **DIN 5418** angeführt.

Ausführung der Lagersitze als Laufbahnen bei Direktlagerungen

In verschiedenen Anwendungsfällen kann es aus Platzgründen zweckmäßig sein anstatt kompletter Zylinderrollenlager nur einen Lagerring mit Wälzkörpersatz zu verwenden.

In diesen Fällen laufen die Rollen direkt auf den als Laufbahnen ausgeführten, also gehärteten und geschliffenen Gegenflächen an Welle oder Gehäuse.

Beispiele dafür sind etwa Zylinderrollenlager ohne Innenring (Bauform **RNU**) bzw. ohne Außenring (Bauform **RN**).

Die Laufflächen an Wellen (Maß F) müssen dabei nach **g6**, Gehäusebohrungen (Maß E) nach **K6** bearbeitet werden

Die Durchmesser der seitlichen Führungsflächen der Wälzkörper an Wellen- oder Gehäuseschultern müssen der für diese Lager üblichen Schulterhöhen d₁ bzw. D₁ entsprechen (siehe Produkttabellen).

Weitere Informationen zur allgemeinen Gestaltung von Direktlagerungen finden Sie im Abschnitt "Gestaltung der Lagerstelle", ab Seite 97.

The bearing rings must contact adjacent parts with their side faces only. The radii of bearing corners must not touch the shoulder fillet radii of either the shaft or the housing shoulders. Therefore, the largest fillet radius (\mathbf{r}_g) must be smaller than the minimum fillet dimension of the bearing rings (\mathbf{r}_s) as listed in the bearing tables. The corresponding admissible radii of the adjacent parts are given on page 549.

Further recommendations on the design of the bearing location for an unhindered removal of housing or shaft with the bearing rings still mounted are given in **DIN 5418**.

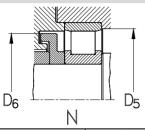
Design of Bearing Seats as Raceways

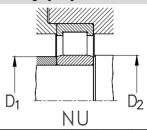
In several applications with limited space availability it may be beneficial to use a cage-androller assembly with outer (or inner ring) only, as an alternative to a complete cylindrical roller bearing.

In these arrangements the rolling elements run directly onto the contacting surfaces of either shaft or housing. These contacting surfaces must be designed and produced as bearing raceways (hardened and ground etc).

Typical bearing types for these applications are **RNU** series (without inner rings) or **RN** series (without outer rings).

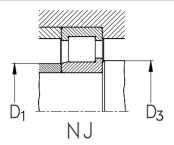
The contacting surface (raceway) of the shaft (dimension F) or housing (dimension E) must be produced to ISO tolerance field **g6** and **K6** respectively.

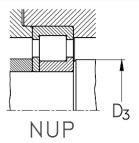

The roller guiding flange diameters of shaft or housing must be in accordance with the respective shoulder diameters \mathbf{d}_1 or \mathbf{D}_1 , (see product tables)


For further information of the design of raceways see chapter "**Design of Bearing Location**", on page 282.

Anschlussmaße einreihiger Zylinderrollenlager [mm]

Abutment and Fillet Dimensions for Single Row Cylindrical Roller Bearings [mm]


L	agerbohrung	Für Lagerreihe / for bearing series											
ı	Bearing bore	10	0		2, 2-	-E, 22,	22-E			3, 3	-E, 23,	23-E	
Ø	Kennzahl	D₁	D_2	D₁	D_2	D_3	D₅	D_6	D₁	D_2	D_3	D₅	D_6
[mm]	Reference number	max	min	max	min	min	min	max	max	min	min	min	max
15	02			18,5	21	23							
17	03			21	24	27	37	33	23	26	29	42	38
20	04	25	27	25	28	31	43	40	26	29	33	47	44
25	05	29	32	30	33	36	48	45	32	36	40	56	52
30	06	35	38	36	39	43	57	54	39	39	47	64	60
35	07	41	44	42	46	50	66	62	44	48	53	72	68
40	08	45	49	48	51	56	73	69	50	54	60	82	78
45	09	51	54	53	56	61	78	74	56	61	67	91	86
50	10	56	60	57	57	66	83	79	63	67	73	99	95
55	11	63	67	64	68	73	92	88	68	73	80	109	104
60	12	68	72	70	74	80	101	98	74	79	87	118	112
65	13	72	77	76	81	87	111	106	80	85	93	127	122
70	14	78	82	81	86	92	116	111	86	91	100	136	130
75	15	83	87	86	91	97	121	116	92	97	107	146	140
80	16	90	94	93	98	104	129	125	98	104	113	154	148
85	17	95	99	98	103	110	139	134	105	111	120	163	157
90	18	101	106	104	110	117	148	142	110	116	127	173	166
95	19	106	111	110	115	123	157	152	118	124	135	181	174
100	20	111	116	116	122	130	166	160	124	130	142	195	188
105	21	117	122	122	128	137	176	170	130	136	148	205	198
110	22	123	128	130	135	145	183	177	139	146	159	215	208
120	24	133	138	140	146	156	199	192	150	157	171	233	226
130	26	145	151	150	156	167	213	206	163	170	185	251	243
140	28	155	161	166	172	183	228	219	176	183	199	268	256
150	30	167	173	178	185	197	245	236	189	196	213	287	273
160	32	177	183	191	198	210	263	255	200	207	225	302	298
170	34	190	196	203	210	224	284	269	214	221	241	323	313
180	36	202	208	213	220	234	294	279	223	235	255	332	323
190	38	212	218	226	234	248	311	296	240	249	268		
200	40	225	233	239	247	262	328	313	253	264	280		
220	44	246	254	264	270	288			277	288	311		
240	48	266	274	288	299	317			302	314	339		
260	52	291	300	313	324	344			330	341	343		
280	56	311	320	333	344	364			347	366	364		


Tabelle 5 / Table 5

Anschlussmaße einreihiger Zylinderrollenlager [mm]

Abutment and Fillet Dimensions for Single Row Cylindrical Roller Bearings [mm]

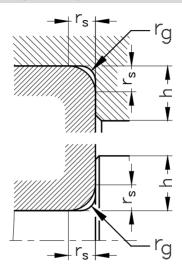
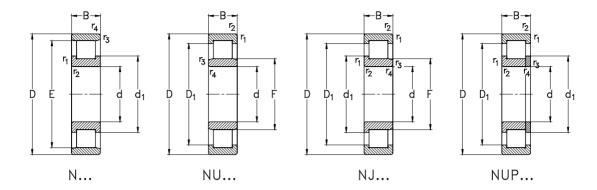

L	agerbohrung			Für La	agerreihe	for bear	ring seri	es		
	Bearing bore	1	0	1	9		2, 2	2-E, 22, 2	2-E	
Ø	Kennzahl	D₁	D_2	D₁	D_2	D₁	D_2	D_3	D₅	D ₆
[mm]	Reference number	max	min	max	min	max	min	min	min	max
300	60	335	344			358	368	391		
320	64	355	364			383	394	429		
340	68	380	389			401	421	448		
360	72	400	410							
380	76	420	430							
400	80	446	455							
420	84	466	475							
440	88	488	498							
460	92	511	521							
480	96	531	541	517	530			-		
500	/500	550	561	537	549					
530	/530	585	598	547	582			-		
560	/560	617	630	599	613					
630	/630			681	694					
710	/710			769	779					

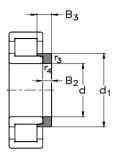
Tabelle 6 / Table 6

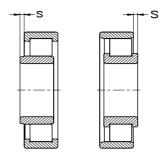
Anschlussmaße einreihiger Zylinderrollenlager – Radien der Anschlussteile [mm]


Abutment and Fillet Dimensions for Single Row Cylindrical Roller Bearings [mm]

r _{s min}	r _{g max}		h _{min} .agerreihe earing seri 2, 2-E 22, 22-E 3, 3-E 23, 23-E	
0,3	0,3	1	1,2	
0,6	0,6	1,6	2,1	
1	1	2,3	2,8	
1,1	1	3	3,5	4,5
1,5	1,5	3,5	4,5	5,5
2	2	4,4	5,5	6,5
2,1	2,1	5,1	6	7
3	2,5	6,2	7	8
4	3	7,3	8,5	10
5	4	9	10	12
6	5	11,5	13	15

Single Row Cylindrical Roller Bearings





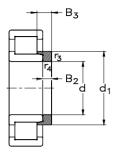
Haupt	abmess [mm]	ungen	Tra	agzahle [kN]	en	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Lagertype	Alternative Käfige
Bound	ary dime [mm]	ensions	Lo	ad rating [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Designation	Alternative cages
d	D	В	C _r dyn.	C ₀r stat.	C _u	n _{θr}	n _G		
15	35	11	12,9	10,5	1,3	17600	26000	NU202-E-TVP3	
	35	11	12,9	10,5	1,3	17600	26000	NJ202-E-TVP3	
17	40	12	17,7	14,7	1,8	15400	22000	NU203-E-TVP3	
	40	12	17,7	14,7	1,8	15400	22000	NJ203-E-TVP3	
	40	12	17,7	14,7	1,8	15400	22000	NUP203-E-TVP3	
	40	16	23,6	22	2,7	13400	22000	NU2203-E-TVP3	
	40	16	23,6	22	2,7	13400	22000	NJ2203-E-TVP3	
	40	16	23,6	22	2,7	13400	22000	NUP2203-E-TVP3	
	47	14	25,5	21,3	2,6	13600	20000	NU303-E-TVP3	
	47	14	25,5	21,3	2,6	13600	20000	NJ303-E-TVP3	
	47	14	25,5	21,3	2,6	13600	20000	NUP303-E-TVP3	
20	47	14	27,6	24,9	3	13100	19000	NU204-E-TVP3	
	47	14	27,6	24,9	3	13100	19000	NJ204-E-TVP3	
	47	14	27,6	24,9	3	13100	19000	NUP204-E-TVP3	
	47	18	32,8	31,1	3,8	11400	19000	NU2204-E-TVP3	
	47	18	32,8	31,1	3,8	11400	19000	NJ2204-E-TVP3	
	47	18	32,8	31,1	3,8	11400	19000	NUP2204-E-TVP3	
	52	15	34,7	26,5	3,2	12200	18000	NU304-E-TVP3	
	52	15	34,7	26,5	3,2	12200	18000	NJ304-E-TVP3	
	52	15	34,7	26,5	3,2	12200	18000	NUP304-E-TVP3	
	52	21	46,4	38,4	4,7	10000	18000	NU2304-E-TVP3	
	52	21	46,4	38,4	4,7	10000	18000	NJ2304-E-TVP3	

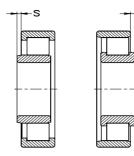
Abutment and fillet dimensions see on page 547

NJ...+ HJ...

			[mm]				Winke	_		Gewicht [kg]			
			dimens [mm]	sions			Thrust	collar			/eight [kg]		
d	E,F	d₁ ≈	D₁ ≈	r ₁ , r ₂ min	r ₃ , r ₄ min	S ≈	Bezeichnung Designation	B ₂	B ₃	Lager Bearing	Winkelring Thrust collar		
15	19,3		27,8	0,6	0,3	1				0,047			
	19,3	21,8	27,8	0,6	0,3	1	HJ202-E	2,5	5	0,047	0,007		
17	22,1		32	0,6	0,3	1,2				0,068			
	22,1	24,7	32	0,6	0,3	1,2	HJ203-E	3	5,5	0,068	0,009		
	22,1	24,7	32	0,6	0,3					0,068			
	22,1		32	0,6	0,3	1				0,091			
	22,1	24,7	32	0,6	0,3		HJ2203-E	3	6	0,091	0,01		
	22,1	24,7	32	0,6	0,3					0,091			
	24,2		36,8	1,1	0,6	1,1				0,12			
	24,2	27,6	36,8	1,1	0,6	1	HJ303-E	4	6,5	0,12	0,012		
	24,2	27,6	36,8	1,1	0,6					0,12			
20	26,5		38,8	1	0,6	1				0,132			
	26,5	29,9	38,8	1	0,6	1	HJ204-E	3	5,5	0,132	0,011		
	26,5	29,9	38,8	1	0,6					0,132			
	26,5		38,8	1	0,6	2				0,142			
	26,5	29,9	38,8	1	0,6	2	HJ2204-E	3	6,5	0,142	0,012		
	26,5	29,9	38,8	1	0,6					0,142			
	27,5		42	1,1	0,6	1,1				0,151			
	27,5	31,4	42	1,1	0,6	1,1	HJ304-E	4	6,5	0,151	0,017		
	27,5	31,4	42	1,1	0,6		-			0,151			
	27,5		42	1,1	0,6	2				0,21			
	27,5	31,4	42	1,1	0,6	2	HJ2304-E	4	7,5	0,21	0,019		

Single Row Cylindrical Roller Bearings

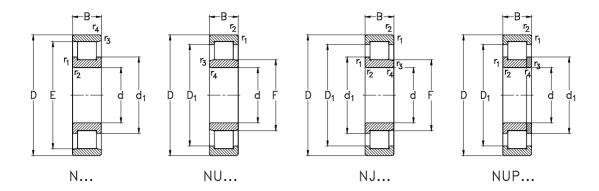




Haupt	abmess [mm]	ungen	Tra	agzahle [kN]	n	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Lagertype	Alternative Käfige
Bound	lary dime [mm]	ensions	Lo	ad ratin	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Designation	Alternative cages
d	D	В	C _r dyn.	C ₀r stat.	C _u	$\mathbf{n}_{ heta r}$	n _G		
20	52	21	46,4	38,4	4,7	10000	18000	NUP2304-E-TVP3	
25	47	12	18	16,8	2	12700	18000	NU1005-E-MPA	
	52	15	29,5	28	3,4	11800	16000	NU205-E-TVP3	MPA
	52	15	29,5	28	3,4	11800	16000	NJ205-E-TVP3	MPA
	52	15	29,5	28	3,4	11800	16000	NUP205-E-TVP3	MPA
	52	18	35,1	34,9	4,3	9800	16000	NU2205-E-TVP3	MPA
	52	18	35,1	34,9	4,3	9800	16000	NJ2205-E-TVP3	MPA
	52	18	35,1	34,9	4,3	9800	16000	NUP2205-E-TVP3	MPA
	62	17	45,7	36,9	4,5	10300	15000	NU305-E-TVP3	MPA
	62	17	45,7	36,9	4,5	10300	15000	NJ305-E-TVP3	MPA
	62	17	45,7	36,9	4,5	10300	15000	NUP305-E-TVP3	MPA
	62	24	63	55,6	6,8	8400	15000	NU2305-E-TVP3	MPA
	62	24	63	55,6	6,8	8400	15000	NJ2305-E-TVP3	MPA
	62	24	63	55,6	6,8	8400	15000	NUP2305-E-TVP3	MPA
	80	21	46,2	39,4	4,8	9600	14000	NU405-M	
	80	21	46,2	39,4	4,8	9600	14000	NJ405-M	
30	55	13	24,4	23,5	2,9	10800	15000	NU1006-E-MPA	
	62	16	46,7	41	5	9500	14000	NU206-E-TVP3	MPA
	62	16	46,7	41	5	9500	14000	NJ206-E-TVP3	MPA
	62	16	46,7	41	5	9500	14000	NUP206-E-TVP3	MPA
	62	20	54	49,3	6	8200	14000	NU2206-E-TVP3	MPA
	62	20	54	49,3	6	8200	14000	NJ2206-E-TVP3	MPA

-s

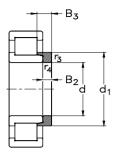
Anschlussmaße siehe Seite 547

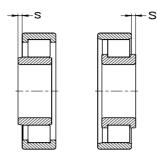

Abutment and fillet dimensions see on page 547

NJ...+ HJ...

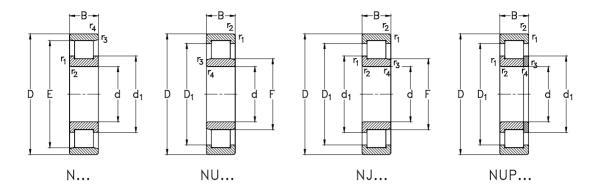
		Bearing	[mm] g dimens				Wink e			Gewicht [kg] Weight [kg]		
			[mm]						_			
d	E,F	d₁ ≈	D₁ ≈	r ₁, r ₂ min	r ₃ , r ₄ min	S ≈	Bezeichnung Designation	B ₂	B ₃	Lager Bearing	Winkelring Thrust collar	
20	27,5	31,4	42	1,1	0,6					0,21		
25	30,5		38,9	0,6	0,3	1,2				0,9		
	31,5		43,5	1	0,6	1,3				0,14		
	31,5	34,9	43,5	1	0,6	1,3	HJ205-E	3	6	0,14	0,015	
	31,5	34,9	43,5	1	0,6					0,14		
	31,5		43,5	1	0,6	1,7				0,16		
	31,5	34,9	43,5	1	0,6	1,7	HJ2205-E	3	6,5	0,16	0,015	
	31,5	34,9	43,5	1	0,6					0,16		
	34		50,1	1,1	1,1	1,5				0,245		
	34	38,3	50,1	1,1	1,1	1,5	HJ305-E	4	7	0,245	0,025	
	34	38,3	50,1	1,1	1,1					0,245		
	34		50,1	1,1	1,1	1,9				0,35	-	
	34	38,3	50,1	1,1	1,1	1,9	HJ2305-E	4	8	0,35	0,027	
	34	38,3	50,1	1,1	1,1		-			0,35		
	38,8		58,4	1,5	1,5	2,2				0,625		
	38,8	43,6	58,4	1,5	1,5	2,2	HJ405	6	10,5	0,625	0,057	
30	36		47,3	1	0,6	1,2				0,134		
	37,5		52	1	0,6	1,4				0,21		
	37,5	41,4	52	1	0,6	1,4	HJ206-E	4	7	0,21	0,025	
	37,5	41,4	52	1	0,6					0,21		
	37,5		52	1	0,6	1,6				0,26		
	37,5	41,4	52	1	0,6	1,6	HJ2206-E	4	7,5	0,26	0,025	

Single Row Cylindrical Roller Bearings





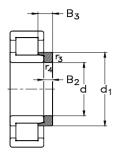
Haupt	abmess [mm]	ungen	Tra	agzahle [kN]	en	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Lagertype	Alternative Käfige
Bound	lary dime [mm]	ensions	Lo	ad ratin [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Designation	Alternative cages
d	D	В	C _r dyn.	C ₀r stat.	C _u	n _{er}	n _G		
30	62	20	54	49,3	6	8200	14000	NUP2206-E-TVP3	MPA
	72	19	59	49,6	6	8900	12000	NU306-E-TVP3	MPA
	72	19	59	49,6	6	8900	12000	NJ306-E-TVP3	MPA
	72	19	59	49,6	6	8900	12000	NUP306-E-TVP3	MPA
	72	27	83	77	9,4	7200	12000	NU2306-E-TVP3	MPA
	72	27	83	77	9,4	7200	12000	NJ2306-E-TVP3	MPA
	72	27	83	77	9,4	7200	12000	NUP2306-E-TVP3	MPA
	90	23	62	54	6,5	8400	11000	NU406-M	
	90	23	62	54	6,5	8400	11000	NJ406-M	
	90	23	62	54	6,5	8400	11000	NUP406-M	
35	62	14	34,3	36,1	4,4	9300	13000	NU1007-E-MPA	
	72	17	55,3	49,5	6	8300	12000	NU207-E-TVP3	MPA
	72	17	55,3	49,5	6	8300	12000	NJ207-E-TVP3	MPA
	72	17	55,3	49,5	6	8300	12000	NUP207-E-TVP3	MPA
	72	23	68	65	7,9	7400	12000	NU2207-E-TVP3	MPA
	72	23	68	65	7,9	7400	12000	NJ2207-E-TVP3	MPA
	72	23	68	65	7,9	7400	12000	NUP2207-E-TVP3	MPA
	80	21	74	65	7,9	8000	11000	NU307-E-TVP3	MPA
	80	21	74	65	7,9	8000	11000	NJ307-E-TVP3	MPA
	80	21	74	65	7,9	8000	11000	NUP307-E-TVP3	MPA
	80	31	103	100	12,2	6700	11000	NU2307-E-TVP3	MPA
	80	31	103	100	12,2	6700	11000	NJ2307-E-TVP3	MPA

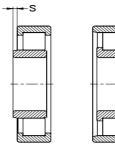

Abutment and fillet dimensions see on page 547

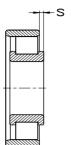
NJ...+ HJ...

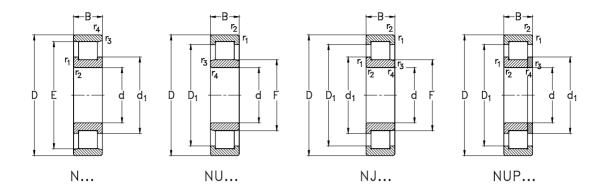
		Lageral	omessu [mm]	ngen			Winke	elring			wicht [kg]	
			dimens [mm]	sions			Thrust	collar		Weight [kg]		
d	E,F	d₁ ≈	D₁ ≈	r ₁ , r ₂ min	r ₃ , r ₄ min	s ≈	Bezeichnung Designation	B ₂	B ₃	Lager Bearing	Winkelring Thrust collar	
30	37,5	41,4	52	1	0,6		-			0,26		
	40,5		58,3	1,1	1,1	1,9	-			0,37		
	40,5	45,1	58,3	1,1	1,1	1,9	HJ306-E	5	8,5	0,37	0,043	
	40,5	45,1	58,3	1,1	1,1					0,37		
	40,5		58,3	1,1	1,1	2,5				0,528		
	40,5	45,1	58,3	1,1	1,1	2,5	HJ2306-E	5	9,5	0,528	0,045	
	40,5	45,1	58,3	1,1	1,1					0,528		
	45		67,8	1,5	1,5	2,3				0,87		
	45	50,5	67,8	1,5	1,5	2,3	HJ406	7	11,5	0,87	0,09	
	45	50,5	67,8	1,5	1,5					0,87		
35	41,5		54	1	0,6	1,1				0,18		
	44		61	1,1	0,6	1,7				0,305		
	44	48	61	1,1	0,6	1,7	HJ207-E	4	7	0,305	0,033	
	44	48	61	1,1	0,6		-			0,305		
	44		61	1,1	0,6	2,9				0,395		
	44	48	61	1,1	0,6	2,9	HJ2207-E	4	8,5	0,395	0,035	
	44	48	61	1,1	0,6					0,395		
	46,2		65,7	1,5	1,1	1	-			0,485		
	46,2	51,2	65,7	1,5	1,1	1	HJ307-E	6	9,5	0,485	0,062	
	46,2	51,2	65,7	1,5	1,1		-			0,485	-	
	46,2		65,7	1,5	1,1	3				0,715		
	46,2	51,2	65,7	1,5	1,1	3	HJ2307-E	6	11	0,715	0,065	

Single Row Cylindrical Roller Bearings





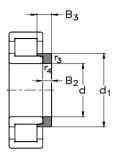

Haupt	tabmessi [mm]	ungen	Tra	agzahle [kN]	en	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Lagertype	Alternative Käfige
Bound	dary dime [mm]	nsions	Lo	ad ratin [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Designation	Alternative cages
d	D	В	C _r dyn.	C ₀r stat.	C _u	n _{er}	n _G		
35	80	31	103	100	12,2	6700	11000	NUP2307-E-TVP3	MPA
	100	25	76	70	8,6	7400	9500	NU407-M	
	100	25	76	70	8,6	7400	9500	NJ407-M	
	100	25	76	70	8,6	7400	9500	NUP407-M	
40	68	15	37,2	41,3	5	8500	18000	NU1008-E-MPA	
	80	18	61	55	6,7	7600	11000	NU208-E-TVP3	MPA
	80	18	61	55	6,7	7600	11000	NJ208-E-TVP3	MPA
	80	18	61	55	6,7	7600	11000	NUP208-E-TVP3	MPA
	80	23	80	77	9,4	6300	11000	NU2208-E-TVP3	MPA
	80	23	80	77	9,4	6300	11000	NJ2208-E-TVP3	MPA
	80	23	80	77	9,4	6300	11000	NUP2208-E-TVP3	MPA
	90	23	91	80	9,7	7200	9500	NU308-E-TVP3	MPA
	90	23	91	80	9,7	7200	9500	NJ308-E-TVP3	MPA
	90	23	91	80	9,7	7200	9500	NUP308-E-TVP3	MPA
	90	33	134	127	15,4	5800	9500	NU2308-E-TVP3	MPA
	90	33	134	127	15,4	5800	9500	NJ2308-E-TVP3	MPA
	90	33	134	127	15,4	5800	9500	NUP2308-E-TVP3	MPA
	110	27	96	89	10,9	6700	8500	NU408-M	-
	110	27	96	89	10,9	6700	8500	NJ408-M	
	110	27	96	89	10,9	6700	8500	NUP408-M	-
45	75	16	43	49,7	6,1	7800	11000	NU1009-E-MPA	
	85	19	70	66	8	7000	9500	NU209-E-TVP3	MPA

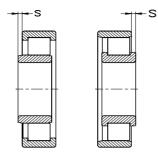

Abutment and fillet dimensions see on page 547

NJ...+ HJ...

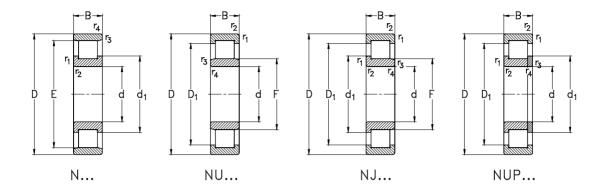
		Bearing	omessu [mm] g dimens [mm]				Winke Thrust	_		Gewicht [kg] Weight [kg]		
d	E,F	d₁ ≈	D ₁ ≈	r ₁ , r ₂ min	r ₃, r ₄ min	s ≈	Bezeichnung Designation	B ₂	B_3	Lager Bearing	Winkelring Thrust collar	
35	46,2	51,2	65,7	1,5	1,1					0,715		
	53		77,6	1,5	1,5	2,6	-			1,05		
	53	59	77,6	1,5	1,5	2,6	HJ407	8	13	1,05	0,13	
	53	59	77,6	1,5	1,5		-			1,05		
40	47		59	1	0,6	1,2	_			0,23		
	49,5		67,3	1,1	1,1	1,9	-			0,38		
	49,5	54,1	67,3	1,1	1,1	1,9	HJ208-E	5	8,5	0,38	0,05	
	49,5	54,1	67,3	1,1	1,1		-			0,38		
	49,5		67,3	1,1	1,1	2,3				0,49		
	49,5	54,1	67,3	1,1	1,1	2,3	HJ2208-E	5	9	0,49	0,05	
	49,5	54,1	67,3	1,1	1,1					0,49		
	52		74,9	1,5	1,5	2,5	-			0,66		
	52	57,7	74,9	1,5	1,5		HJ308-E	7	11	0,66	0,088	
	52	57,7	74,9	1,5	1,5		-		-	0,66		
	52		74,9	1,5	1,5	3,5				0,95		
	52	57,7	74,9	1,5	1,5		HJ2308-E	7	12,5	0,95	0,092	
	52	57,7	74,9	1,5	1,5		-			0,95	-	
	58		85,8	2	2	2,6	-			1,3		
	58	64,8	85,8	2	2	2,6	HJ408	8	13	1,3	0,15	
	58	64,8	85,8	2	2		-			1,3	-	
45	52,5		65	1	0,6	1,1	_		-	0,29		
	54,5		72,4	1,1	1,1	1,9	-			0,5		

Single Row Cylindrical Roller Bearings





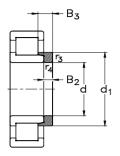
Haupt	tabmess [mm]	ungen	Tra	agzahle [kN]	en	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Lagertype	Alternative Käfige
Bound	lary dime [mm]	ensions	Lo	ad ratin [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Designation	Alternative cages
d	D	В	C _r dyn.	C ₀r stat.	C _u	n _{er}	n _G		
45	85	19	70	66	8	7000	9500	NJ209-E-TVP3	MPA
	85	19	70	66	8	7000	9500	NUP209-E-TVP3	MPA
	85	23	84	84	10,2	5800	9500	NU2209-E-TVP3	MPA
	85	23	84	84	10,2	5800	9500	NJ2209-E-TVP3	MPA
	85	23	84	84	10,2	5800	9500	NUP2209-E-TVP3	MPA
	100	25	110	100	12,2	6500	8500	NU309-E-TVP3	MPA
	100	25	110	100	12,2	6500	8500	NJ309-E-TVP3	MPA
	100	25	110	100	12,2	6500	8500	NUP309-E-TVP3	MPA
	100	36	154	155	18,9	5300	8500	NU2309-E-TVP3	MPA
	100	36	154	155	18,9	5300	8500	NJ2309-E-TVP3	MPA
	100	36	154	155	18,9	5300	8500	NUP2309-E-TVP3	MPA
	120	29	107	102	12,4	6200	7500	NU409-M	
	120	29	107	102	12,4	6200	7500	NJ409-M	
	120	29	107	102	12,4	6200	7500	NUP409-M	
50	80	16	44,7	53	6,5	7100	9500	NU1010-E-MPA	M6
	90	20	73	71	8,7	6700	9000	N210-E-M6	
	90	20	73	71	8,7	6700	9000	NU210-E-TVP3	M6, MA6, MPA
	90	20	73	71	8,7	6700	9000	NJ210-E-TVP3	M6, MA6, MPA
	90	20	73	71	8,7	6700	9000	NUP210-E-TVP3	M6, MA6, MPA
	90	23	88	91	11	5300	9000	NU2210-E-TVP3	M6, MA6, MPA
	90	23	88	91	11	5300	9000	NJ2210-E-TVP3	M6, MA6, MPA
	90	23	88	91	11	5300	9000	NUP2210-E-TVP3	M6, MA6, MPA

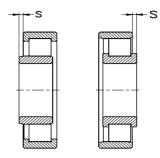

Abutment and fillet dimensions see on page 547

NJ...+ HJ...

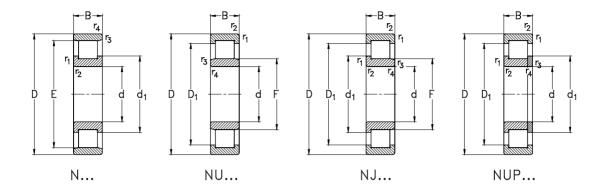
		Lageral	omessu [mm]	ngen			Winke	elring		Gewicht [kg]		
		_	g dimens [mm]	sions			Thrust	collar			/eight [kg]	
d	E,F	d₁ ≈	D₁ ≈	r ₁ , r ₂ min	r ₃ , r ₄ min	s ≈	Bezeichnung Designation	B ₂	B ₃	Lager Bearing	Winkelring Thrust collar	
45	54,5	59,1	72,4	1,1	1,1	1,9	HJ209-E	5	8,5	0,5	0,055	
	54,5	59,1	72,4	1,1	1,1					0,5		
	54,5		72,4	1,1	1,1	2,3				0,6		
	54,5	59,1	72,4	1,1	1,1	2,3	HJ2209-E	5	9	0,6	0,057	
	54,5	59,1	72,4	1,1	1,1					0,6		
	58,5		83,1	1,5	1,5	2,9				1		
	58,5	64,6	83,1	1,5	1,5	2,9	HJ309-E	7	11,5	1	0,11	
	58,5	64,6	83,1	1,5	1,5		-			1		
	58,5		83,1	1,5	1,5	3,5				1,3		
	58,5	64,6	83,1	1,5	1,5	3,5	HJ2309-E	7	13	1,3	0,12	
	58,5	64,6	83,1	1,5	1,5					1,3		
	64,5		93,9	2	2	2,9	-			1,7	-	
	64,5	71,8	93,9	2	2		HJ409	8	13,5	1,7	0,19	
	64,5	71,8	93,9	2	2		-			1,7		
50	57,5		69,4	1	0,6	1,1				0,3		
	81,5	64,1	78	1,1	1,1	1,3	-			0,6		
	59,5		78	1,1	1,1	1,3				0,6		
	59,5	64,1	78	1,1	1,1	1,3	HJ210-E	5	9	0,6	0,06	
	59,5	64,1	78	1,1	1,1					0,6		
	59,5		78	1,1	1,1	1,3	-			0,65		
	59,5	64,1	78	1,1	1,1	1,3	HJ2210-E	5	9	0,65	0,06	
	59,5	64,1	78	1,1	1,1		-			0,65		

Single Row Cylindrical Roller Bearings





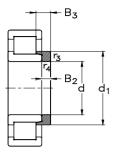
Haupt	tabmess [mm]	ungen	Tra	agzahle [kN]	en	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Lagertype	Alternative Käfige
Bound	lary dime [mm]	nsions	Lo	ad ratin [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Designation	Alternative cages
d	D	В	C _r dyn.	C ₀r stat.	C _u	n _{er}	n _G		
50	110	27	124	115	14	6100	8000	N310-E-M6	-
	110	27	124	115	14	6100	8000	NU310-E-TVP3	M6, MA6, MPA
	110	27	124	115	14	6100	8000	NJ310-E-TVP3	M6, MA6, MPA
	110	27	124	115	14	6100	8000	NUP310-E-TVP3	M6, MA6, MPA
	110	40	182	189	23	5000	8000	NU2310-E-TVP3	M6, MA6, MPA
	110	40	182	189	23	5000	8000	NJ2310-E-TVP3	M6, MA6, MPA
	110	40	182	189	23	5000	8000	NUP2310-E-TVP3	M6, MA6, MPA
	130	31	141	139	16,9	5500	7000	NU410-M	-
	130	31	141	139	16,9	5500	7000	NJ410-M	-
	130	31	141	139	16,9	5500	7000	NUP410-M	-
55	90	18	52	62	7,5	6700	8500	NU1011-E-MPA	M6
	100	21	95	98	11,9	5800	8000	N211-E-M6	-
	100	21	95	98	11,9	5800	8000	NU211-E-TVP3	M6, MA6, MPA
	100	21	95	98	11,9	5800	8000	NJ211-E-TVP3	M6, MA6, MPA
	100	21	95	98	11,9	5800	8000	NUP211-E-TVP3	M6, MA6, MPA
	100	25	112	121	14,7	4700	8000	NU2211-E-TVP3	M6, MA6, MPA
	100	25	112	121	14,7	4700	8000	NJ2211-E-TVP3	M6, MA6, MPA
	100	25	112	121	14,7	4700	8000	NUP2211-E-TVP3	M6, MA6, MPA
	120	29	153	143	17,4	5500	7000	N311-E-M6	
	120	29	153	143	17,4	5500	7000	NU311-E-TVP3	M6, MA6, MPA
	120	29	153	143	17,4	5500	7000	NJ311-E-TVP3	M6, MA6, MPA
	120	29	153	143	17,4	5500	7000	NUP311-E-TVP3	M6, MA6, MPA

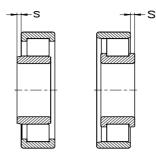

Abutment and fillet dimensions see on page 547

NJ...+ HJ...

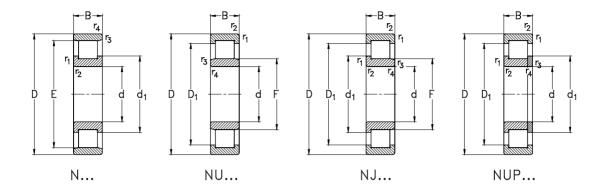
		Bearing	omessu [mm] g dimens				Wink e			Gewicht [kg] Weight		
			[mm]								[kg]	
d	E,F	d₁	D ₁	r ₁ , r ₂	$\mathbf{r}_3, \mathbf{r}_4$	s	Bezeichnung	B_2	B ₃	Lager	Winkelring	
		≈	≈	min	min	≈	Designation			Bearing	Thrust collar	
50	97	71,4		2	2	1,7				1,2		
	65		92	2	2	1,7	-			1,2		
	65	71,2	92	2	2	1,7	HJ310-E	8	13	1,2	0,15	
	65	71,2	92	2	2					1,2		
	65		92	2	2	3,2				1,9		
	65	71,2	92	2	2	3,2	HJ2310-E	8	14,5	1,9	0,16	
	65	71,2	92	2	2					1,9		
	70,8	78,8	103,5	2,1	2,1	2	-			2,1		
	70,8	78,8	103,5	2,1	2,1	2	HJ410	9	14,5	2,1	0,24	
	70,8	78,8	103,5	2,1	2,1		-			2,2		
55	64		78	1,1	1	1,5	_			0,47		
	90	71	86,2	1,5	1,1	0,8	-			0,75		
	66		86,2	1,5	1,1	0,8				0,75		
	66	71	86,2	1,5	1,1	0,8	HJ211-E	6	9,5	0,75	0,09	
	66	71	86,2	1,5	1,1					0,75		
	66		86,2	1,5	1,1	1,3	-			0,9		
	66	71	86,2	1,5	1,1	1,3	HJ2211-E	6	10	0,9	0,09	
	66	71	86,2	1,5	1,1					0,9		
	106,5	77,7		2	2	1,8				1,6		
	70,5	77,7	101	2	2	1,8				1,6		
	70,5	77,7	101	2	2	1,8	HJ311-E	9	14	1,6	0,2	
	70,5	77,7	101	2	2		-			1,6		

Single Row Cylindrical Roller Bearings





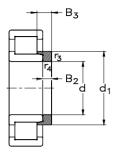
Haupt	abmess [mm]	ungen	Tra	agzahle [kN]	en	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Lagertype	Alternative Käfige
Bound	lary dime [mm]	nsions	Lo	ad ratin [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Designation	Alternative cages
d	D	В	C _r dyn.	C ₀r stat.	C _u	n _{er}	n _G		
55	120	43	224	233	28,4	4600	7000	NU2311-E-TVP3	M6, MA6, MPA
	120	43	224	233	28,4	4600	7000	NJ2311-E-TVP3	M6, MA6, MPA
	120	43	224	233	28,4	4600	7000	NUP2311-E-TVP3	M6, MA6, MPA
	140	33	142	142	17,3	5400	6300	NU411-M	
	140	33	142	142	17,3	5400	6300	NJ411-M	
	140	33	142	142	17,3	5400	6300	NUP411-M	
60	95	18	56	68	8,3	6200	11000	NU1012-E-MPA	M6
	110	22	106	105	12,7	5400	7500	N212-E-M6	
	110	22	106	105	12,7	5400	7500	NU212-E-TVP3	M6, MA6, MPA
	110	22	106	105	12,7	5400	7500	NJ212-E-TVP3	M6, MA6, MPA
	110	22	106	105	12,7	5400	7500	NUP212-E-TVP3	M6, MA6, MPA
	110	28	144	154	18,8	4400	7500	NU2212-E-TVP3	M6, MA6, MPA
	110	28	144	154	18,8	4400	7500	NJ2212-E-TVP3	M6, MA6, MPA
	110	28	144	154	18,8	4400	7500	NUP2212-E-TVP3	M6, MA6, MPA
	130	31	169	160	19,6	5300	6700	N312-E-M6	
	130	31	169	160	19,6	5300	6700	NU312-E-TVP3	M6, MA6, MPA
	130	31	169	160	19,6	5300	6700	NJ312-E-TVP3	M6, MA6, MPA
	130	31	169	160	19,6	5300	6700	NUP312-E-TVP3	M6, MA6, MPA
	130	46	250	265	32,3	4300	6700	NU2312-E-TVP3	M6, MA6, MPA
	130	46	250	265	32,3	4300	6700	NJ2312-E-TVP3	M6, MA6, MPA
	130	46	250	265	32,3	4300	6700	NUP2312-E-TVP3	M6, MA6, MPA
	150	35	169	170	20,4	5000	6000	NU412-M	

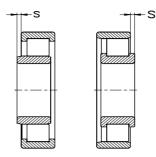

Abutment and fillet dimensions see on page 547

NJ...+ HJ...

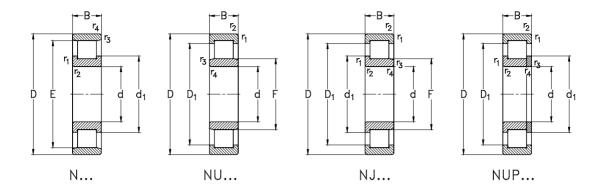
		Lagerat	messu [mm]	ngen			Winke	elring			wicht [kg]
			dimens [mm]	sions			Thrust	collar			/eight [kg]
d	E,F	d₁ ≈	D₁ ≈	r ₁ , r ₂ min	r ₃ , r ₄ min	S ≈	Bezeichnung Designation	B ₂	B ₃	Lager Bearing	Winkelring Thrust collar
55	70,5		101	2	2	3,3				2,3	
	70,5	77,7	101	2	2	3,3	HJ2311-E	9	15,5	2,3	0,2
	70,5	77,7	101	2	2					2,3	
	77,2		110	2,1	2,1	2,5				2,5	
	77,2	85,2	110	2,1	2,1	2,5	HJ411	10	16,5	2,5	0,31
	77,2	85,2	110	2,1	2,1					2,5	
60	69		83	1,1	1	1,5				0,48	
	100	77,7		1,5	1,5	1,6				1	
	72		95,7	1,5	1,5	1,6				1	
	72	77,7	95,7	1,5	1,5	1,6	HJ212-E	6	10	1	0,11
	72	77,7	95,7	1,5	1,5					1	
	72		95,7	1,5	1,5	1,6				1,2	
	72	77,7	95,7	1,5	1,5	1,6	HJ2212-E	6	10	1,2	0,11
	72	77,7	95,7	1,5	1,5		-			1,2	
	115	84,5		2,1	2,1	1,8				1,9	
	77	84,5	110	2,1	2,1	1,8	-			1,9	-
	77	84,5	110	2,1	2,1	1,8	HJ312-E	9	14,5	1,9	0,24
	77	84,5	110	2,1	2,1					1,9	
	77		110	2,1	2,1	3,5				2,9	
	77	84,5	110	2,1	2,1	3,5	HJ2312-E	9	16	2,9	0,24
	77	84,5	110	2,1	2,1					2,9	
	83		119	2,1	2,1	2				3,1	

Single Row Cylindrical Roller Bearings





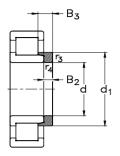
Haupt	tabmess [mm]	ungen	Tra	agzahle [kN]	en	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Lagertype	Alternative Käfige
Bound	dary dime [mm]	ensions	Lo	ad ratin [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Designation	Alternative cages
d	D	В	C _r dyn.	C ₀r stat.	C _u	n _{er}	n _G		
60	150	35	169	170	20,4	5000	6000	NJ412-M	-
	150	35	169	170	20,4	5000	6000	NUP412-M	
65	100	18	57	72	8,8	5700	7500	NU1013-E-MPA	M6
	120	23	121	121	14,8	5000	6700	N213-E-M6	
	120	23	121	121	14,8	5000	6700	NU213-E-TVP3	M6, MA6, MPA
	120	23	121	121	14,8	5000	6700	NJ213-E-TVP3	M6, MA6, MPA
	120	23	121	121	14,8	5000	6700	NUP213-E-TVP3	M6, MA6, MPA
	120	31	168	183	22,3	4200	6700	NU2213-E-TVP3	M6, MA6, MPA
	120	31	168	183	22,3	4200	6700	NJ2213-E-TVP3	M6, MA6, MPA
	120	31	168	183	22,3	4200	6700	NUP2213-E-TVP3	M6, MA6, MPA
	140	33	203	193	23,3	4800	6000	N313-E-M6	
	140	33	203	193	23,3	4800	6000	NU313-E-TVP3	M6, MA6, MPA
	140	33	203	193	23,3	4800	6000	NJ313-E-TVP3	M6, MA6, MPA
	140	33	203	193	23,3	4800	6000	NUP313-E-TVP3	M6, MA6, MPA
	140	48	277	289	34,9	4100	6000	NU2313-E-TVP3	M6, MA6, MPA
	140	48	277	289	34,9	4100	6000	NJ2313-E-TVP3	M6, MA6, MPA
	140	48	277	289	34,9	4100	6000	NUP2313-E-TVP3	M6, MA6, MPA
	160	37	196	205	24,1	4600	5600	NU413-M	
	160	37	196	205	24,1	4600	5600	NJ413-M	
	160	37	196	205	24,1	4600	5600	NUP413-M	
70	110	20	76	92	11,3	5400	7000	NU1014-E-MPA	M6
	125	24	134	140	17	4700	6300	N214-E-M6	

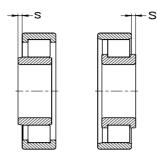

Abutment and fillet dimensions see on page 547

NJ...+ HJ...

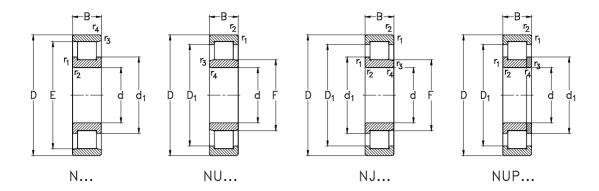
			omessu [mm]	Ū			Winke			Ī	ewicht [kg]
			g dimens [mm]	sions			Thrust	collar			/eight [kg]
d	E,F	d₁ ≈	D₁ ≈	r ₁ , r ₂ min	r ₃ , r ₄ min	S ≈	Bezeichnung Designation	B ₂	B ₃	Lager Bearing	Winkelring Thrust collar
60	83	91,8	119	2,1	2,1	2	HJ412	10	16,5	3,1	0,35
	83	91,8	119	2,1	2,1		-			3,1	-
65	74		88	1,1	1	1,5				0,52	
	108,5	84,6	104	1,5	1,5	1,4				1,05	
	78,5		104	1,5	1,5	1,4				1,05	
	78,5	84,6	104	1,5	1,5	1,4	HJ213-E	6	10	1,05	0,13
	78,5	84,6	104	1,5	1,5					1,2	
	78,5		104	1,5	1,5	1,9	-			1,6	
	78,5	84,6	104	1,5	1,5	1,9	HJ2213-E	6	10,5	1,6	0,13
	78,5	84,6	104	1,5	1,5					1,6	
	124,5	90,7		2,1	2,1	1,5				2,3	
	82,5		118,5	2,1	2,1	1,5				2,3	
	82,5	90,7	118,5	2,1	2,1	1,5	HJ313-E	10	15,5	2,3	0,29
	82,5	90,7	118,5	2,1	2,1	-				2,3	
	82,5		118,5	2,1	2,1	4	-			3,3	
	82,5	90,7	118,5	2,1	2,1	4	HJ2313-E	10	18	3,3	0,3
	82,5	90,7	118,5	2,1	2,1					3,3	
	89,3		127	2,1	2,1	2	-			3,8	_
	89,3	98,5	127	2,1	2,1	2	HJ413	11	18	3,8	0,43
	89,3	98,5	127	2,1	2,1		-			3,8	
70	79,5		97	1,1	1	1,7				0,7	
	113,5		108,7	1,5	1,5	1,6				1,15	

Single Row Cylindrical Roller Bearings





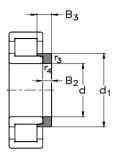
Hauptabmessungen [mm]		Tragzahlen [kN]			Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Lagertype	Alternative Käfige	
Boundary dimensions [mm]		nsions	Load ratings [kN]			Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Designation	Alternative cages
d	D	В	C _r dyn.	C ₀r stat.	C _u	n _{er}	n _G		
70	125	24	134	140	17	4700	6300	NU214-E-TVP3	M6, MA6, MPA
	125	24	134	140	17	4700	6300	NJ214-E-TVP3	M6, MA6, MPA
	125	24	134	140	17	4700	6300	NUP214-E-TVP3	M6, MA6, MPA
	125	31	175	197	24	3900	6300	NU2214-E-TVP3	M6, MA6, MPA
	125	31	175	197	24	3900	6300	NJ2214-E-TVP3	M6, MA6, MPA
	125	31	175	197	24	3900	6300	NUP2214-E-TVP3	M6, MA6, MPA
	150	35	229	224	26,5	4500	5600	N314-E-M6	
	150	35	229	224	26,5	4500	5600	NU314-E-TVP3	M6, MA6, MPA
	150	35	229	224	26,5	4500	5600	NJ314-E-TVP3	M6, MA6, MPA
	150	35	229	224	26,5	4500	5600	NUP314-E-TVP3	M6, MA6, MPA
	150	51	306	325	38,4	3800	5600	NU2314-E-TVP3	M6, MA6, MPA
	150	51	306	325	38,4	3800	5600	NJ2314-E-TVP3	M6, MA6, MPA
	150	51	306	325	38,4	3800	5600	NUP2314-E-TVP3	M6, MA6, MPA
	180	42	248	264	30	4200	5000	NU414-M	
	180	42	248	264	30	4200	5000	NJ414-M	
	180	42	248	264	30	4200	5000	NUP414-M	
75	115	20	78	98	11,9	5100	10000	NU1015-E-MPA	M6
	130	25	147	159	19,2	4500	6000	N215-E-M6	
	130	25	147	159	19,2	4500	6000	NU215-E-TVP3	M6, MA6, MPA
	130	25	147	159	19,2	4500	6000	NJ215-E-TVP3	M6, MA6, MPA
	130	25	147	159	19,2	4500	6000	NUP215-E-TVP3	M6, MA6, MPA
	130	31	182	210	25,3	3700	6000	NU2215-E-TVP3	M6, MA6, MPA

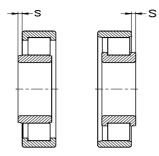

Abutment and fillet dimensions see on page 547

NJ...+ HJ...

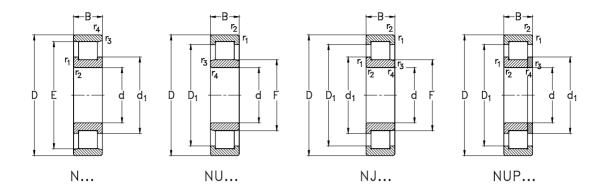
			bmessu [mm] g dimens				Winke Thrust		Gewicht [kg] Weight		
			[mm]					[kg]			
d	E,F	d₁ ≈	D₁ ≈	r ₁ , r ₂ min	r ₃ , r ₄ min	s ≈	Bezeichnung Designation	B ₂	B ₃	Lager Bearing	Winkelring Thrust collar
70	83,5		108,7	1,5	1,5	1,6				1,15	
	83,5	89,6	108,7	1,5	1,5	1,6	HJ214-E	7	11	1,15	0,16
	83,5	89,6	108,7	1,5	1,5					1,3	
	83,5		108,7	1,5	1,5	1,6	-			1,7	
	83,5	89,6	108,7	1,5	1,5	1,6	HJ2214-E	7	11,5	1,7	0,15
	83,5	89,6	108,7	1,5	1,5		-			1,7	
	133	97,5		2,1	2,1	1,7				2,8	
	89		126,4	2,1	2,1	1,7	-			2,8	
	89	97,5	126,4	2,1	2,1	1,7	HJ314-E	10	15,5	2,8	0,34
	89	97,5	126,4	2,1	2,1		-			2,8	
	89		126,4	2,1	2,1	4,7	-			4	
	89	97,5	126,4	2,1	2,1	4,7	HJ2314-E	10	18,5	4	0,35
	89	97,5	126,4	2,1	2,1		-			4	
	100		142,5	3	3	2	-			5,5	
	100	110,3	142,5	3	3	2	HJ414	12	20	5,5	0,61
	100	110,3	142,5	3	3		-			5,5	-
75	84,5		102	1,1	1	1,7	-			0,75	
	118,5	94,5		1,5	1,5	1,2	-			1,25	_
	88,5		113,5	1,5	1,5	1,2	-			1,25	
	88,5	94,5	133,5	1,5	1,5	1,2	HJ215-E	7	11	1,25	0,17
	88,5	94,5	133,5	1,5	1,5		-			1,25	
	88,5		113,5	1,5	1,5	1,6	-	-		1,6	-

Single Row Cylindrical Roller Bearings





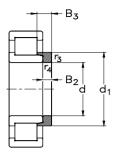
Hauptabmessungen [mm]		Tragzahlen [kN]			Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Lagertype	Alternative Käfige	
Bounda	Boundary dimensions [mm]		Load ratings [kN]			Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Designation	Alternative cages
d	D	В	C _r dyn.	C _{or} stat.	C _u	n _{er}	n _G		
75	130	31	182	210	25,3	3700	6000	NJ2215-E-TVP3	M6, MA6, MPA
	130	31	182	210	25,3	3700	6000	NUP2215-E-TVP3	M6, MA6, MPA
	160	37	269	265	30,7	4200	5300	N315-E-M6	
	160	37	269	265	30,7	4200	5300	NU315-E-TVP3	M6, MA6, MPA
	160	37	269	265	30,7	4200	5300	NJ315-E-TVP3	M6, MA6, MPA
	160	37	269	265	30,7	4200	5300	NUP315-E-TVP3	M6, MA6, MPA
	160	55	368	397	45,9	3600	5300	NU2315-E-TVP3	M6, MA6, MPA
	160	55	368	397	45,9	3600	5300	NJ2315-E-TVP3	M6, MA6, MPA
	160	55	368	397	45,9	3600	5300	NUP2315-E-TVP3	M6, MA6, MPA
	190	45	281	300	33,6	4000	4800	NU415-M	
	190	45	281	300	33,6	4000	4800	NJ415-M	
	190	45	281	300	33,6	4000	4800	NUP415-M	
80	125	22	101	132	16	4800	6300	NU1016-E-MPA	M6
	140	26	157	170	20,1	4200	5600	N216-E-M6	
	140	26	157	170	20,1	4200	5600	NU216-E-TVP3	M6, MA6, MPA
	140	26	157	170	20,1	4200	5600	NJ216-E-TVP3	M6, MA6, MPA
	140	26	157	170	20,1	4200	5600	NUP216-E-TVP3	M6, MA6, MPA
	140	33	209	246	29	3400	5600	NU2216-E-TVP3	M6, MA6, MPA
	140	33	209	246	29	3400	5600	NJ2216-E-TVP3	M6, MA6, MPA
	140	33	209	246	29	3400	5600	NUP2216-E-TVP3	M6, MA6, MPA
	170	39	290	289	32,9	4100	5000	N316-E-M6	
	170	39	290	289	32,9	4100	5000	NU316-E-TVP3	M6, MA6, MPA

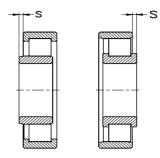

Abutment and fillet dimensions see on page 547

NJ...+ HJ...

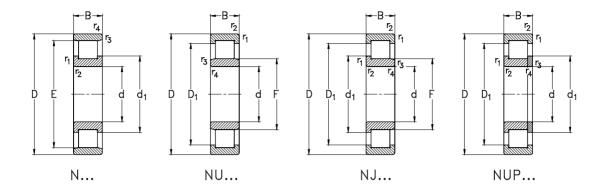
			omessu [mm] g dimens				Winks <i>Thrust</i>		Gewicht [kg] Weight			
			[mm]								[kg]	
d	E,F	d₁ ≈	D₁ ≈	r ₁ , r ₂ min	r ₃ , r ₄ min	s ≈	Bezeichnung Designation	B ₂	B_3	Lager Bearing	Winkelring Thrust collar	
75	88,5	94,5	113,5	1,5	1,5	1,6	HJ2215-E	7	11,5	1,6	0,17	
	88,5	94,5	113,5	1,5	1,5					1,6		
	143	104,3		2,1	2,1	1,2				3,4		
	95		136	2,1	2,1	1,2	-			3,4		
	95	104,3	136	2,1	2,1	1,2	HJ315-E	11	16,5	3,4	0,42	
	95	104,3	136	2,1	2,1		-			3,4		
	95		136	2,1	2,1	4,2				5		
	95	104,3	136	2,1	2,1	4,2	HJ2315-E	11	19,5	5	0,43	
	95	104,3	136	2,1	2,1		-			5		
	104,5		150,5	3	3	2,5	-			6,45		
	104,5	116	150,5	3	3	2,5	HJ415	13	21,5	6,45	0,71	
	104,5	116	150,5	3	3		-			6,45		
80	91		110	1,1	1	1,7				1,03		
	127,3	101,7		2	2	1,3				1,54		
	95,3		122,3	2	2	1,3				1,54		
	95,3	101,7	122,3	2	2	1,3	HJ216-E	8	12,5	1,54	0,22	
	95,3	101,7	122,3	2	2					1,54		
	95,3		122,3	2	2	1,3	-			2,1		
	95,3	101,7	122,3	2	2	1,3	HJ2216-E	8	12,5	2,1	0,22	
	95,3	101,7	122,3	2	2					2,1		
	151	110,6		2,1	2,1	0,7				3,95		
	101		143,7	2,1	2,1	0,7	-			3,95		

Single Row Cylindrical Roller Bearings





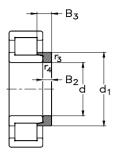
Haupt	Hauptabmessungen [mm]		Tragzahlen [kN]			Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Lagertype	Alternative Käfige
Bound	Boundary dimensions [mm]		Load ratings [kN]			Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Designation	Alternative cages
d	D	В	C _r dyn.	C _{or} stat.	C _u	n _{er}	n _G		
80	170	39	290	289	32,9	4100	5000	NJ316-E-TVP3	M6, MA6, MPA
	170	39	290	289	32,9	4100	5000	NUP316-E-TVP3	M6, MA6, MPA
	170	58	401	438	49,8	3400	5000	NU2316-E-TVP3	M6, MA6, MPA
	170	58	401	438	49,8	3400	5000	NJ2316-E-TVP3	M6, MA6, MPA
	170	58	401	438	49,8	3400	5000	NUP2316-E-TVP3	M6, MA6, MPA
	200	48	321	345	38,1	3900	4500	NU416-M	
	200	48	321	345	38,1	3900	4500	NJ416-M	
	200	48	321	345	38,1	3900	4500	NUP416-M	
85	130	22	104	139	16,6	4500	9000	NU1017-E-MPA	M6
	150	28	186	199	23	4000	5300	N217-E-M6	
	150	28	186	199	23	4000	5300	NU217-E-TVP3	M6, MA6, MPA
	150	28	186	199	23	4000	5300	NJ217-E-TVP3	M6, MA6, MPA
	150	28	186	199	23	4000	5300	NUP217-E-TVP3	M6, MA6, MPA
	150	36	242	279	32,3	3300	5300	NU2217-E-TVP3	M6, MA6, MPA
	150	36	242	279	32,3	3300	5300	NJ2217-E-TVP3	M6, MA6, MPA
	150	36	242	279	32,3	3300	5300	NUP2217-E-TVP3	M6, MA6, MPA
	180	41	340	351	39,2	3700	4800	N317-E-M6	
	180	41	340	351	39,2	3700	4800	NU317-E-TVP3	M6, MA6, MPA
	180	41	340	351	39,2	3700	4800	NJ317-E-TVP3	M6, MA6, MPA
	180	41	340	351	39,2	3700	4800	NUP317-E-TVP3	M6, MA6, MPA
	180	60	443	493	55	3200	4800	NU2317-E-TVP3	M6, MA6, MPA
	180	60	443	493	55	3200	4800	NJ2317-E-TVP3	M6, MA6, MPA

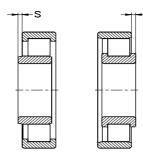

Abutment and fillet dimensions see on page 547

NJ...+ HJ...

			[mm]				Winke			Gewicht [kg]		
		_	g dimens [mm]	sions			Thrust	collar			/eight [kg]	
d	E,F	d₁ ≈	D₁ ≈	r ₁ , r ₂ min	r ₃ , r ₄ min	s ≈	Bezeichnung Designation	B ₂	B ₃	Lager Bearing	Winkelring Thrust collar	
80	101	110,6	143,7	2,1	2,1	0,7	HJ316-E	11	17	3,95	0,47	
	101	110,6	143,7	2,1	2,1					3,95		
	101		143,7	2,1	2,1	3,7				5,9		
	101	110,6	143,7	2,1	2,1	3,7	HJ2316-E	11	20	5,9	0,5	
	101	110,6	143,7	2,1	2,1					5,9		
	110		159	3	3	2,5				8,3		
	110	122	159	3	3	2,5	HJ416	13	22	8,3	0,79	
	110	122	159	3	3					8,3		
85	96		115	1,1	1	1.7				1,1		
	136,5	107,6		2	2	0,8				1,9		
	100,5		131	2	2	0,8				1,9		
	100,5	107,6	131	2	2	0,8	HJ217-E	8	12,5	1,9	0,25	
	100,5	107,6	131	2	2					1,9		
	100,5		131	2	2	1,3				2,6		
	100,5	107,6	131	2	2	1,3	HJ2217-E	8	13	2,6	0,25	
	100,5	107,6	131	2	2					2,6		
	160	118		3	3	1,3				5,3		
	108		152,4	3	3	1,3				5,3		
	108	118	152,4	3	3	1,3	HJ317-E	12	18,5	5,3	0,58	
	108	118	152,4	3	3					5,3		
	108		152,4	3	3	4,7				6,9		
	108	118	152,4	3	3	4,7	HJ2317-E	12	22	6,9	0,6	

Single Row Cylindrical Roller Bearings

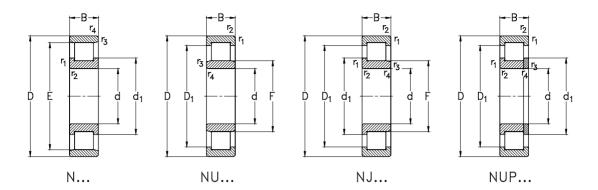




Haupt	abmess [mm]	ungen	Tra	agzahle [kN]	en	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Lagertype	Alternative Käfige
Bound	lary dime [mm]	nsions	Lo	ad ratin [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Designation	Alternative cages
d	D	В	C _r dyn.	C ₀r stat.	C _u	n _{θr}	n _G		
85	180	60	443	493	55	3200	4800	NUP2317-E-TVP3	M6, MA6, MPA
	210	52	362	392	42,7	3700	4300	NU417-M	
	210	52	362	392	42,7	3700	4300	NJ417-M	
	210	52	362	392	42,7	3700	4300	NUP417-M	
90	140	24	121	156	18,1	4400	8500	NU1018-E-MPA	M6
	160	30	206	222	25,3	3900	5000	N218-E-M6	
	160	30	206	222	25,3	3900	5000	NU218-E-TVP3	M6, MA6, MPA
	160	30	206	222	25,3	3900	5000	NJ218-E-TVP3	M6, MA6, MPA
	160	30	206	222	25,3	3900	5000	NUP218-E-TVP3	M6, MA6, MPA
	160	40	273	319	36,3	3300	5000	NU2218-E-TVP3	M6, MA6, MPA
	160	40	273	319	36,3	3300	5000	NJ2218-E-TVP3	M6, MA6, MPA
	160	40	273	319	36,3	3300	5000	NUP2218-E-TVP3	M6, MA6, MPA
	190	43	353	356	39,2	3700	4500	N318-E-M6	
	190	43	353	356	39,2	3700	4500	NU318-E-TVP3	M6, MA6, MPA
	190	43	353	356	39,2	3700	4500	NJ318-E-TVP3	M6, MA6, MPA
	190	43	353	356	39,2	3700	4500	NUP318-E-TVP3	M6, MA6, MPA
	190	64	486	536	59	3000	4500	NU2318-E-TVP3	M6, MA6, MPA
	190	64	486	536	59	3000	4500	NJ2318-E-TVP3	M6, MA6, MPA
	190	64	486	536	59	3000	4500	NUP2318-E-TVP3	M6, MA6, MPA
	225	54	407	447	47,5	3400	4000	NU418-M	
	225	54	407	447	47,5	3400	4000	NJ418-M	
	225	54	407	447	47,5	3400	4000	NUP418-M	

-s

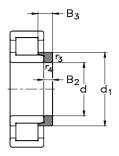
Anschlussmaße siehe Seite 547

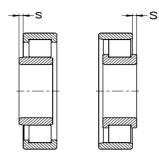

Abutment and fillet dimensions see on page 547

NJ...+ HJ...

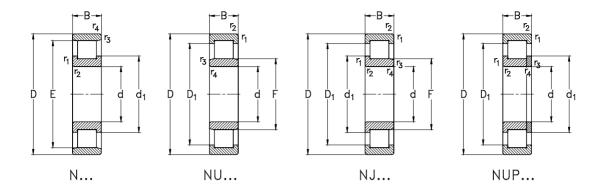
			[mm]	Ū			Winke			Gewicht [kg] Weight		
		_	g dimens [mm]	sions			Thrust	collar			reight [kg]	
d	E,F	d₁ ≈	D₁ ≈	r ₁ , r ₂ min	r ₃ , r ₄ min	s ≈	Bezeichnung Designation	B ₂	B ₃	Lager Bearing	Winkelring Thrust collar	
85	108	118	152,4	3	3					6,9		
	113		165	4	4	2,8	-			9,8		
	113	126	165	4	4	2,8	HJ417	14	24	9,8	0,92	
	113	126	165	4	4					9,8		
90	102		125	1,5	1,1	1,9				1,4		
	145	114,5		2	2	1,5				2,4		
	107		139,5	2	2	1,5				2,4		
	107	114,5	139,5	2	2	1,5	HJ218-E	9	14	2,7	0,33	
	107	114,5	139,5	2	2					2,7		
	107		139,5	2	2	2,5				3,2		
	107	114,5	139,5	2	2	2,5	HJ2218-E	9	15	3,2	0,32	
	107	114,5	139,5	2	2					3,2		
	169,5	124		3	3	1,5				5,4		
	113,5		161,4	3	3	1,5				5,4		
	113,5	124	161,4	3	3	1,5	HJ318-E	12	18,5	5,4	0,63	
	113,5	124	161,4	3	3					5,4		
	113,5		161,4	3	3	5				8,1		
	113,5	124	161,4	3	3	5	HJ2318-E	12	22	8,1	0,68	
	113,5	124	161,4	3	3					8,1		
	123,5		179	4	4	3,3				11,5		
	123,5	137	179	4	4	3,3	HJ418	14	24	11,5	1,1	
	123,5	137	179	4	4					11,5		

Einreihige Zylinderrollenlager Single Row Cylindrical Roller Bearings





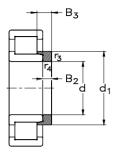
Haupt	abmessi [mm]	ungen	Tra	agzahle [kN]	∍n	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Lagertype	Alternative Käfige
Bound	lary dime [mm]	nsions	Lo	ad ratin [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Designation	Alternative cages
d	D	В	C _r dyn.	C ₀r stat.	C _u	$n_{e_{r}}$	n _G		
95	145	24	125	164	18,9	4200	8000	NU1019-E-MPA	M6
	170	32	247	267	29,9	3700	4800	N219-E-M6	
	170	32	247	267	29,9	3700	4800	NU219-E-TVP3	M6, MA6, MPA
	170	32	247	267	29,9	3700	4800	NJ219-E-TVP3	M6, MA6, MPA
	170	32	247	267	29,9	3700	4800	NUP219-E-TVP3	M6, MA6, MPA
	170	43	320	373	41,7	3100	4800	NU2219-E-TVP3	M6, MA6, MPA
	170	43	320	373	41,7	3100	4800	NJ2219-E-TVP3	M6, MA6, MPA
	170	43	320	373	41,7	3100	4800	NUP2219-E-TVP3	M6, MA6, MPA
	200	45	374	389	42	3600	4300	N319-E-M6	
	200	45	374	389	42	3600	4300	NU319-E-TVP3	M6, MA6, MPA
	200	45	374	389	42	3600	4300	NJ319-E-TVP3	M6, MA6, MPA
	200	45	374	389	42	3600	4300	NUP319-E-TVP3	M6, MA6, MPA
	200	67	514	585	63	2900	4300	NU2319-E-TVP3	M6, MA6, MPA
	200	67	514	585	63	2900	4300	NJ2319-E-TVP3	M6, MA6, MPA
	200	67	514	585	63	2900	4300	NUP2319-E-TVP3	M6, MA6, MPA
	240	55	434	492	51,4	3100	3600	NU419-M	-
	240	55	434	492	51,4	3100	3600	NJ419-M	
	240	55	434	492	51,4	3100	3600	NUP419-M	
100	150	24	129	172	19,6		7500	NU1020-E-MPA	M6
	180	34	279	308	33,9		4500	N220-E-M6	
	180	34	279	308	33,9		4500	NU220-E-TVP3	M6, MA6, MPA
	180	34	279	308	33,9		4500	NJ220-E-TVP3	M6, MA6, MPA

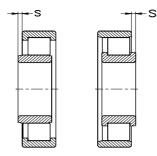

Abutment and fillet dimensions see on page 547

NJ...+ HJ...

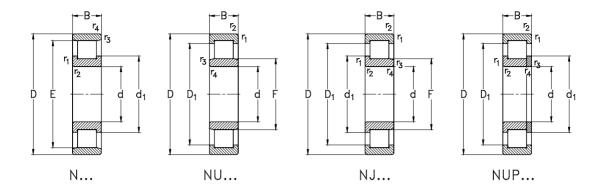
		Lageral	omessu [mm]	ngen			Winke	elring		Gewicht [kg]		
			g dimens [mm]	sions			Thrust	collar			/eight [kg]	
d	E,F	d₁ ≈	D₁ ≈	r ₁ , r ₂ min	r ₃ , r ₄ min	s ≈	Bezeichnung Designation	B ₂	B ₃	Lager Bearing	Winkelring Thrust collar	
95	107		130	1,5	1,1	1,9	-			1,4		
	154,5	120,7		2,1	2,1	1,7				2,8		
	112,5		148,5	2,1	2,1	1,7				2,8		
	112,5	120,7	148,5	2,1	2,1	1,7	HJ219-E	9	14	2,8	0,35	
	112,5	120,7	148,5	2,1	2,1					2,8		
	112,5		148,5	2,1	2,1	2,2				3,8		
	112,5	120,7	148,5	2,1	2,1	2,2	HJ2219-E	9	15,5	3,8	0,37	
	112,5	120,7	148,5	2,1	2,1		-			3,8		
	177,5	132,2		3	3	1,4				6,3		
	121,5		169,3	3	3	1,4				6,3		
	121,5	132,5	169,3	3	3	1,4	HJ319-E	13	20,5	6,3	0,8	
	121,5	132,5	169,3	3	3		-			6,3		
	121,5		169,3	3	3	5,6	-			9,3		
	121,5	132,2	169,3	3	3	5,6	HJ2319-E	13	24,5	9,3	0,83	
	121,5	132,2	169,3	3	3		-			9,3		
	133,5		189	4	4	3,3	-			13,8		
	133,5	147	189	4	4	3,3	HJ419	15	25,5	13,8	1,3	
	133,5	147	189	4	4		-			13,8		
100	112		135	1,5	1,1	1,9				1,5		
	163	127,3		2,1	2,1	1,5	-			3,44		
	119		154,8	2,1	2,1	1,5	-			3,44		
	119	127,3	154,8	2,1	2,1	1,5	HJ220-E	10	15	3,44	0,44	

Single Row Cylindrical Roller Bearings





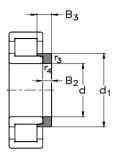
Haupta	abmess [mm]	ungen	Tra	agzahle [kN]	en	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Lagertype	Alternative Käfige
Bounda	ary dime [mm]	nsions	Lo	ad ratin [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Designation	Alternative cages
d	D	В	C _r dyn.	C ₀r stat.	C _u	n _{θr}	n _G		
100	180	34	279	308	33,9		4500	NUP220-E-TVP3	M6, MA6, MPA
	180	46	373	447	49,2	-	4500	NU2220-E-TVP3	M6, MA6, MPA
	180	46	373	447	49,2		4500	NJ2220-E-TVP3	M6, MA6, MPA
	180	46	373	447	49,2		4500	NUP2220-E-TVP3	M6, MA6, MPA
	215	47	430	435	46,1	3400	3800	N320-E-M6	
	215	47	430	435	46,1	3400	3800	NU320-E-TVP3	M6, MA6, MPA
	215	47	430	435	46,1	3400	3800	NJ320-E-TVP3	M6, MA6, MPA
	215	47	430	435	46,1	3400	3800	NUP320-E-TVP3	M6, MA6, MPA
	215	73	642	728	77,1	2500	3800	NU2320-E-TVP3	M6, MA6, MPA
	215	73	642	728	77,1	2500	3800	NJ2320-E-TVP3	M6, MA6, MPA
	215	73	642	728	77,1	2500	3800	NUP2320-E-TVP3	M6, MA6, MPA
	250	58	450	502	52	3100	3600	NU420-M	
	250	58	450	502	52	3100	3600	NJ420-M	
	250	58	450	502	52	3100	3600	NUP420-M	
105	160	26	149	194	21,6	3900	7500	NU1021-E-MPA	M6
	190	36	294	315	34,1	3500	4300	N221-E-M6	
	190	36	294	315	34,1	3500	4300	NU221-E-TVP3	M6, MA6, MPA
	190	36	294	315	34,1	3500	4300	NJ221-E-TVP3	M6, MA6, MPA
	190	36	294	315	34,1	3500	4300	NUP221-E-TVP3	M6, MA6, MPA
	225	49	483	492	51,4	3200	3800	N321-E-M6	
	225	49	483	492	51,4	3200	3800	NU321-E-TVP3	M6, MA6, MPA
	225	49	483	492	51,4	3200	3800	NJ321-E-TVP3	M6, MA6, MPA

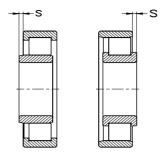

Abutment and fillet dimensions see on page 547

NJ...+ HJ...

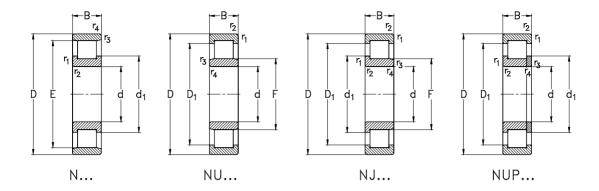
			omessu [mm] a dimens				Winke Thrust			Gewicht [kg] Weight		
			[mm]								[kg]	
d	E,F	d₁ ≈	D₁ ≈	r ₁ , r ₂ min	r ₃ , r ₄ min	s ≈	Bezeichnung Designation	B ₂	B ₃	Lager Bearing	Winkelring Thrust collar	
100	119	127,3	154,8	2,1	2,1					3,44		
	119		154,8	2,1	2,1	2,5	-			5,5		
	119	127,3	154,8	2,1	2,1	2,5	HJ2220-E	10	16	5,5	0,45	
	119	127,3	154,8	2,1	2,1		-			5,5		
	191,5	139,6		3	3	1,2				7,7		
	127,5		182,5	3	3	1,2	-			7,7		
	127,5	139,6	182,5	3	3	1,2	HJ320-E	13	20,5	7,7	0,9	
	127,5	139,6	182,5	3	3		-			7,7		
	127,5		182,5	3	3	4,2				12		
	127,5	139,6	182,5	3	3	4,2	HJ2320-E	13	23,5	12	0,95	
	127,5	139,6	182,5	3	3					12		
	139		198	4	4	3,3				15,8		
	139	153,5	198	4	4	3,3	HJ420	16	27	15,8	1,6	
	139	153,5	198	4	4					15,8		
105	119,5	124,7	140,3	2	1,1	3,8				1,9		
	173	134,2		2,1	2,1	1,3				4,1		
	125		163,7	2,1	2,1	1,3				4,1		
	125	134,2	163,7	2,1	2,1	1,3	HJ221-E	10	16	4,1	0,52	
	125	134,2	163,7	2,1	2,1					4,1		
	201	145		3	3	3,4				9,1		
	133		191	3	3	3,4				9,1		
	133	145	191	3	3	3,4	HJ321-E	13	20,5	9,1	1	

Single Row Cylindrical Roller Bearings





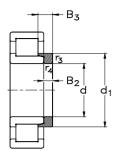
Haupt	abmess [mm]	ungen	Tra	agzahle [kN]	en	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Lagertype	Alternative Käfige
Bound	lary dime [mm]	nsions	Lo	ad ratin [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Designation	Alternative cages
d	D	В	C _r dyn.	C ₀r stat.	C _u	n _{θr}	n _G		
105	225	49	483	492	51	3200	3800	NUP321-E-TVP3	M6, MA6, MPA
	260	60	499	560	57	2800	3400	NU421-M	
	260	60	499	560	57	2800	3400	NJ421-M	
	260	60	499	560	57	2800	3400	NUP421-M	
110	170	28	160	215	23,7	3800	7000	NU1022-E-MPA	M6
	200	38	328	368	39,2	3300	4000	N222-E-M6	
	200	38	328	368	39,2	3300	4000	NU222-E-TVP3	M6, MA6, MPA
	200	38	328	368	39,2	3300	4000	NJ222-E-TVP3	M6, MA6, MPA
	200	38	328	368	39,2	3300	4000	NUP222-E-TVP3	M6, MA6, MPA
	200	53	429	520	55	2800	4000	NU2222-E-TVP3	M6, MA6, MPA
	200	53	429	520	55	2800	4000	NJ2222-E-TVP3	M6, MA6, MPA
	200	53	429	520	55	2800	4000	NUP2222-E-TVP3	M6, MA6, MPA
	240	50	511	537	55	2900	3400	N322-E-M6	
	240	50	511	537	55	2900	3400	NU322-E-TVP3	M6, MA6, MPA
	240	50	511	537	55	2900	3400	NJ322-E-TVP3	M6, MA6, MPA
	240	50	511	537	55	2900	3400	NUP322-E-TVP3	M6, MA6, MPA
	240	80	759	892	92	2200	3400	NU2322-E-TVP3	M6, MA6, MPA
	240	80	759	892	92	2200	3400	NJ2322-E-TVP3	M6, MA6, MPA
	240	80	759	892	92	2200	3400	NUP2322-E-TVP3	M6, MA6, MPA
	280	65	551	626	62	2600	3200	NU422-M	
	280	65	551	626	62	2600	3200	NJ422-M	
	280	65	551	626	62	2600	3200	NUP422-M	

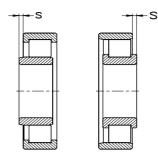

Abutment and fillet dimensions see on page 547

NJ...+ HJ...

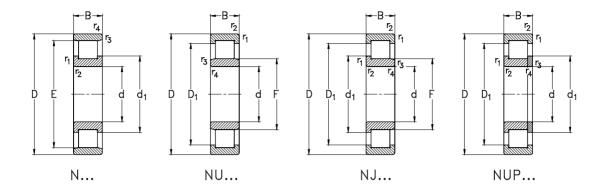
		Lagerat	omessu [mm]	ngen			Winke	elring		Gewicht [kg]		
		_	dimens [mm]	sions			Thrust	collar			/eight [kg]	
d	E,F	d₁ ≈	D₁ ≈	r ₁ , r ₂ min	r ₃ , r ₄ min	s ≈	Bezeichnung Designation	B ₂	B ₃	Lager Bearing	Winkelring Thrust collar	
105	133	145	191	3	3					9,1		
	144,5		207	4	4	3,2				17,5		
	144,5	159,5	207	4	4	3,2	HJ421	16	27	17,5	1,7	
	144,5	159,5	207	4	4					17,5		
110	125		149,5	2	1,1	2,1				2,4		
	180,5	141,6		2,1	2,1	1,5				4,9		
	132,5		174,6	2,1	2,1	1,5				4,9		
	132,5	141,6	174,6	2,1	2,1	1,5	HJ222-E	11	17	4,9	0,62	
	132,5	141,6	174,6	2,1	2,1					4,9		
	132,5		174,6	2,1	2,1	4				6,7		
	132,5	141,6	174,6	2,1	2,1	4	HJ2222-E	11	19,5	6,7	0,65	
	132,5	141,6	174,6	2,1	2,1		-			6,7		
	211	155,9		3	3	1,3				10,5		
	143		201,7	3	3	1,3				10,5		
	143	155,9	201,7	3	3	1,3	HJ322-E	14	22	10,5	1,2	
	143	155,9	201,7	3	3		-			10,5	-	
	143		201,7	3	3	5,8				17		
	143	155,9	201,7	3	3	5,8	HJ2322-E	14	26,5	17	1,3	
	143	155,9	201,7	3	3					17		
	155		220,5	4	4	3,3	-			20,8		
	155	171	220,5	4	4	3,3	HJ422	17	29,5	20,8	2,1	
	155	171	220,5	4	4		-			20,8	-	

Single Row Cylindrical Roller Bearings





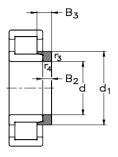
Haupta	abmess [mm]	ungen	Tra	agzahle [kN]	en	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Lagertype	Alternative Käfige
Bound	ary dime [mm]	nsions	Lo	ad ratin [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Designation	Alternative cages
d	D	В	C _r dyn.	C ₀r stat.	C _u	n _{er}	n _G		
120	180	28	169	237	25,5	3500	6300	NU1024-E-MPA	M6
	215	40	380	431	44,9	3000	3600	N224-E-M6	
	215	40	380	431	44,9	3000	3600	NU224-E-TVP3	M6, MA6, MPA
	215	40	380	431	44,9	3000	3600	NJ224-E-TVP3	M6, MA6, MPA
	215	40	380	431	44,9	3000	3600	NUP224-E-TVP3	M6, MA6, MPA
	215	58	509	629	66	2500	3600	NU2224-E-TVP3	M6, MA6, MPA
	215	58	509	629	66	2500	3600	NJ2224-E-TVP3	M6, MA6, MPA
	215	58	509	629	66	2500	3600	NUP2224-E-TVP3	M6, MA6, MPA
	260	55	591	615	62	2700	3200	N324-E-M6	
	260	55	591	615	62	2700	3200	NU324-E-TVP3	M6, MA6, MPA
	260	55	591	615	62	2700	3200	NJ324-E-TVP3	M6, MA6, MPA
	260	55	591	615	62	2700	3200	NUP324-E-TVP3	M6, MA6, MPA
	260	86	885	1033	104	2000	4300	NU2324-E-TVP3	M6, MA6, MPA
	260	86	885	1033	104	2000	4300	NJ2324-E-TVP3	M6, MA6, MPA
	260	86	885	1033	104	2000	4300	NUP2324-E-TVP3	M6, MA6, MPA
	310	72	680	780	76	2300	3000	NU424-M	
	310	72	680	780	76	2300	3000	NJ424-M	
130	200	33	218	300	31,4	3400	5600	NU1026-E-MPA	M6
	230	40	406	456	46,5	2800	3400	N226-E-M6	
	230	40	406	456	46,5	2800	3400	NU226-E-TVP3	M6, MA6, MPA
	230	40	406	456	46,5	2800	3400	NJ226-E-TVP3	M6, MA6, MPA
	230	40	406	456	46,5	2800	3400	NUP226-E-TVP3	M6, MA6, MPA

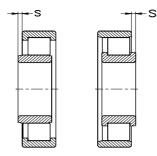

Abutment and fillet dimensions see on page 547

NJ...+ HJ...

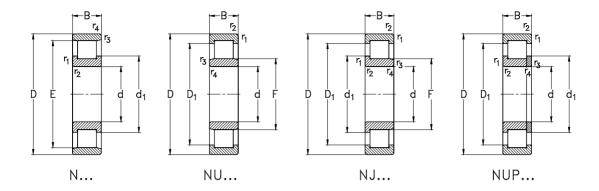
			omessu [mm] g dimens				Winke <i>Thrust</i>			Gewicht [kg] Weight		
			[mm]								[kg]	
d	E,F	d₁ ≈	D₁ ≈	r ₁ , r ₂ min	r ₃ , r ₄ min	s ≈	Bezeichnung Designation	B ₂	B ₃	Lager Bearing	Winkelring Thrust collar	
120	135		159,5	2	1,1	0,9				2,5		
	195,5	153,5		2,1	2,1	1,4	-			5,7		
	143,5		188	2,1	2,1	1,4				5,7		
	143,5	153,5	188	2,1	2,1	1,4	HJ224-E	11	17	5,7	0,72	
	143,5	153,5	188	2,1	2,1					5,7		
	143,5		188	2,1	2,1	4,5	-			8,3		
	143,5	153,5	188	2,1	2,1	4,5	HJ2224-E	11	20	8,3	0,75	
	143,5	153,5	188	2,1	2,1		-			8,3	-	
	230	168,7		3	3	3,5				13,4		
	154		219	3	3	3,5				13,4		
	154	168,7	219	3	3	3,5	HJ324-E	14	22,5	13,4	1,4	
	154	168,7	219	3	3					13,4		
	154		219	3	3	7,2				23,5		
	154	168,7	219	3	3	7,2	HJ2324-E	14	26	23,5	1,5	
	154	168,7	219	3	3					23,5		
	170		244	5	5	3,3				30,5		
	170	188	244	5	5	3,3	HJ424	17	30,5	30,5	2,7	
130	147		178	2	1,1	2,6				3,8		
	209,5	1642		3	3	1,2				6,5		
	153,5		202,6	3	3	1,2				6,5		
	153,5	164,2	202,6	3	3	1,2	HJ226-E	11	17	6,5	0,8	
	153,5	164,2	202,6	3	3					6,5		

Single Row Cylindrical Roller Bearings





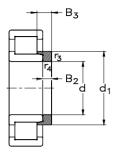
Haupt	abmess [mm]	ungen	Tra	agzahle [kN]	en	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Lagertype	Alternative Käfige
Bound	lary dime [mm]	nsions	Lo	ad ratin [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Designation	Alternative cages
d	D	В	C _r dyn.	C ₀r stat.	C _u	$\mathbf{n}_{\theta r}$	n _G		
130	230	64	591	739	75,4	2300	3400	NU2226-E-TVP3	M6, MA6, MPA
	230	64	591	739	75	2300	3400	NJ2226-E-TVP3	M6, MA6, MPA
	230	64	591	739	75	2300	3400	NUP2226-E-TVP3	M6, MA6, MPA
	280	58	690	741	73	2300	3000	N326-E-M6	
	280	58	690	741	73	2300	3000	NU326-E-TVP3	M6, MA6, MPA
	280	58	690	741	73	2300	3000	NJ326-E-TVP3	M6, MA6, MPA
	280	58	690	741	73	2300	3000	NUP326-E-TVP3	M6, MA6, MPA
	280	93	1028	1238	121	1800	3800	NU2326-E-TVP3	M6, MA6, MPA
	280	93	1028	1238	121	1800	3800	NJ2326-E-TVP3	M6, MA6, MPA
	280	93	1028	1238	121	1800	3800	NUP2326-E-TVP3	M6, MA6, MPA
	340	78	831	967	91	2000	2800	NU426-M	
	340	78	831	967	91	2000	2800	NJ426-M	-
140	210	33	231	329	33,9	3100	5300	NU1028-E-MPA	M6
	250	42	438	517	51	2600	3200	N228-E-M6	
	250	42	438	517	51	2600	3200	NU228-E-M6	MA6, MPA
	250	42	438	517	51	2600	3200	NJ228-E-M6	MA6, MPA
	250	42	438	517	51	2600	3200	NUP228-E-M6	MA6, MPA
	250	68	638	838	83	2100	4800	NU2228-E-M6	MA6, MPA
	250	68	638	838	83	2100	4800	NJ2228-E-M6	MA6, MPA
	250	68	638	838	83	2100	4800	NUP2228-E-M6	MA6, MPA
	300	62	746	808	78	2200	2800	N328-E-M6	
	300	62	746	808	78	2200	2800	NU328-E-M6	MA6, MPA

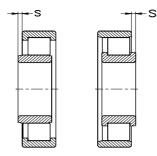

Abutment and fillet dimensions see on page 547

NJ...+ HJ...

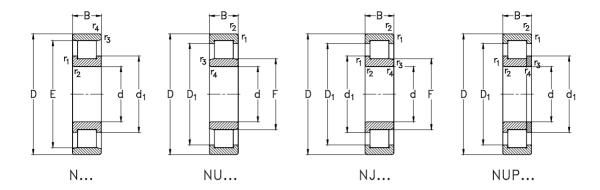
		Lagerabmessungen [mm] Bearing dimensions					Winke Thrust			Gewicht [kg] <i>Weight</i>		
		_	[mm]	SIUIIS			TTITUSE	Conar			[kg]	
d	E,F	d₁ ≈	D₁ ≈	r ₁ , r ₂ min	r ₃ , r ₄ min	s ≈	Bezeichnung Designation	B ₂	B ₃	Lager Bearing	Winkelring Thrust collar	
130	153,5		202,6	3	3	5,2				10,5		
	153,5	164,2	202,6	3	3	5,2	HJ2226-E	11	21	10,5	0,85	
	153,5	164,2	202,6	3	3					10,5		
	247	182,3		4	4	3,5	-			16,5		
	167		235,7	4	4	3,5				16,5		
	167	182,3	235,7	4	4	3,5	HJ326E	14	23	16,5	1,7	
	167	182,3	235,7	4	4		-			16,5		
	167		235,7	4	4	8,1	-			29,6		
	167	182,3	235,7	4	4	8,1	HJ2326-E	14	28	29,6	1,8	
	167	182,3	235,7	4	4		-			29,6		
	185	205		6	5	4				42,6		
	185	205	267	6	5	4	HJ426	18	32	42,6	3,4	
140	157		188	2	1,1	2,6				4,1		
	225	180		3	3	2				9,5		
	169		217	3	3	2				9,5		
	169	180	217	3	3	2	HJ228-E	11	18	9,5	1	
	169	180	217	3	3					9,5		
	169	-	217	3	3	7	-	-		15,5		
	169	180	217	3	3	7	HJ2228-E	11	23	15,5	1,1	
	169	180	217	3	3		-			15,5		
	264	195,5		4	4	5,2	-			22,5		
	180		252	4	4	5,2	-	-		22,5		

Single Row Cylindrical Roller Bearings





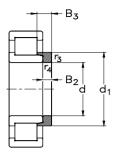
Haupt	auptabmessungen Tragzahlen [mm] [kN]		n	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Lagertype	Alternative Käfige		
Bound	ary dime [mm]	ensions	Lo	ad ratin [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Designation	Alternative cages
d	D	В	C _r dyn.	C ₀r stat.	C _u	n _{er}	n _G		
140	300	62	746	808	78	2200	2800	NJ328-E-M6	MA6, MPA
	300	62	746	808	78	2200	2800	NUP328-E-M6	MA6, MPA
	300	102	1141	1396	134	1600	3600	NU2328-E-M6	MA6, MPA
	300	102	1141	1396	134	1600	3600	NJ2328-E-M6	MA6, MPA
	300	102	1141	1396	134	1600	3600	NUP2328-E-M6	MA6, MPA
	360	82	896	1055	98	1800	2600	NU428-M	
	360	82	896	1055	98	1800	2600	NJ428-M	
150	225	35	244	347	35	3000	5000	NU1030-E-MPA	M6
	270	45	500	597	58	2400	2800	N230-E-M6	
	270	45	500	597	58	2400	2800	NU230-E-M6	MA6, MPA
	270	45	500	597	58	2400	2800	NJ230-E-M6	MA6, MPA
	270	45	500	597	58	2400	2800	NUP230-E-M6	MA6, MPA
	270	73	738	985	96	1900	2800	NU2230-E-M6	MA6, MPA
	270	73	738	985	96	1900	2800	NJ2230-E-M6	MA6, MPA
	270	73	738	985	96	1900	2800	NUP2230-E-M6	MA6, MPA
	320	65	852	934	88	2000	2600	N330-E-M6	
	320	65	852	934	88	2000	2600	NU330-E-M6	MA6, MPA
	320	65	852	934	88	2000	2600	NJ330-E-M6	MA6, MPA
	320	65	852	934	88	2000	2600	NUP330-E-M6	MA6, MPA
	320	108	1300	1608	151	1500	3400	NU2330-E-M6	MA6, MPA
	320	108	1300	1608	151	1500	3400	NJ2330-E-M6	MA6, MPA
	320	108	1300	1608	151	1500	3400	NUP2330-E-M6	MA6, MPA


Abutment and fillet dimensions see on page 547

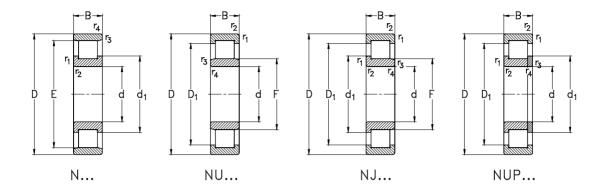
NJ...+ HJ...

		Lagerat	omessu [mm]	ngen			Winke	elring		Gewicht [kg]		
		_	dimens [mm]	ions			Thrust	collar			/eight [kg]	
d	E,F	d₁ ≈	D₁ ≈	r ₁ , r ₂ min	r ₃ , r ₄ min	s ≈	Bezeichnung Designation	B ₂	B ₃	Lager Bearing	Winkelring Thrust collar	
140	180	195,5	252	4	4	5,2	HJ328-E	15	25	22,5	2	
	180	195,5	252	4	4					22,5		
	180		252	4	4	9,2				37,2		
	180	195,5	252	4	4	9,2	HJ2328-E	15	31	37,2	2,2	
	180	195,5	252	4	4					37,2		
	198		283	6	5	4				49,5		
	198	219	283	6	5	4	HJ428	18	33	49,5	3,9	
150	168,5		199,1	2,1	1,5	2,9	-		-	5	-	
	242	193,7		3	3	2,5				11,8		
	182		233,5	3	3	2,5				11,8		
	182	193,7	233,5	3	3	2,5	HJ230-E	12	19,5	11,8	1,3	
	182	193,7	133,5	3	3					11,8		
	182		233,5	3	3	7,5				19,5		
	182	193,7	233,5	3	3	7,5	HJ2230-E	12	24,5	19,5	1,4	
	182	193,7	233,5	3	3					19,5		
	283	210,1		4	4	5,5				27,5		
	193		269,5	4	4	5,5				27,5		
	193	210,1	269,5	4	4	5,5	HJ330-E	15	25	27,5	2,4	
	193	210,1	269,5	4	4					27,5		
	193		269,5	4	4	9,7				44,8		
	193	210,1	269,5	4	4	9,7	HJ2330-E	15	31,5	44,8	2,5	
	193	210,1	269,5	4	4					44,8		

Single Row Cylindrical Roller Bearings



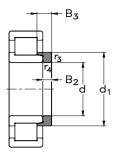
Haupt	abmess [mm]	ungen	Tra	agzahle [kN]	en	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Lagertype	Alternative Käfige
Bound	ary dime [mm]	ensions	Lo	ad ratin [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Designation	Alternative cages
d	D	В	C _r dyn.	C ₀r stat.	C _u	n _{er}	n _G		
150	380	85	954	1160	106	1700	2400	NU430-M	
	380	85	954	1160	106	1700	2400	NJ430-M	
160	240	38	304	440	43,5	2800	4800	NU1032-E-MPA	M6
	290	48	566	683	65	2200	2600	N232-E-M6	
	290	48	566	683	65	2200	2600	NU232-E-M6	MA6, MPA
	290	48	566	683	65	2200	2600	NJ232-E-M6	MA6, MPA
	290	48	566	683	65	2200	2600	NUP232-E-M6	MA6, MPA
	290	80	910	1207	115	1700	3600	NU2232-E-M6	MA6, MPA
	290	80	910	1207	115	1700	3600	NJ2232-E-M6	MA6, MPA
	290	80	910	1204	115	1700	3600	NUP2232-E-M6	MA6, MPA
	340	68	964	1066	99	1800	2400	N332-E-M6	
	340	68	964	1066	99	1800	2400	NU332-E-M6	MA6, MPA
	340	68	964	1066	99	1800	2400	NJ332-E-M6	MA6, MPA
	340	114	1320	1832	169	1300	2800	NU2332-E-M6	MA6, MPA
	340	114	1320	1832	169	1300	2800	NJ2332-E-M6	MA6, MPA
170	260	42	375	539	52	2600	4300	NU1034-E-MPA	M6
	310	52	676	808	76	2000	2400	N234-E-M6	
	310	52	676	808	76	2000	2400	NU234-E-M6	MA6, MPA
	310	52	676	808	76	2000	2400	NJ234-E-M6	MA6, MPA
	310	86	1078	1421	133	1500	3200	NU2234-E-M6	MA6, MPA
	310	86	1078	1421	133	1500	3200	NJ2234-E-M6	MA6, MPA
	360	72	936	1166	106	1700	2200	N334-E-M6	

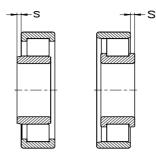

Abutment and fillet dimensions see on page 547

NJ...+ HJ...

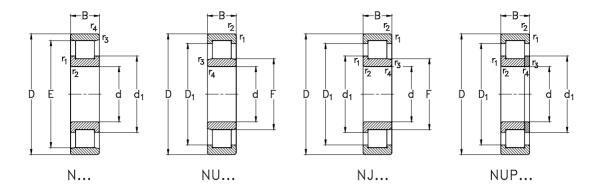
		Ū	bmessu [mm]	Ū			Winke			Gewicht [kg]		
			g dimens [mm]	sions			Thrust	collar		Weight [kg]		
d	E,F	d₁ ≈	D₁ ≈	r ₁ , r ₂ min	r ₃ , r ₄ min	S ≈	Bezeichnung Designation	B ₂	B ₃	Lager Bearing	Winkelring Thrust collar	
150	213		298	6	5	4				48		
	213	234	298	6	5	4	HJ430	20	36,5	48	4,9	
160	179		215	2,1	1,5	2,7				5,95		
	259	207,4		3	3	4,1				14,6		
	195		247,7	3	3	4,1				14,6		
	195	207,4	247,7	3	3	4,1	HJ232-E	12	20	14,6	1,5	
	195	207,4	247,7	3	3					14,6		
	193		250,1	3	3	7,2				24,5		
	193	206,1	250,1	3	3	7,2	HJ2232-E	12	24,5	24,5	1,6	
	193	206,1	250,1	3	3					24,5		
	300	221,6		4	4	5,6				32,3		
	204		286	4	4	5,6				32,3		
	204	221,6	286	4	4	5,6	HJ332-E	15	25	32,1	2,7	
	204		286	4	4	9,9				53,5		
	204	221,6	286	4	4	9,9	HJ2332-E	15	32	53,5	2,9	
170	191		231	2,1	2,1	3,3				8		
	279	220,8		4	4	4,3				18,2		
	207		268,55	4	4	4,3				18,2		
	207	220,8	268,55	4	4	4,3	HJ234-E	12	20	18,2	1,7	
	205		268,5	4	4	7,2				30		
	205	219,6	268,5	4	4	7,2	HJ2234-E	12	24	30	1,8	
	318	237		4	4	6				37,5		

Single Row Cylindrical Roller Bearings





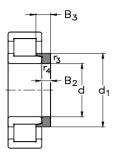
Haupt	Hauptabmessungen [mm] Boundary dimensions		Tragzahlen [kN]			Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Lagertype	Alternative Käfige
Bound	ary dime [mm]	ensions	Lo	ad rating [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Designation	Alternative cages
d	D	В	C _r dyn.	C ₀r stat.	C _u	n _{er}	n _G		
170	360	72	936	1166	106	1700	2200	NU334-E-M6	MA6, MPA
	360	72	936	1166	106	1700	2200	NJ334-E-M6	MA6, MPA
	360	120	1510	2105	191	1200	3000	NU2334-E-M6	MA6, MPA
	360	120	1510	2105	191	1200	3000	NJ2334-E-M6	MA6, MPA
180	280	46	443	631	60	2400	4000	NU1036-E-MPA	M6
	320	52	708	859	79	1900	3200	N236-E-M6	
	320	52	708	859	79	1900	3200	NU236-E-M6	MA6, MPA
	320	52	708	859	79	1900	3200	NJ236-E-M6	MA6, MPA
	320	86	1123	1516	140	1400	3200	NU2236-E-M6	MA6, MPA
	320	86	1123	1516	140	1400	3200	NJ2236-E-M6	MA6, MPA
	380	75	1063	1360	121	1500	2200	N336-E-M6	
	380	75	1063	1360	121	1500	2200	NU336-E-M6	MA6, MPA
	380	75	1063	1360	121	1500	2200	NJ336-E-M6	MA6, MPA
	380	126	1712	2394	214	1100	2800	NU2336-E-M6	MA6, MPA
	380	126	1712	2394	214	1100	2800	NJ2336-E-M6	MA6, MPA
190	290	46	457	665	62	2300	3800	NU1038-E-MPA	M6
	340	55	698	962	87	1700	3000	N238-E-M6	
	340	55	698	962	87	1700	3000	NU238-E-M6	MA6, MPA
	340	55	698	962	87	1700	3000	NJ238-E-M6	MA6, MPA
	340	92	1233	1678	152	1300	3000	NU2238-E-M6	MA6, MPA
	340	92	1233	1678	152	1300	3000	NJ2238-E-M6	MA6, MPA
	400	78	1142	1476	130	1400	2000	NU338-E-M6	MA6, MPA

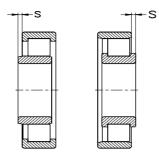

Abutment and fillet dimensions see on page 547

NJ...+ HJ...

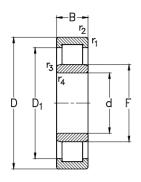
		Lageral	messu [mm]	ngen			Winke	elring	Gewicht [kg]		
			dimens [mm]	sions			Thrust	collar			/eight [kg]
d	E,F	d₁ ≈	D₁ ≈	r ₁ , r ₂ min	r ₃ , r ₄ min	S ≈	Bezeichnung Designation	B ₂	B ₃	Lager Bearing	Winkelring Thrust collar
170	218		302	4	4	6				37,5	
	218	237	302	4	4	6	HJ334-E	18,5	29,5	37,5	
	216		303	4	4	10,2				62	
	216	235,7	303	4	4	10,2	HJ2334-E	21	38,5	62	3,7
180	204		249	2,1	2,1	3,4			-	10,5	
	289	230,2		4	4	4,7				19	
	217		278,5	4	4	4,7				19	
	217	230,2	278,5	4	4	4,7	HJ236-E	12	20	19	1,8
	215		279,6	4	4	7,2				31,5	
	215	229,6	279,6	4	4	7,2	HJ2236-E	12	24	32	1,9
	335	250,5		4	4	6,1				44	
	231		319,4	4	4	6,1				44	
	231	250,5	319,4	4	4	6,1	HJ336-E	19	30,5	44	3,9
	227		320,8	4	4	10,5				71,5	
	227	248	320,8	4	4	10,5				71,5	
190	214	-	259	2,1	2,1	3,4				11	
	306	244,6		4	4	4,7				24,5	
	230		295	4	4	4,7				24	
	230	244,6	295	4	4	4,7	HJ238-E	13	21,5	24,5	2,1
	228		296	4	4	8				39	
	228	243,3	296	4	4	8	HJ2238-E	13	26,5	37,9	2,4
	245		336	5	5	6,3				50	

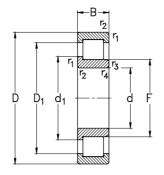
Single Row Cylindrical Roller Bearings





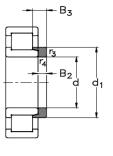
Haupt	ptabmessungen Tragzahlen [mm] [kN]		en	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Lagertype	Alternative Käfige		
Bound	lary dime [mm]	ensions	Lo	ad ratin [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Designation	Alternative cages
d	D	В	C _r dyn.	C ₀r stat.	C _u	n _{er}	n _G		
190	400	78	1142	1476	130	1400	2000	NJ338-E-M6	MA6, MPA
	400	132	1925	2707	237	1000	2600	NU2338-E-M6	MA6, MPA
	400	132	1925	2707	237	1000	2600	NJ2338-E-M6	MA6, MPA
200	310	51	509	744	68	2200	3000	NU1040-E-M6	MA6
	360	58	770	1070	96	1600	2800	N240-E-M6	
	360	58	770	1070	96	1600	2800	NU240-E-M6	MA6, MPA
	360	58	770	1070	96	1600	2800	NJ240-E-M6	MA6, MPA
	360	58	770	1070	96	1600	2800	NUP240-E-M6	MA6, MPA
	360	98	1228	1885	168	1200	2800	NU2240-E-M6	MA6, MPA
	360	98	1228	1885	168	1200	2800	NJ2240-E-M6	MA6, MPA
	420	80	1223	1595	138	1300	2400	NU340-E-M6	MA6, MPA
	420	80	1223	1595	138	1300	2400	NJ340-E-M6	MA6, MPA
	420	138	2079	2961	256	950	2400	NU2340-E-M6	MA6, MPA
	420	138	2079	2961	256	950	2400	NJ2340-E-M6	MA6, MPA

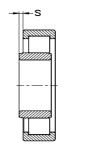

Abutment and fillet dimensions see on page 547

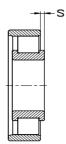

NJ...+ HJ...

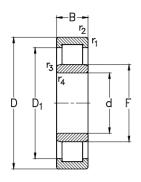
		Bearing	omessu [mm] dimens [mm]				W inke		Gewicht [kg] Weight [kg]		
d	E,F	d₁ ≈	D₁ ≈	r ₁ , r ₂ min	r ₃ , r ₄ min	s ≈	Bezeichnung Designation	B ₂	B_3	Lager Bearing	Winkelring Thrust collar
190	245	265,5	336	5	5	6,3	HJ338-E	17	29	50,5	4,5
	240		340,5	5	5	11	-			82,5	
	240	262,5	340,5	5	5	11				82,5	
200	227	-	275	2,1	2,1	4	-			14,5	-
	323	258,2		4	4	4,8				29	
	243		312,2	4	4	4,8				28,5	
	243	258,2	312,2	4	4	4,8	HJ240-E	14	23	29	2,6
	243	258,2	312,2	4	4	4,8				29,5	
	241		312,4	4	4	8,2				46	
	241	256,9	312,4	4	4	8,2	HJ2240-E	14	28	46	2,8
	258		351,8	5	5	6,3				57,5	
	258	279	351,8	5	5	6,3	HJ340-E	18	30	57,5	5,2
	253		356,9	5	5	11,3				97	
	253	276,1	356,9	5	5	11,3	HJ2340-E	18	37	97	5,5

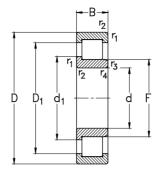
Einreihige Zylinderrollenlager Single Row Cylindrical Roller Bearings


NU...


NJ...

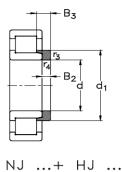

Haupt	abmess [mm]	ungen	Tra	agzahle [kN]	en	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Lagertype	Alternative Käfige
Bound	lary dime [mm]	ensions	Lo	ad rating [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Designation	Alternative cages
d	D	В	C _r dyn.	C ₀r stat.	C _u	$n_{\scriptscriptstyle{ hetar}}$	n _G		
220	340	56	573	854	76	2000	2800	NU1044-E-M6	MA6
	400	65	952	1338	116	1400	2400	NU244-E-M6	MA6, MPA
	400	65	952	1338	116	1400	2400	NJ244-E-M6	MA6, MPA
	400	108	1654	2408	209	1000	2400	NU2244-E-M6	MA6, MPA
	400	108	1654	2408	209	1000	2400	NJ2244-E-M6	MA6, MPA
	460	88	1485	1964	165	1100	1700	NU344-E-M6	MA6, MPA
	460	145	2388	3415	287	830	2200	NU2344-E-M6	MA6, MPA
240	360	56	604	936	82	1800	2600	NU1048-E-M6	MA6
	440	72	1119	1576	133	1300	2200	NU248-E-M6	MA6, MPA
	440	72	1119	1576	133	1300	2200	NJ248-E-M6	MA6, MPA
	440	120	1888	2855	240	950	2200	NU2248-E-M6	MA6, MPA
	500	95	1769	2370	195	990	2000	NU348-E-M6	MA6, MPA
	500	155	2638	3818	313	760	2000	NU2348-E-M6	MA6, MPA
260	400	65	788	1201	102	1600	2400	NU1052-E-M6	MA6
	480	80	1344	1916	157	1100	2000	NU252-E-M6	MA6, MPA
	480	80	1344	1916	157	1100	2000	NJ252-E-M6	MA6, MPA
	480	130	2124	3244	266	830	2000	NU2252-E-M6	MA6, MPA
	540	102	1867	2545	204	930	1800	NU352-E-M6	MA6, MPA
	540	165	3165	4606	370	660	1800	NU2352-E-M6	MA6, MPA
280	420	65	709	1157	97	1500	2200	NU1056-M6	MA6
	500	80	1444	2109	138	1100	1900	NU256-E-M6	MA6
	500	80	1444	2109	138	1100	1900	NJ256-E-M6	MA6

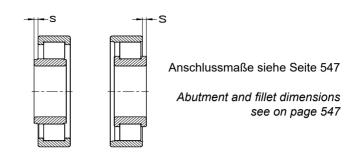

Abutment and fillet dimensions see on page 547


ΝJ	+	- HJ	
----	---	------	--

		Lageral	omessu [mm]	ngen			Winke	elring	Gewicht [kg]		
			dimens [mm]	sions			Thrust	collar			/eight [kg]
d	E,F	d₁ ≈	D₁ ≈	r ₁ , r ₂ min	r ₃ , r ₄ min	S ≈	Bezeichnung Designation	B ₂	B ₃	Lager Bearing	Winkelring Thrust collar
220	250		301	3	3	4,4				18,5	
	268		340	4	4	5,5				38,5	
	268	285,1	340	4	4	5,5	HJ244-E	15	25	39	3,3
	259		349,4	4	4	8,4				62,5	
	259	279,4	349,4	4	4	8,4	HJ2244-E	17,5	31,5	62,5	3,6
	282		386	5	5	7	-			72,5	
	277		391,2	5	5	11,9				120	
240	270		323	3	3	4,4			-	20	
	295		375,4	4	4	6				51,5	
	295	314	375,4	4	4	6	HJ248-E	16	27	52,5	4,65
	287		380,5	4	4	7,8				85,9	
	306		421,2	5	5	7,4				96,2	
	303		424	5	5	13,3				157	
260	294		354	4	4	5,3	HJ1052-E	18	31,5	29	3,3
	320		408,3	5	5	6,2				68,3	
	320	340,9	408,3	5	5	6,2	HJ252-E	20,5	33	68,3	6,2
	313		413,5	5	5	10,2				112	
	337		454,6	6	6	10	-			120	
	324		458,4	6	6	13,7				195	
280	316	-	369,7	4	4	8,3	HJ1056	16	31,5	32,8	3,6
	337		431	5	5	7,5				71,8	
	337	360	431	5	5	7,5	HJ256-E	21	33	71,8	6,5

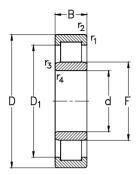
Single Row Cylindrical Roller Bearings


NU...


NJ...

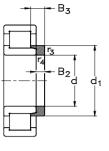
Haupta	abmess [mm]	ungen	Tra	agzahle [kN]	en	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Lagertype	Alternative Käfige
Bounda	ary dime [mm]	ensions	Loa	ad ratin [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Designation	Alternative cages
d	D	В	C _r dyn.	C ₀r stat.	C _u	$n_{\theta r}$	$n_{\rm G}$		
280	500	130	2217	3841	282	740	1900	NU2256-E-M6	MA6
	580	108	2233	3118	246	800	1600	NU356-E-M6	MA6
300	460	74	913	1467	120	1400	2000	NU1060-M6	MA6
	540	85	1492	2244	178	950	1800	NU260-E-M6	MA6
	540	85	1492	2244	178	950	1800	NJ260-E-M6	MA6
	540	140	2583	4153	329	650	1800	NU2260-E-M6	MA6
320	480	74	935	1535	124	1300	1900	NU1064-M6	MA6
	580	92	1637	2458	191	890	1600	NU264-E-M6	MA6
	580	92	1637	2458	191	890	1600	NJ264-E-M6	MA6

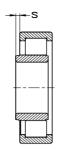
Single Row Cylindrical Roller Bearings

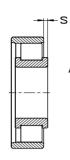


	Lagerabmessungen [mm]						Winkelring				Gewicht [kg]	
		Bearing	g dimens [mm]	ions			Thrust	collar			/eight [kg]	
d	E,F	d₁ ≈	D₁ ≈	r ₁ , r ₂ min	r ₃ , r ₄ min	s ≈	Bezeichnung Designation	B ₂	B_3	Lager Bearing	Winkelring Thrust collar	
280	333		433	5	5	10,5				117		
	362		488	6	6	12	-			147		
300	340	356	403,6	4	4	7,3	HJ1060	19	36	46,3	5,3	
	364		464	5	5	7,2	-			89,9		
	364	387	464	5	5	7.2	HJ260	22	34,5	89,9	8,4	
	359		472	5	5	12	-			148		
320	360	376	423,1	4	4	7,3	HJ1064	19	36	48,7	5,7	
	390		485,3	5	5	8,3	-			113		
	390	415	485,3	5	5	8,3	HJ264	17	37	113	10,5	

Einreihige Zylinderrollenlager Single Row Cylindrical Roller Bearings




NU...


Haupt	abmess [mm]	ungen	Tra	agzahle [kN]	n	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Lagertype	Alternative Käfige
Bound	ary dime [mm]	nsions	Lo	ad ratin [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Designation	Alternative cages
d	D	В	C _r dyn.	C ₀r stat.	C _u	n _{θr}	n _G		
340	520	82	1127	1841	145	1200	1700	NU1068-M6	MA6
360	540	82	1154	1924	149	1100	1600	NU1072-M6	MA6
380	560	82	1180	2008	154	1050	1200	NU1076-M6	MA6
400	600	90	1412	2396	180	970	1500	NU1080-M6	MA6
420	620	90	1443	2498	186	920	1400	NU1084-M6	MA6
440	650	94	1553	2712	199	860	1300	NU1088-M6	MA6
480	650	78	1169	2316	168	900	1100	NU1996-M6	MA6
	700	100	1752	3163	227	780	1200	NU1096-M6	MA6
500	670	78	1139	2261	162	850	1000	NU19/500-MA6	
	720	100	1787	3283	233	740	1100	NU10/500-M6	MA6
560	750	85	1460	3000	200	750	900	NU19/560-MA6	
	820	115	2688	5117	350	590	1000	NU10/560-M6	MA6
600	870	118	2864	5439	365	550	900	NU10/600-M6	MA6
630	850	100	1900	3900	280	670	800	NU19/630-MA6	
710	950	106	3079	6464	418	600	700	NU19/710-MA6	
	1030	140	4059	8021	511	430	800	NU10/710-M6	MA6

Single Row Cylindrical Roller Bearings

Anschlussmaße siehe Seite 547

Abutment and fillet dimensions see on page 547

N.J	+	HJ	

	Lagerabmessungen [mm]					Winkelring				Gewicht [kg]		
		Bearin	g dimens [mm]	ions			Thrust	collar			/eight [kg]	
d	E,F	d₁ ≈	D₁ ≈	r ₁ , r ₂ min	r ₃ , r ₄ min	S ≈	Bezeichnung Designation	B ₂	B ₃	Lager Bearing	Winkelring Thrust collar	
340	385		456	5	5	12,5	HJ1068	21	39,5	65	7,1	
360	405		476,4	5	5	11	HJ1072	21	39,5	68,2	7,6	
380	425		496,7	5	5	9	-			71,2		
400	450		529,5	5	5	13,5	-		-	92,5		
420	470		549,5	5	5	13,5	-			96,2		
440	493		575,7	6	6	9,8			-	110		
480	525		587	5	5	6,8				77,5		
	536		622	6	6	7,1	-			128		
500	545		606,8	5	5	6,8			-	80,4	-	
	556		641,7	6	6	10,5				139		
560	610		679,8	5	5	7,5			-	110	-	
	626		728	6	6	7,7				215		
600	668		779	6	6	13,9				240		
630	688		768,5	6	6	8,5				169		
710	774		860,6	6	6	9,3			-	219		
	790		918	7,5	7,5	12,5				400	-	

Vollrollige Zylinderrollenlager

Full Complement Cylindrical Roller Bearings

Vollrollige Zylinderrollenlager

Normen, Hauptabmessungen

Maßpläne DIN 616

Allgemeines:

Vollrollige Zylinderrollenlager haben keinen Käfig, um im vorhandenen Querschnitt möglichst viele Rollen unterzubringen. Daher weisen sie die größtmögliche radiale Tragfähigkeit auf.

Aufgrund der gegenseitigen Berührung der Rollen erzeugen vollrollige Zylinderrollenlager jedoch höhere Reibung und weisen dadurch eine niedrigere Richtdrehzahl auf als vergleichbare Zylinderrollenlager mit Käfig.

Vollrollige Zylinderrollenlager sind in der Regel nicht zerlegbar.

Die einzige Ausnahme stellen einreihige vollrollige Zylinderrollenlager der **Reihe NJ..-VH** dar, bei denen zur Vereinfachung des Einbaus der Innenring aus dem Lager genommen werden kann.

Bauformen vollrolliger Zylinderrollenlager

Vollrollige NKE Zylinderrollenlager werden in ein- und zweireihiger Ausführung gefertigt. Zweireihige Lager der Reihe NNF 50..-2LS-V werden standardmäßig in abgedichteter Ausführung geliefert.

Neben dem im folgenden vorgestellten NKE Standard-Lieferprogramm fertigen wir vollrollige Zylinderrollenlager auch nach Kundenspezifikationen sowie Zeichnungslager.

Full Complement Cylindrical Roller Bearings

Standards, Boundary Dimensions

Standard plans

DIN 616

General:

Full complement cylindrical roller bearings are designed, without cages, to accommodate the maximum number of cylindrical rollers in the space available. Thus this type of bearing features the maximum load ratings of all rolling element bearings.

However, this kind of bearing features a much higher internal friction, due to the rollers contacting each other during operation, resulting in lowered speed ability when compared to cylindrical roller bearings with cages fitted.

Full complement cylindrical roller bearings are normally non-separable bearings.

The only exception are single row full complement cylindrical roller bearings of the **series NJ..-VH**, that have separable inner rings for easier mounting.

Design Variants of Full Complement Cylindrical Roller Bearings

Full complement NKE cylindrical roller bearings are produced in both single and double row designs. Double row bearings of the series NNF 50..-2LS-V are produced with two contact seals fitted as standard.

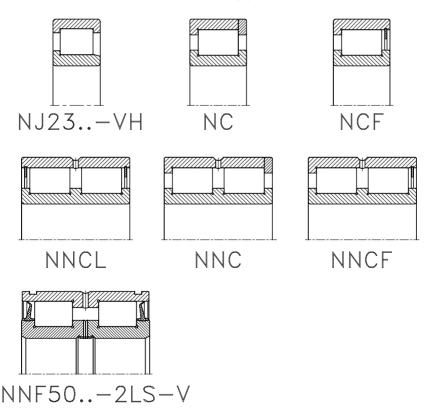
Additional to the standard product range of full complement cylindrical roller bearings, NKE also produces full complement bearings to individual customer specifications or special bearings on order request.

Einreihige Lager

Lagerreihe NJ23..-VH

Diese Lager entsprechen in ihren Hauptabmessungen den Zylinderrollenlagern mit Käfigen der Reihe NJ23, haben allerdings in der vollrolligen Ausführung einen anderen Laufbahndurchmesser (Durchmesser F).

Diese Lager haben zwei feste Borde am Außenring und einen festen Bord am Innenring und können einseitig auch kleinere Axialkräfte aufnehmen. Lager der Reihe NJ23 haben einen selbsthaltenden Rollensatz, wodurch die Rollen auch bei herausgenommenem Innenring nicht aus dem Außenring fallen (Nachsetzzeichen VH).


Single Row Bearings

Series NJ23..-VH

The main dimensions of these types of cylindrical roller bearings are identical to those with cage of the series NJ23..; except design where the inner ring raceway diameter (F) is different.

These bearings have two flanges in their outer ring and one on the inner ring. Thus they are able to accommodate minor thrust forces in one direction only.

Bearings of the series **NJ23** feature self-retaining roller assemblies that enable the removal of inner rings without loss of roller retention in the outer ring (suffix VH).

Vollrollige Zylinderrollenlager

Full Complement Cylindrical Roller Bearings

Lagerreihe NCF..

Diese Lager haben gleichfalls zwei feste Borde am Innenring, jedoch nur einen festen Bord am Außenring.

Auf der dem Bord gegenüberliegenden Seite des Außenringes haben Lager dieser Ausführung einen in einer Nut eingesetzten Sicherungsring, der ein Abgleiten des Außenringes verhindert.

Diese Lager können einseitig kleinere Axialkräfte aufnehmen. Durch die Verschiebemöglichkeit des Außenringes können diese Lager Längenänderungen bzw. Wärmedehnungen der Welle ausgleichen.

Zweireihige Lager

Zweireihige NKE Zylinderrollenlager in vollrolliger Ausführung haben zur Vereinfachung der Nachschmierung standardmäßig Schmiernuten und Schmierbohrungen an deren Außenringen.

Lagerreihe NNCL..

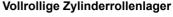
Zweireihige Lager der Ausführung **NNCL** haben einen Innenring mit drei festen Borden sowie einen bordlosen Außenring.

Der Außenring dieser Lager hat an jeder Seite einen in einer Nut eingesetzten Sicherungsring, die den Außenring während Transport und Montage fixiert.

Series NCF...

These bearing types also feature two flanges on the inner ring but only one flange on the outer ring.

On the outer ring side opposite to the flange they feature a retaining ring sitting in a circumferential groove to prevent the outer ring from sliding away. This bearing type is able to accommodate minor axial forces in one direction only and allows a compensation for changes in length caused by thermal expansion of the shaft and the outer ring positional movement.


Double Row Bearings

To facilitate re-lubrication **NKE** double row full complement cylindrical roller bearings are produced with lubricating grooves and relubricating holes on their outer rings as standard.

Series NNCL..

NNCL-type double row cylindrical roller bearings have an inner ring with three flanges and a plain outer ring.

The outer ring features two retaining rings sitting in circumferential grooves on either side of the raceway diameter to retain the outer ring and bearing assembly.

Full Complement Cylindrical Roller Bearings

Diese Lager können keine Axialkräfte aufnehmen.

Durch die Verschiebemöglichkeit des Außenringes können diese Lager Längenänderungen bzw. Wärmedehnungen der Welle ausgleichen und eignen sich somit als Loslager.

Lagerreihe NNC..

Zweireihige Lager der Ausführung NNC haben drei feste Borde am Innenring und einen Außenring, der auf einer Seite einen festen Bord sowie eine Bordscheibe an der anderen Seite aufweist. Diese Lager können Axialkräfte dadurch auch beidseitig aufnehmen. Sie eignen sich somit als Festlager.

Lagerreihe NNCF..

Diese Lager haben gleichfalls drei feste Borde am Innenring, jedoch nur einen festen Bord am Außenring.

Auf der dem Bord gegenüberliegenden Seite des Außenringes haben Lager dieser Ausführung einen in einer Nut eingesetzten Sicherungsring, der ein Abgleiten des Außenringes verhindert.

Diese Lager können einseitig kleinere Axialkräfte aufnehmen. Durch die Verschiebemöglichkeit des Außenringes können diese Lager Längenänderungen bzw. Wärmedehnungen der Welle ausgleichen.

Lagerreihe NNF..-2LS-V

Lager der Reihe **NNF..-2LS-V** haben einen geteilten Innenring mit jeweils zwei festen Borden sowie einen mit einem Mittelbord versehenen Außenring.

Die Innenringhälften werden zur Vereinfachung der Montage durch einen Ring zusammengehalten.

Die Lager sind standardmäßig mit schleifenden Dichtungen versehen.

NNCL-type bearings are unable to accommodate any axial forces.

These bearings allow a compensation for changes in length caused by thermal expansion of the shaft due to the outer ring's positional movement. This makes them optimum non-locating bearings.

Series NNC..

NNC-type double row cylindrical roller bearings have three flanges on their inner ring and an outer ring with a flange on one side and a loose rib on the opposite side.

This allows them to accommodate minor axial forces in both directions. Thus they may be used as locating bearings.

Series NNCF.

These bearing types also feature three flanges on the inner ring but only one flange on the outer ring.

On the outer ring side opposite to the flange they feature a retaining ring sitting in a circumferential groove to fix the outer.

This bearing type is able to accommodate minor axial forces in one direction only and allows a compensation of length changes caused by thermal expansion of the shaft and the outer ring's positional movement.

Series NNF..-2LS-V

Bearings of the **series NNF..-2LS-V** feature an outer ring with a centre flange and two semi-inner rings with two flanges on each half. The semi-inner rings are clamped together by a retaining ring which also retains the outer ring and bearing assembly for ease of mounting.

Each bearing is equipped with two contact rubbing seals fitted as standard.

Vollrollige Zylinderrollenlager

Full Complement Cylindrical Roller Bearings

Diese Lager eignen sich gut zur Aufnahme von in beiden Richtungen wirkenden Axialkräften und Kippmomenten.

Die Lager der Reihe NNF..-2LS-V werden schwerpunktmäßig zur Lagerung von Laufrädern und Seilscheiben verwendet. Daher ist der Außenring um 1 mm schmäler als der Innenring ausgeführt, wodurch auf zusätzliche Abstandsringe oder Distanzhülsen bei der aneinander gereihten Montage verzichtet werden kann. Zwei Sprengringnuten am Außenring-Manteldurchmesser des Lagers ermöglichen weiters eine einfache und kostengünstige Konstruktion von Seilscheibenlagerungen.

Da die Lager dieser Bauform abgedichtet geliefert werden, werden sie bereits werksseitig mit einem speziellen Tieftemperaturfett befüllt. Lager der Reihe NNF..-2LS-V sollten, speziell bei höheren Drehzahlen oder Einfluss von Salzwasser, hoher Luftfeuchtigkeit usw. häufig nachgeschmiert werden.

Dazu weisen die Lager zusätzlich zu den schon beschriebenen Schmierbohrungen im Außenring auch Schmierbohrungen am Innenring auf.

Bei der Ausführung mit dem Nachsetzzeichen -2NR sind der Lieferung 2 WRE Sprengringe lose beigelegt. Alternativ können auch Sicherungsringe nach DIN471 verwendet werden.

Schiefstellung

Bei den einreihigen vollrolligen Zylinderrollenlager sollte die Verkippung zwischen Innen- und Außenring einen Wert von 2 Winkelminuten nicht übersteigen.

Zweireihige vollrollige Zylinderrollenlager können keine Schiefstellungen ausgleichen.

Toleranzen

Vollrollige NKE Zylinderrollenlager werden standardmäßig mit Normaltoleranzen (Toleranzklasse PN) hergestellt.

These bearings are well suited for supporting axial forces acting in both directions and accommodating some tilting moments.

Bearings of the series NNF..-2LS-V are preferably used as rope pulley bearings. Therefore these bearings have an outer ring width that is 1 mm less than the width of their inner rings. This feature ensures that additional sleeves or distance pieces are not required for tandem mounting arrangements. Additionally, the two retaining rings grooves in the outer ring provide a method for simple and cost effective bearing arrangement design and mounting of rope pulleys.

As these bearings are fitted with two contact rubbing seals they are grease filled at the factory with an suitable low temperature bearing grease.

Bearings of the series **NNF..-2LS-V** which run at high speeds or under harsh operating conditions (e.g. salt water, high humidity and other contaminants) require more frequent lubrication. To enable alternative lubrication and maintenance methods, the half inner rings have lubrication grooves in their faces forming lubrication holes, additional, to the outer ring lubrication holes.

In the execution with the suffix -2NR, 2 **WRE snap rings** are included. Alternatively, circlips according to DIN471 can be used.

Misalignment

For single row full complement cylindrical roller bearings a misalignment between inner and outer ring must not exceed 2 angular minutes maximum.

Double row full complement cylindrical roller bearings, however, are not able to compensate misalignments.

Tolerances

Full complement cylindrical roller bearings are produced to normal tolerance class (PN) as standard.

Eine Ausnahme hiervon bilden die Lager der Baureihe NNC, bei denen die Toleranz der Außenringbreite (ΔC_s) einheitlich das Doppelte der Normaltoleranz beträgt, wobei die Werte symmetrisch zum Nominalwert liegen (\pm). Darüber hinaus beträgt die Schwankung der Außenringbreite (V_{cs}) das Dreifache der Normaltoleranz.

Auf Anfrage können vollrollige NKE Zylinderrollenlager auch mit anderen Toleranzen gefertigt werden.

Detaillierte Werte für die einzelnen Toleranzklassen entnehmen Sie bitte den Tabellen im Abschnitt "Lagerdaten / Toleranzen", ab Seite 54.

Lagerluft

Vollrollige NKE Zylinderrollenlager werden standardmäßig in Normalluft (Luftgruppe CN) geliefert.

Auf Anfrage können alle Lager auch mit anderen Luftwerten gefertigt werden.

Lufttabellen siehe Seite 540.

Die darin enthaltenen Werte entsprechen, sofern diese genormt sind, den Festlegungen in DIN 620/ Teil 4 bzw. ISO 5753-1991.

Mindestbelastung:

Zum kinematisch korrekten Betrieb benötigen Wälzlager in allen Betriebszuständen eine Mindestbelastung.

Für vollrollige NKE Zylinderrollenlager muss die Mindestradialbelastung 4% der dynamischen Tragzahl betragen.

Except for bearings of series NNC which have a tolerance for outer ring width (ΔC_s) of double the normal tolerance, also the tolerance field lies symmetric to the nominal (\pm) .

Additionally, the value for the variation of outer ring width (V_{cs}) is three times the normal tolerance value.

On request NKE full complement cylindrical roller bearings are produced to other tolerance classes.

Detailed tolerance values are listed in the chapter "Bearing Data / Tolerances" on page 239.

Internal Clearance

NKE full complement cylindrical roller bearings are produced to the normal internal clearance group CN, as standard.

On request all NKE bearings are also available with different internal clearances.

Values of **internal clearance groups** of **NKE cylindrical roller bearings** are listed in the tables on page 540.

These values, as far as they are standardised, conform to DIN 620/part 4 and ISO 5753-1991, respectively.

Minimum Load:

Bearings require a minimum load under all operating conditions to ensure kinematically correct rolling element function.

For NKE full complement cylindrical roller bearings the minimum radial load must be 4% of the dynamic load.

Äquivalente dynamische Lagerbelastung

Für vollrollige Zylinderrollenlager die als reine Loslager eingesetzt werden, also keine Axialkräfte aufnehmen, gilt:

$$P = F_r$$

Für axial belastete ein- und zweireihige vollrollige Zylinderrollenlager mit Borden an Innen- und Außenringen gilt bei:

wenn

$$\frac{\mathsf{F}_{\mathsf{a}}}{\mathsf{F}_{\mathsf{r}}} \leq \mathsf{e} \quad \mathsf{gilt} \quad \mathsf{P} = \mathsf{F}_{\mathsf{r}}$$

bzw., bei

$$\frac{F_a}{F_r}$$
 > e gilt $P = X * F_r + Y * F_a$

Da auf das Lager wirkende Axiallasten Kippmomente an den Rollen erzeugen, darf die auf das Lager wirkende Axialkraftkomponente ein bestimmtes Verhältnis zur radialen Lagerbelastung nicht übersteigen.

Equivalent Dynamic Bearing Load

Where full complement cylindrical roller bearings are being used as non-locating bearings only, (e.g. without any thrust loads applied), the following applies:

$$P = F_r$$

For axially loaded single and double row cylindrical roller bearings with flanges on inner or their outer rings, the following formula must be applied:

Where

$$\frac{F_a}{F_r} \le e$$
 , then $P = F_r$

or, when

$$\frac{F_a}{F_r}$$
 > e , then $P = X * F_r + Y * F_a$

Since axial forces applied to cylindrical roller bearings create a tilting moment acting on the rollers, the magnitude of acting axial forces must not exceed a certain ratio to the applied radial forces.

Lagerreihe Bearing series	Berechnungsfaktoren Calculation factors				
Bearing Series	е	X	Y		
Einreihige vollrollige Zylinderrollenlager, Reihe 18 Single row full complement cylindrical roller bearings, series 18	0,2	0,92	0,6		
Einreihige vollrollige Zylinderrollenlager, allgemein Single row full complement cylindrical roller bearings, other series	0,3	0,92	0,4		
Zweireihige vollrollige Zylinderrollenlager Double row full complement cylindrical roller bearings	0,15	0,92	0,53		

Full Complement Cylindrical Roller Bearings

Bei einreihigen vollrolligen Zylinderrollenlagern gilt:

$$F_{amov} \leq 0.5 * F_{r}$$

bzw. bei zweireihigen vollrolligen Zylinderrollenlagern gilt:

$$F_{amax} \leq 0.2 * F_{r}$$

Äquivalente statische Lagerbelastung

Für ein- und zweireihige vollrollige Zylinderrollenlager gilt:

$$P_0 = F_r$$

Anschlussmaße zweireihiger Zylinderrollenlager

Die Radien der Kantenverrundung der Lagerringe dürfen nicht an Hohlkehlen von Wellenbund oder Gehäuse anliegen. Daher muss der größte Hohlkehlradius an den Anschlussteilen $(\mathbf{r_g})$ kleiner sein als der kleinste Radius für die Kantenverrundung $(\mathbf{r_s})$ der Lagerringe. (siehe Tabelle auf der Folgeseite).

Empfehlungen für Einbaumaße sind auch in **DIN 5418** definiert.

NNF..-2LS-V Reihen

Die Dichtungen der Lager müssen ausreichend hoch unterstützt werden, um beim Nachschmieren ein Herausdrücken zu verhindern. For single row full complement cylindrical roller bearings:

$$F_{amax} \le 0.5 * F_r$$

or, in the case of double row full complement cylindrical roller bearings:

$$F_{amax} \le 0.2 * F_r$$

Equivalent static bearing load

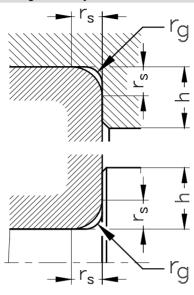
For single and double row full complement cylindrical roller bearings:

$$P_0 = F_r$$

Abutment and Fillet Dimensions for Full Complement Cylindrical Roller Bearings

The bearing rings must contact adjacent parts with their side faces only. The radii of bearing corners must not touch the shoulder fillet radii of neither the shaft nor the housing shoulders. Therefore, the largest fillet radius $(\mathbf{r_g})$ must be smaller than the minimum fillet dimension of the bearing rings $(\mathbf{r_s})$ as listed in the bearing tables, see following page.

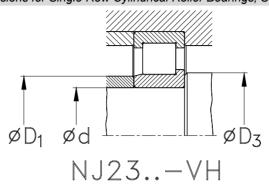
Recommendations for the dimensions of adjacent parts are given by **DIN 5418**.


NNF....-2LS-V series

The seals of the bearingsmust be supported properly in order to prevent the seals from being pressed out during re-lubrication

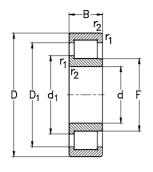
Anschlussmaße einreihiger vollrolliger Zylinderrollenlager [mm]

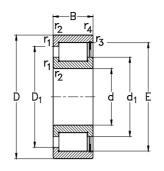
Abutment and Fillet Dimensions for Single Row Cylindrical Roller Bearings [mm]



r _{s min}	r _{g max}	h _{min} Lagerreihen Bearing series 18, 29, 30 48, 49, 50
0,3	0,3	1
0,6	0,6	1,6
1	1	2,3
1,1	1	3
1,5	1,5	3,5
2	2	4,4
2,1	2,1	5,1
3	2,5	6,2
4	3	7,3
5	4	9

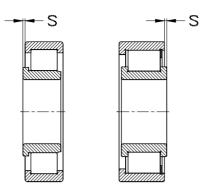
^{*}Ausgenommen NNF....-2LS-V / except NNF....-2LS-V siehe Seite 605 / see page 605


Anschlussmaße einreihiger vollrolliger Zylinderrollenlager, Reihe NJ 23..VH [mm] Abutment and Fillet Dimensions for Single Row Cylindrical Roller Bearings, Series NJ 23..VH [mm]



Lagertype	Ød	D ₁	D ₃
Bearing type	[mm]	max	min
NJ 2305 VH	25	30	31,5
NJ 2306 VH	30	36	36,5
NJ 2307 VH	35	42	43
NJ 2308 VH	40	49	48
NJ 2309 VH	45	54	53
NJ 2310 VH	50	58	59
NJ 2311 VH	55	64	64
NJ 2313 VH	65	78	76
NJ 2314 VH	70	81	81
NJ 2315 VH	75	88	86
NJ 2316 VH	80	95	91
NJ 2317 VH	85	104	98
NJ 2318 VH	90	105	103
NJ 2319 VH	95	111	109
NJ 2320 VH	100	119	113
NJ 2322 VH	110	130	123
NJ 2324 VH	120	142	133
NJ 2326 VH	130	153	146
NJ 2328 VH	140	163	156
NJ 2330 VH	150	178	166
NJ 2334 VH	170	200	186
NJ 2336 VH	180	216	196
NJ 2340 VH	200	232	220

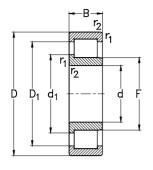
Single Row Full Complement Cylindrical Roller Bearings

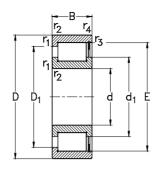

NJ23..-VH

NCF

Boundary dimen	sions		Tragzahlen [kN]		[min ⁻¹]	[min ⁻¹]	
[mm]		L	oad rating. [kN]	S	Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Designation
d D	В	C _r dyn.	C ₀r stat.	C _u	$n_{ hetar}$	n _G	
20 37	11	15,3	16,8	2	7400	10500	NCF2904-V
42	16	27,1	27,4	3,3	7400	10000	NCF3004-V
47	18	39,9	38,5	4,7	6400	10000	NCF2204-V
25 42	11	17,1	20,4	2,5	6100	10000	NCF2905-V
47	16	30,8	33,8	4,1	6100	9000	NCF3005-V
52	18	44,9	46,3	5,6	5400	9000	NCF2205-V
62	24	69,3	68	8,3	4500	5600	NJ2305-VH
30 47	11	18,7	24	2,9	5200	7500	NCF2906-V
55	19	39,8	44,3	5,4	5500	7500	NCF3006-V
62	20	60	66	8	4500	6500	NCF2206-V
72	27	85,7	88	10,8	4000	4800	NJ2306-VH
35 55	13	29,5	38,7	4,7	4500	7000	NCF2907-V
62	20	48,2	56	6,8	4800	6700	NCF3007-V
72	23	75	80	9,7	4200	6000	NCF2207-V
80	31	109	114	13,9	3700	4300	NJ2307-VH
40 62	14	33,4	44,3	5,4	4100	6500	NCF2908-V
68	21	58	70	8,5	4300	6000	NCF3008-V
80	23	83	93	11,4	3600	5500	NCF2208-V
90	33	147	158	19,3	3200	3600	NJ2308-VH
45 68	14	35,5	49	6	3600	5500	NCF2909-V
75	23	61	77	9,4	4000	5300	NCF3009-V
85	23	86,6	100	12,2	3300	5000	NCF2209-V

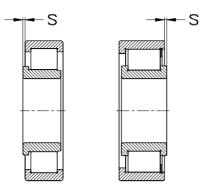
Single Row Full Complement Cylindrical Roller Bearings


Anschlussmaße siehe Seite 606


Abutment and fillet dimensions see on page 606

			agerabmo. [mı Bearing di. [mı]	mensions				Gewicht [kg] Weight [kg]	Lagertype Designation
d	E ≈	F ≈	d₁ ≈	D₁ ≈	r ₁ ,r ₂ min	r ₃ ,r ₄ min	s ≈	m	
20	32,3		26,3	30,3	0,3	0,3	0,5	0,05	NCF2904-V
	36,81		27,5	34,5	0,6	0,3	1,5	0,11	NCF3004-V
	41,47		30,3	36,9	1	1	1	0,16	NCF2204-V
25	37,4		31,4	35,4	0,3	0,3	0,5	0,06	NCF2905-V
	42,7		34	39	0,6	0,3	1,5	0,12	NCF3005-V
	46,52		34,7	42,3	1	1	1	0,18	NCF2205-V
		31,71	36,3	49	1		1,7	0,4	NJ2305-VH
30	42,5		36,5	40,5	0,3	0,3	0,5	0,07	NCF2906-V
	49,6		38,4	46,8	1	0,3	2	0,2	NCF3006-V
	55,19		42	50,6	1	1,1	1	0,3	NCF2206-V
		38,34	43,3	56,5	1		1,8	0,56	NJ2306-VH
35	49,9		42,4	47,4	0,6	0,3	0,5	0,12	NCF2907-V
	55,52		43,6	52,6	1	0,3	2	0,26	NCF3007-V
	63,97		47	59,3	1,1	1,1	1	0,44	NCF2207-V
		44,74	50,3	65,8	1,5		2	0,73	NJ2307-VH
40	56,6		48,3	53,9	0,6	0,3	0,5	0,15	NCF2908-V
	61,74		49	58,6	1	0,3	2	0,31	NCF3008-V
	70,94		54	66,3	1,1	1,1	1	0,55	NCF2208-V
		51,1	57,5	76	1,5		2,4	1	NJ2308-VH
45	61,9		53,6	59,2	0,6	0,3	0,5	0,18	NCF2909-V
	66,85		55	65	1	0,3	2	0,4	NCF3009-V
	74,43		57,5	69,8	1,1	1,1	1	0,59	NCF2209-V

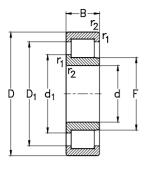
Single Row Full Complement Cylindrical Roller Bearings

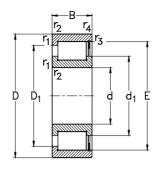

NJ23..-VH

NCF

Haup	tabmessu [mm]	ıngen	[kN]		n	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Lagertype
Bound	dary dimer [mm]	nsions	L	oad rating [kN]	ıs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Designation
d	D	В	C _r dyn.	C ₀r stat.	C _u	n _{θr}	n _G	
45	100	36	172	197	24	2900	3400	NJ2309-VH
50	72	14	37,4	55	6,6	3300	5000	NCF2910-V
	80	23	76	96	11,7	3500	5000	NCF3010-V
	90	23	93	113	13,8	3000	4500	NCF2210-V
	110	40	199	219	26,6	2600	3000	NJ2310-VH
55	80	16	50	76	9,3	3000	4500	NCF2911-V
	90	26	103	139	16,9	3100	4300	NCF3011-V
	100	25	119	150	18,3	2700	3500	NCF2211-V
	120	43	259	258	31,5	2200	2800	NJ2311-VH
60	85	16	54	83	10,1	2800	4500	NCF2912-V
	95	26	106	146	17,8	2900	4000	NCF3012-V
	110	28	147	183	22,3	2500	3000	NCF2212-V
	130	46	262	304	37,1	2100	2500	NJ2312-VH
65	90	16	56	88	10,7	2600	4000	NCF2913-V
	100	26	111,4	160	19,5	2800	3800	NCF3013-V
	120	31	171	217	26,4	2400	2800	NCF2213-V
	140	48	303	355	42,8	1900	2400	NJ2313-VH
70	100	19	77	116	14,2	2500	3800	NCF2914-V
	110	30	131	177	21,6	2700	3600	NCF3014-V
	125	31	178	230	28,1	2300	2600	NCF2214-V
	150	51	333	394	46,9	2100	2200	NJ2314-VH
75	105	19	79	124	15,1	2300	3600	NCF2915-V

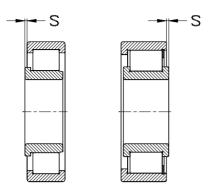
Single Row Full Complement Cylindrical Roller Bearings


Anschlussmaße siehe Seite 606


Abutment and fillet dimensions see on page 606

			[mı	•				Gewicht [kg]	Lagertype
		I.	Bearing di [mı					Weight [kg]	Designation
d	E	F	d₁	D_1	r_1, r_2	r ₃ ,r ₄	s	m	
	*	≈	≈	≈	min	min	≈		
45		56,13	62,5	81,8	1,5		2,4	1,35	NJ2309-VH
50	67,1		58,7	64,4	0,6	0,3	0,5	0,18	NCF2910-V
	72,33		58	68,8	1	0,3	2	0,43	NCF3010-V
	81,4		64,4	76,7	1,1	1,1	1	0,64	NCF2210-V
		60,7	68,3	90,3	2		2,6	1,85	NJ2310-VH
55	73,2		64,2	70,2	1	0,6	0,5	0,27	NCF2911-V
	83,54		67,5	79,5	1,1	0,6	2	0,64	NCF3011-V
	88,81		70	84,1	1,5	1,5	1,5	0,87	NCF2211-V
		67,1	75,5	98,6	2		2,6	2,3	NJ2311-VH
60	79,3		69,5	76,1	1	0,6	0,5	0,28	NCF2912-V
	86,74		70,9	82,9	1,1	0,6	2	0,69	NCF3012-V
	99,17		76,8	93,9	1,5	1,5	1,5	1,18	NCF2212-V
		73,68	82,1	106	2,1		3	2,83	NJ2312-VH
65	83,5		73,7	80,3	1	0,6	0,5	0,3	NCF2913-V
	93,1		77,1	87,1	1,1	0,6	2	0,72	NCF3013-V
	106,25		82,3	100,7	1,5	1,5	1,5	1,57	NCF2213-V
		80,71	89,4	117	2,1		3	3,48	NJ2313-VH
70	92,5		80,5	88,5	1	0,6	0,75	0,48	NCF2914-V
	100,28		82,6	97,2	1,1	0,6	3	1,02	NCF3014-V
	111,01		87	105,2	1,5	1,5	1,5	1,66	NCF2214-V
		84,22	93,8	121	2,1		3	4,4	NJ 2314 VH
75	97,6		85,6	93,6	1	0,6	0,75	0,5	NCF2915-V

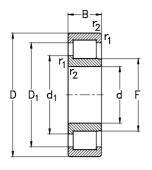
Single Row Full Complement Cylindrical Roller Bearings

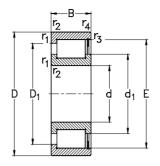

NJ23..-VH

NCF

Haupt	tabmessu [mm]	ıngen	7	ragzahle [kN]	n	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Lagertype
Bound	dary dimer [mm]	nsions	L	oad rating. [kN]	ıs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Designation
d	D	В	C _r dyn.	C ₀r stat.	Cu	n _{θr}	n _G	
75	115	30	139	195	23,8	2500	3200	NCF3015-V
	130	31	184	244	29,7	2100	2500	NCF2215-V
	160	55	395	476	55,4	1600	2000	NJ2315-VH
80	110	19	82	132	16,1	2200	3400	NCF2916-V
	125	34	168	229	27,6	2500	3000	NCF3016-V
	140	33	216	283	33,6	2000	2400	NCF2216-V
	170	58	458	560	63,7	1500	1900	NJ2316-VH
85	120	22	103	168	20,2	2100	3200	NCF2917-V
	130	34	172	240	28,6	2300	3000	NCF3017-V
	150	36	246	326	38,1	1900	2200	NCF2217-V
	180	60	485	611	68	1400	1800	NJ2317-VH
90	125	22	104	173	20,6	2000	3000	NCF2918-V
	140	37	209	285	33,3	2200	2800	NCF3018-V
	160	40	277	372	42,8	1900	2000	NCF2218-V
	190	64	549	680	75	1400	1800	NJ2318-VH
95	130	22	108	183	21,5	1900	2900	NCF2919-V
	145	37	230	360	34,5	2100	2700	NCF3019-V
100	140	24	131	222	25,7	1800	2600	NCF2920-V
	150	37	212	312	35,6	2000	2600	NCF3020-V
	180	46	379	526	58	1700	1900	NCF2220-V
	215	73	694	877	93	1200	1500	NJ2320-VH
110	150	24	139	248	28	1600	2400	NCF2922-V

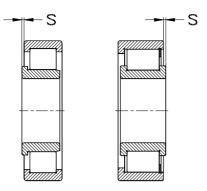
Single Row Full Complement Cylindrical Roller Bearings


Anschlussmaße siehe Seite 606


Abutment and fillet dimensions see on page 606

		L	agerabme. [mr	essungen n]				Gewicht [kg]	Lagertype
		1	Bearing dii [mr					Weight [kg]	Designation
d	E	F	d ₁	D ₁	r ₁ ,r ₂	r ₃ ,r ₄	s	m	
	≈	*	≈	*	min	min	≈		
75	107,9		87	102	1,1	0,6	3	1,06	NCF3015-V
	115,78		91,8	110	1,5	1,5	1,5	1,75	NCF2215-V
		91,25	100,8	132,5	2,1		3	5,18	NJ2315-VH
80	102,7		90,7	98,7	1	0,6	0,75	0,53	NCF2916-V
	116,99		94,8	112	1,1	0,6	4	1,43	NCF3016-V
	125,81		98,6	119,3	2	2	1,5	2,15	NCF2216-V
		98,3	109	141	2,1		4	6,4	NJ2316-VH
85	112,6		99,1	109	1,1	1	0,75	0,78	NCF2917-V
	121,44		99,2	116	1,1	0,6	4	1,51	NCF3017-V
	133,21		104,4	126,3	2	2	1,5	2,74	NCF2217-V
		107,02	117,4	151,5	3		4	7,3	NJ2317-VH
90	115,6		102	111	1,1	1	0,75	0,82	NCF2918-V
	130,11		106,2	125	1,5	1	4	1,97	NCF3018-V
	140,61		110,2	133,3	2	2	2,5	3,48	NCF2218-V
		108,8	121	156	3		4	8,75	NJ2318-VH
95	120,4		107	117	1,1	1	0,75	0,86	NCF2919-V
	135,1		111	129	1,5	1	4,5	2,15	NCF3019-V
100	129		114	124	1,1	1	0,75	1,15	NCF2920-V
	139,65		116	134	1,5	1	4	2,15	NCF3020-V
	162,81		127,5	154,3	2,1	2,1	2,5	5,13	NCF2220-V
		122,8	136	176	3		4,5	13	NJ2320-VH
110	141,3		126	137	1,1	1	0,75	1,25	NCF2922-V

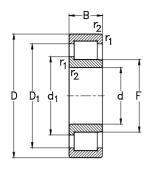
Single Row Full Complement Cylindrical Roller Bearings

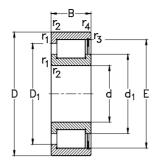

NJ23..-VH

NCF

Haupt	abmessu [mm]	ingen	٦	ragzahleı [kN]	n	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Lagertype
Bound	lary dimer [mm]	nsions	L	oad rating. [kN]	s	Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Designation
d	D	В	C _r dyn.	C ₀r stat.	C _u	n _{θr}	n _G	
110	170	45	278	403	44,5	1900	2200	NCF3022-V
	200	53	439	597	64	1700	1800	NCF2222-V
	240	80	843	1035	106	1100	1300	NJ2322-VH
120	165	27	175	302	33,1	1500	2200	NCF2924-V
	180	46	293	442	48	1800	2000	NCF3024-V
	215	58	517	737	77	1500	1700	NCF2224-V
	260	86	946	1219	123	1000	1200	NJ2324-VH
130	180	30	207	362	38,7	1500	2000	NCF2926-V
	200	52	416	619	66	1600	1900	NCF3026-V
	230	64	600	868	89	1300	1600	NCF2226-V
	280	93	1071	1392	137	950	1200	NJ2326-VH
140	190	30	224	390	41	1400	1900	NCF2928-V
	210	53	439	682	70	1500	1800	NCF3028-V
	250	68	694	1019	102	1200	1500	NCF2228-V
	300	102	1230	1623	157	850	1100	NJ 2328 VH
150	190	20	117	217	22,5	1300	2400	NCF1830-V
	210	36	291	509	52	1300	1700	NCF2930-V
	225	56	461	713	73	1400	1600	NCF3030-V
	270	73	794	1182	116	1100	1400	NCF2230-V
	320	108	1428	1908	180	800	1000	NJ2330-VH
160	200	20	120	230	23,5	1200	2200	NCF1832-V
	220	36	301	541	54	1200	1600	NCF2932-V

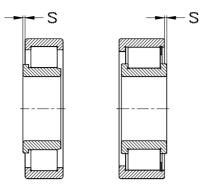
Single Row Full Complement Cylindrical Roller Bearings


Anschlussmaße siehe Seite 606


Abutment and fillet dimensions see on page 606

			agerabme [mr Bearing dii [mr	- mensions				Gewicht [kg] Weight [kg]	Lagertype Designation
d	E ≈	F ≈	d₁ ≈	D₁ ≈	r₁,r₂ min	r₃,r₄ min	s ≈	m	
110	156,13		129	150	2	1	5,5	3,5	NCF3022-V
	177		137	168	2,1	2,1	4	7,24	NCF2222-V
		134,3	151	198	3		5	17,8	NJ2322-VH
120	154,3		136	149	1,1	1	0,75	1,7	NCF2924-V
	167,58		139	160,5	2	1	5,5	3,8	NCF3024-V
	192,32		151	182	2,1	2,1	4	9,1	NCF2224-V
		147,4	164	211	3		5,5	22,3	NJ2324-VH
130	167,1		147	161	1,5	1,1	0,75	2,3	NCF2926-V
	183,81		148,6	175	2	1	5,5	5,8	NCF3026-V
	207,12		162,3	197	3	3	5	11,25	NCF2226-V
		157,95	174,1	229,6	4		6	28	NJ 2326 VH
140	180		159	173	1,5	1,1	0,75	2,4	NCF2928-V
	197,82		162,7	189,1	2	1	3,5	6,1	NCF3028-V
	221,92		173,9	211,1	3	3	5,5	14,47	NCF2228-V
		168,5	184,7	240,5	4		6,5	35,5	NJ2328-VH
150	179,5		163	176	1,1	1	1,5	1,3	NCF1830-V
	195,5		171	188	2	1,1	0,8	3,85	NCF2930-V
	206,8		170	197	2,1	1,1	3,7	7,5	NCF3030-V
	236,71		185,5	225,2	3	3	6	18,43	NCF2230-V
		182,5	203	261	4		6,5	42,5	NJ2330-VH
160	189		173	185	1,1	1,1	1,5	1,45	NCF1832-V
	205,7		181	198	2	1,1	0,8	4,05	NCF2932-V

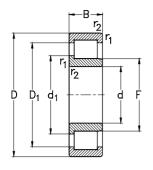
Single Row Full Complement Cylindrical Roller Bearings

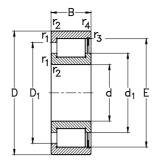

NJ23..-VH

NCF

Haupta	abmessı [mm]	ıngen	[kN		n	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Lagertype
Bounda	ary dimei [mm]	nsions	L	oad rating [kN]	rs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Designation
d	D	В	C _r dyn.	C ₀r stat.	C _u	n _{θr}	n _G	
160	240	60	528	823	82	1300	1500	NCF3032-V
	290	80	978	1477	140	950	1200	NCF2232-V
	340	114	1630	2550	200	770	950	NJ2332-VH
170	215	22	148	269	27	1200	2000	NCF1834-V
	230	36	310	573	57	1200	1500	NCF2934-V
	260	67	678	1073	104	1100	1400	NCF3034-V
	310	86	1094	1672	156	880	1100	NCF2234-V
	360	120	1766	2406	220	710	900	NJ2334-VH
180	225	22	153	286	28,2	1100	1800	NCF1836-V
	250	42	394	704	68	1100	1400	NCF2936-V
	280	74	784	1260	120	1000	1300	NCF3036-V
	320	86	1119	1811	160	810	1000	NCF2236-V
	380	126	1869	2626	235	700	800	NJ2336-VH
190	240	24	174	326	32,6	1100	1600	NCF1838-V
	260	42	441	797	76	1000	1400	NCF2938-V
	290	75	805	1320	124	1000	1300	NCF3038-V
	340	92	1239	1888	171	780	1000	NCF2238-V
	400	132	2141	2980	263	610	800	NJ2338-VH
200	250	24	178	340	32,5	1000	1400	NCF1840-V
	280	48	530	963	90	930	1300	NCF2940-V
	310	82	921	1532	141	880	1200	NCF3040-V
	360	98	1339	2085	180	730	900	NCF2240-V

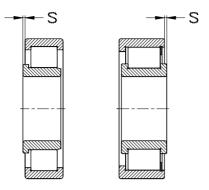
Single Row Full Complement Cylindrical Roller Bearings


Anschlussmaße siehe Seite 606


Abutment and fillet dimensions see on page 606

			agerabmo [mɪ Bearing di [mɪ	mensions				Gewicht [kg] Weight [kg]	Lagertype Designation
d	E ≈	F ≈	d₁ ≈	D₁ ≈	r₁,r₂ min	r ₃ ,r ₄ min	s ≈	m	
160	225,1		184,8	214,8	2,1	1,1	4	9,1	NCF3032-V
	267,1		208,7	253,4	3		6	23	NCF2232-V
		196,55	216,7	286	4		7	48,8	NJ2332-VH
170	204,5		185	200	1,1	1,1	1,5	1,85	NCF1834-V
	216		192	208	2	1,1	0,8	4,25	NCF2934-V
	242,85		198	232	2,1	1,1	7	12,5	NCF3034-V
	281,09		220,3	267,4	4	4	7	28,65	NCF2234-V
		203,56	224,5	296,4	3		7	59,2	NJ2334-VH
180	215,2		196	211	1,1	1,1	1,5	1,95	NCF1836-V
	232		203	223	2	1,1	1	6,25	NCF2936-V
	260,22		212	249	2,1	2,1	7	16,5	NCF3036-V
	293,22	-	232,4	279,5	4	4	7	29,8	NCF2236-V
		221,74	242,6	314,6	3		9	69,6	NJ 2336 VH
190	229		208	224	1,5	1,1	1,8	2,45	NCF1838-V
	244		212	236	2	1,1	1	6,55	NCF2938-V
	269,96		222	258	2,1	2,1	9	17	NCF3038-V
	310,68		243,5	295,5	4	4	9	35,65	NCF2238-V
		224,6	247,6	327	4		7	80	NJ2338-VH
200	237,5		216	233	1,5	1,1	1,8	2,6	NCF1840-V
	262		227	253	2,1	1,5	2,5	9,15	NCF2940-V
	287,75		237	276	2,1	2,1	9	22,5	NCF3040-V
	318,6		246,6	302,4	4		9	43,12	NCF2240-V

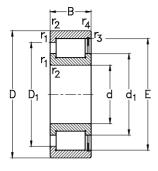
Single Row Full Complement Cylindrical Roller Bearings


NJ23..-VH

NCF

Haupt	tabmessu [mm]	ıngen	Т	ragzahlei [kN]	n	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Lagertype
Bound			oad rating [kN]	s	Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Designation	
d	D	В	C _r dyn.	C ₀r stat.	C _u	$n_{\scriptscriptstyle{ hetar}}$	n _G	
200	420	138	2284	3157	274	80	750	NJ2340-VH
220	270	24	186	373	34,7	920	1200	NCF1844-V
	300	48	556	1056	97	830	1200	NCF2944-V
	340	90	1213	2059	185	730	1100	NCF3044-V
240	300	28	277	550	50	840	1100	NCF1848-V
	320	48	582	1149	103	740	1100	NCF2948-V
	360	92	1277	2256	198	610	1140	NCF3048-V
260	320	28	288	594	53	770	1000	NCF1852-V

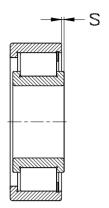
Single Row Full Complement Cylindrical Roller Bearings


Anschlussmaße siehe Seite 606

Abutment and fillet dimensions see on page 606

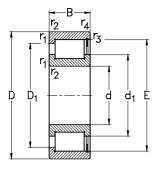
		L		Gewicht [kg]	Lagertype				
		1	Bearing dii [mr					Weight [kg]	Designation
d	E	F	d ₁	s	m				
	≈	≈	≈	≈	min	min	≈		
200		238,65	263,2	347,5	5		9	91,6	NJ2340-VH
220	258		237	253	1,5	1,5	1,8	2,85	NCF1844-V
	283		248	274	2,1	1,5	2,5	9,9	NCF2944-V
	312,7		254,7	297,9	3	3	7	29,5	NCF3044-V
240	287	-	261	281	2	1,1	1,8	4,4	NCF1848-V
	303		268	296	2,1	1,5	2,5	11	NCF2948-V
	335,6		278	322	3	3	7	32	NCF3048-V
260	307,2		281	301	2	1,1	1,8	4,75	NCF1852-V

Vollrollige Zylinderrollenlager, einreihig Single Row Full Complement Cylindrical Roller Bearings



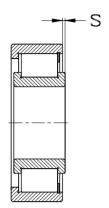
NCF

	[mm]	ngen	"	agzahle [kN]	en	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Lagertype
Bounda	ary dimens [mm]	sions	Lo	ad rating [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Designation
d	D	В	C _r dyn.	C ₀r stat.	C _u	n _{er}	n _G	
260	360	60	760	1480	129	670	950	NCF2952-V
	400	104	1616	2857	243	570	900	NCF3052-V
280	350	33	348	715	62	720	900	NCF1856-V
	380	60	902	1751	149	590	900	NCF2956-V
	420	106	1697	3066	257	530	850	NCF3056-V
300	380	38	424	849	72	670	850	NCF1860-V
	420	72	1130	2232	186	530	800	NCF2960-V
	460	118	1940	3327	271	500	750	NCF3060-V
320	400	38	438	902	75	610	800	NCF1864-V
	440	72	1166	2372	194	490	750	NCF2964-V
	480	121	1990	3480	280	480	700	NCF3064-V
340	420	38	451	956	78	570	750	NCF1868-V
	460	72	1203	2512	202	450	700	NCF2968-V
	520	133	2394	4180	329	430	670	NCF3068-V
360	440	38	462	1009	81	530	700	NCF1872-V
	480	72	1237	2652	210	420	670	NCF2972-V
	540	134	2664	4975	387	400	630	NCF3072-V
380	480	46	646	1353	106	480	670	NCF1876-V
	520	82	1608	3357	261	370	630	NCF2976-V
	560	135	2728	5192	390	380	600	NCF3076-V
400	500	46	660	1408	110	460	630	NCF1880-V
	540	82	1659	3554	272	350	600	NCF2980-V



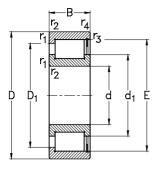
Abutment and fillet dimensions see on page 606

		Lage	rabmessu [mm]	ngen			Gewicht [kg]	Lagertype
		Bea	ring dimens [mm]	ions			Weight [kg]	Designation
d	E	d₁	D ₁	r ₁ , r ₂	r ₃ ,r ₄	s	m	
260	≈ 333,7	≈ 294	≈ 321	min 2,1	min 1,5	≈ 4	18,5	NCF2952-V
200	373,5	304,1	358,1	4	4	8	46,5	NCF3052-V
280	334	305	327	2	1,1	2,5	7,1	NCF1856-V
200	362,7	319	346	2,1	1,5	4	20	NCF2956-V
	391,5	324	375	4	4	9	50	NCF3056-V
300	363	329	355	2,1	1,5	3	10	NCF1860-V
000	390,5	342	375	3	3	5	31,5	NCF2960-V
	432	355	413	4	4	10	69	NCF3060-V
320	383	349	375	2,1	 1,5	3	10,5	NCF1864-V
0_0	411	363	395	3	3	5	33	NCF2964-V
	447,3	370	428	4	4	12	74,5	NCF3064-V
340	403	369	395	2,1	1,5	3	11	NCF1868-V
	431	383	415	3	3	5	35	NCF2968-V
	482	402	462	5	5	12	100	NCF3068-V
360	423,2	389	415	2,1	1,5	3	12	NCF1872-V
	451,5	403	436	3	3	5	36,5	NCF2972-V
	503,2	417	482	5	5	12	105	NCF3072-V
380	458	416	448	2,1	1,5	3,5	18,5	NCF1876-V
	488	427	473	4	4	5	52,5	NCF2976-V
	520,5	434	499	5	5	14	110	NCF3076-V
400	475	433	465	2,1	1,5	3,5	19,1	NCF1880-V
	511	450	496	4	4	5	54,5	NCF2980-V



NCF

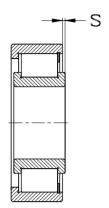
Haupta	bmessur [mm]	ngen	Tr	agzahle [kN]	en	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Lagertype
Bounda	ry dimens [mm]	sions	Lo	ad rating [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Designation
d	D	В	C _r dyn.	C ₀r stat.	C _u	$n_{ hetar}$	n _G	
400	600	148	2973	5511	415	340	560	NCF3080-V
420	520	46	680	1491	114	430	600	NCF1884-V
	560	82	1683	3654	277	330	560	NCF2984-V
	620	150	3311	6399	476	320	530	NCF3084-V
440	540	46	692	1547	117	400	560	NCF1888-V
	540	60	1087	2761	209	380	560	NCF2888-V
	600	95	2030	4200	313	320	530	NCF2988-V
	650	157	3753	7381	541	290	500	NCF3088-V
460	580	56	937	2004	149	380	530	NCF1892-V
	580	72	1398	3352	249	350	530	NCF2892-V
	620	95	2064	4327	320	300	500	NCF2992-V
	680	163	4117	7978	578	280	480	NCF3092-V
480	600	56	958	2088	153	360	500	NCF1896-V
	600	72	1339	3211	236	320	500	NCF2896-V
	650	100	2316	4901	355	280	480	NCF2996-V
	700	165	4154	8437	585	270	450	NCF3096-V
500	620	56	978	2171	158	340	480	NCF18/500-V
	620	72	1367	3340	243	310	480	NCF28/500-V
	670	100	2348	5042	362	270	450	NCF29/500-V
	720	167	4313	8672	615	230	450	NCF30/500-V
530	650	56	1007	2297	164	310	450	NCF18/530-V
	650	72	1407	3533	253	290	450	NCF28/530-V



Abutment and fillet dimensions see on page 606

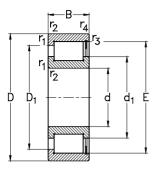
			rabmessu [mm] ring dimens	· ·			Gewicht [kg] Weight	Lagertype Designation
	_		[mm]				[kg]	
d	E ≈	d₁ ≈	D₁ ≈	r₁,r₂ min	r₃,r₄ min	s ≈	m	
400	559,1	460	540	5	5	14	145	NCF3080-V
420	499	457	489	2,1	1,5	3,5	20,2	NCF1884-V
	524	463	509	4	4	5	57	NCF2984-V
	578,2	480	559	5	5	14	150	NCF3084-V
440	516	474	506	2,1	1,5	3,5	22	NCF1888-V
	516	474	508	2,1	1,5	3,5	29	NCF2888-V
	565,5	502	545	4	4	6	80,5	NCF2988-V
	607,5	507	582	6	6	14	175	NCF3088-V
460	553	501	541	3	3	5	32,6	NCF1892-V
	553	501	543	3	3	5	44	NCF2892-V
	579	514	559	4	4	7	83,5	NCF2992-V
	635	522	611	6	6	14	195	NCF3092-V
480	573,5	522	561	3	3	5	35,5	NCF1896-V
	573,5	520	562	3	3	5	46	NCF2896-V
	600	538	584	5	5	7	98	NCF2996-V
	655,2	546	628	6	6	15	205	NCF3096-V
500	594	542	582	3	3	5	36,5	NCF18/500-V
	594	541	582	3	3	2,4	48	NCF28/500-V
	630,9	553	611	5	5	7	100	NCF29/500-V
	676,8	565	650	6	6	16	215	NCF30/500-V
530	624,5	573	612	3	3	5	38,5	NCF18/530-V
	624,5	572	614	3	3	5	49,5	NCF28/530-V

Vollrollige Zylinderrollenlager, einreihig Single Row Full Complement Cylindrical Roller Bearings



NCF

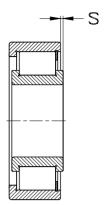
Haupta	bmessur [mm]	ngen	T	ragzahle [kN]	n	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Lagertype
Bounda	ry dimens [mm]	sions	Lo	oad rating [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Designation
d	D	В	C _r dyn.	C ₀r stat.	C _u	$n_{ hetar}$	n _G	
530	710	106	2718	6040	425	230	430	NCF29/530-V
	780	185	5251	10581	734	200	400	NCF30/530-V
560	680	56	1030	2423	171	290	430	NCF18/560-V
	680	72	1439	3726	263	280	430	NCF28/560-V
	750	112	3054	6755	469	220	400	NCF29/560-V
	820	195	5839	11892	812	190	380	NCF30/560-V
600	730	60	1070	2590	179	280	400	NCF18/600-V
	730	78	1596	4332	299	260	400	NCF28/600-V
	800	118	3225	7206	491	200	380	NCF29/600-V
630	780	69	1275	3050	207	260	360	NCF18/630-V
	780	88	1893	5067	344	240	360	NCF28/630-V
	850	128	3800	8667	578	180	340	NCF29/630-V
670	820	69	1325	3260	218	240	340	NCF18/670-V
	820	88	1967	5416	361	230	340	NCF28/670-V
	900	136	3906	9151	601	170	320	NCF29/670-V
710	870	74	1579	3861	253	220	320	NCF18/710-V
	870	95	2354	6451	423	210	320	NCF28/710-V
	950	140	4377	10180	658	160	300	NCF29/710-V
750	920	78	1765	4328	279	200	300	NCF18/750-V
	920	100	2652	7011	453	200	300	NCF28/750-V
	1000	145	4495	10731	683	150	280	NCF29/750-V
800	980	82	1950	4841	306	180	280	NCF18/800-V



Abutment and fillet dimensions see on page 606

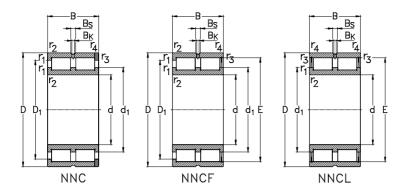
		Lage		Gewicht [kg]	Lagertype			
		Bea	ring dimens [mm]	sions			Weight [kg]	Designation
d	E	d₁	D ₁	r ₁ ,r ₂	r ₃ ,r ₄	s	m	
530	≈ 673	≈ 598	≈ 648	min 5	min 5	≈ 7	120	NCF29/530-V
530								
	732,3	610	702	6	6	16	300	NCF30/530-V
560	655	603	643	3	3	5	40,5	NCF18/560-V
	655	606	637	3	3	4,3	54	NCF28/560-V
	700	628	718	5	5	7	140	NCF29/560-V
	770	642	738	6	6	16	345	NCF30/560-V
600	696	644	684	3	3	7	49,5	NCF18/600-V
	696	644	685	3	3	6	65	NCF28/600-V
	754	662	726	5	5	7	170	NCF29/600-V
630	739	681	725	4	4	8	70	NCF18/630-V
	739	680	728	4	4	8	92,5	NCF28/630-V
	807	709	788	6	6	8	205	NCF29/630-V
670	783	725	769	4	4	8	72	NCF18/670-V
	783	724	772	4	4	8	97,5	NCF28/670-V
	846	748	827	6	6	10	245	NCF29/670-V
710	831	767	815	4	4	8	88	NCF18/710-V
	831	766	818	4	4	8	115	NCF28/710-V
	896	790	876	6	6	10	275	NCF29/710-V
750	880	811	863	5	5	8	104	NCF18/750-V
	878	810	867	5	5	8	140	NCF28/750-V
	937	832	916	6	6	12,5	304	NCF29/750-V
800	936	863	922	5	5	8	123	NCF18/800-V

Vollrollige Zylinderrollenlager, einreihig Single Row Full Complement Cylindrical Roller Bearings



NCF

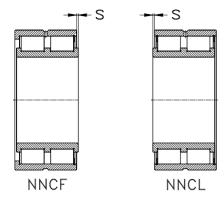
Haupta	bmessur [mm]	igen	Tı	ragzahle [kN]	en	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Lagertype
Bounda	ry dimens [mm]	sions	Load ratings [kN]			Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Designation
d	D	В	C _r dyn.	C ₀r stat.	C _u	n _{θr}	n _G	
800	980	106	2747	7522	476	180	280	NCF28/800-V
	1060	150	4970	12111	756	130	260	NCF29/800-V
850	1030	82	2015	5170	321	170	260	NCF18/850-V
	1030	106	2867	7950	495	160	260	NCF28/850-V
	1120	155	5285	12823	787	130	240	NCF29/850-V
900	1090	85	2265	5819	356	160	240	NCF18/900-V
	1090	112	3238	9216	564	150	240	NCF28/900-V
	1180	165	6025	14870	897	110	220	NCF29/900-V
950	1150	90	2465	6436	387	150	220	NCF18/950-V
	1150	118	3444	9893	595	140	220	NCF28/950-V
	1250	175	6587	16355	972	110	200	NCF29/950-V
1000	1220	100	2960	7620	452	130	200	NCF18/1000-V
	1220	128	4167	11827	701	130	200	NCF28/1000-V
	1320	185	7514	18850	1104	95	190	NCF29/1000-V



Abutment and fillet dimensions see on page 606

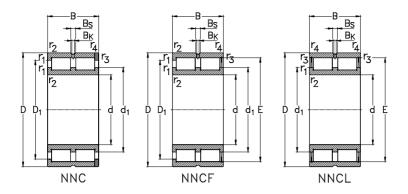
		Lage	rabmessu [mm]	ngen			Gewicht [kg]	Lagertype
		Bea	ring dimens [mm]	ions			Weight [kg]	Designation
d	E	d ₁	D_1	r ₁ , r ₂	r ₃ ,r ₄	s	m	
	≈	≈	≈	min	min	≈		
800	936	863	922	5	5	10	165	NCF28/800-V
	1002	891	981	6	6	11	360	NCF29/800-V
850	993	918	978	5	5	9	130	NCF18/850-V
	986	911	972	5	5	10	175	NCF28/850-V
	1061	943	1039	6	6	13	405	NCF29/850-V
900	1044	966	1029	5	5	9	149	NCF18/900-V
	1044	966	1029	5	5	10	208	NCF28/900-V
	1120	996	1096	6	6	13	472	NCF29/900-V
950	1103	1021	1087	5	5	10	185	NCF18/950-V
	1103	1021	1087	5	5	12	240	NCF28/950-V
	1179	1048	1154	7,5	7,5	14	565	NCF29/950-V
1000	1165	1073	1148	6	6	10	230	NCF18/1000-V
	1165	1073	1148	6	6	12	310	NCF28/1000-V
	1252	1113	1226	7,5	7,5	14	680	NCF29/1000-V

Double Row Full Complement Cylindrical Roller Bearings

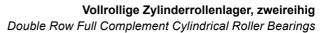


Haupt	abmess [mm]	ungen	Tragzahlen [kN]		en	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Lagertype
Bound	lary dime [mm]	ensions	Lo	Load ratings [kN]		Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Designation
d	D	В	C _r dyn.	C ₀r stat.	C _u	n _{er}	n _G	
25	47	30	52,8	67,5	8,2	6000	9000	NNCF5005-V
30	55	34	68,3	88,6	10,8	5300	7500	NNCF5006-V
35	62	36	82,7	112	13,7	4600	6700	NNCF5007-V
40	68	38	99	139	17	4100	6000	NNCF5008-V
45	75	40	105	155	18,9	3800	5300	NNCF5009-V
50	80	40	130	192	23,5	3300	5000	NNCF5010-V
55	90	46	177	277	33,8	2900	4300	NNCF5011-V
60	85	25	74	130	15,9	2600	4500	NNC4912-V
	85	25	74	130	15,9	2600	4500	NNCF4912-V
	85	25	74	130	15,9	2600	4500	NNCL4912-V
	95	46	181	291	35,5	2800	4000	NNCF5012-V
65	100	46	191	319	38,9	2500	3800	NNCF5013-V
70	100	30	106	195	23,8	2300	3800	NNC4914-V
	100	30	106	195	23,8	2300	3800	NNCF4914-V
	100	30	106	195	23,8	2300	3800	NNCL4914-V
	110	54	225	354	43,1	2600	3600	NNCF5014-V
80	110	30	112	217	26,5	2000	3400	NNC4916-V
	110	30	112	217	26,5	2000	3400	NNCF4916-V
	110	30	112	217	26,5	2000	3400	NNCL4916-V
	125	60	323	530	64	2200	3000	NNCF5016-V
90	125	35	150	303	36,1	1800	3000	NNC4918-V
	125	35	150	303	36,1	1800	3000	NNCF4918-V

Double Row Full Complement Cylindrical Roller Bearings

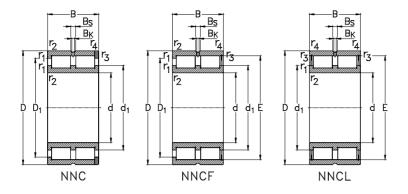

Anschlussmaße siehe Seite 606

Abutment and fillet dimensions see on page 606

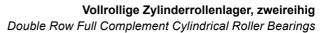

	Lagerabmessungen [mm] Bearing dimensions [mm]													
d	E	d₁ ≈	D₁ ≈	r ₁ , r ₂ min	r ₃ , r ₄ min	B _s ≈	B _K	s ≈	m ≈					
25	42,51	34,5	38,5	0,6	0,6	4,5	3	1	0,23					
30	49,6	40	45,5	1	1	4,5	3	1,5	0,35					
35	55,52	45	51,5	1	1	4,5	3	1,5	0,46					
40	61,74	50,5	57,5	1	1	4,5	3	1,5	0,56					
45	66,85	55,5	62,5	1	1	4,5	3	1,5	0,7					
50	72,33	59	67,5	1	1	4,5	3	1,5	0,75					
55	83,54	68,5	78,5	1,1	1,1	4,5	3,5	1,5	1,15					
60		69,5	76,5	1	1	4,5	3,5		0,48					
	78,9	69,5	76,5	1	1	4,5	3,5	1	0,46					
	78,9	69,5	76,5	1	1	4,5	3,5	1	0,46					
	86,74	71,5	82	1,1	1,1	4,5	3,5	1,5	1,25					
65	93,09	78	88	1,1	1,1	4,5	3,5	1,5	1,3					
70		82	89	1	1	4,5	3,5		0,8					
	92,3	82	89	1	1	4,5	3,5	1	0,79					
	92,3	82	89	1	1	4,5	3,5	1	0,79					
	100,28	81,5	95	1,1	1,1	5	3,5	3	1,85					
80		90,5	98	1	1	5	3,5		0,87					
	101,2	90,5	98	1	1	5	3,5	1	0,84					
	101,2	90,5	98	1	1	5	3,5	1	0,84					
	116,99	95	111	1,1	1,1	5	3,5	2,5	2,6					
90		103,5	111,5	1,1	1,1	5	3,5		1,35					
	115,5	103,5	111,5	1,1	1,1	5	3,5	1,5	1,34					

Double Row Full Complement Cylindrical Roller Bearings

Haupt	abmessı [mm]	ungen	Tragzahlen [kN]						Grenzdrehzahlen [min ⁻¹]	Lagertype
Bound	ary dime [mm]	nsions	Lo	oad ratin [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Designation		
d	D	В	C _r dyn.	C ₀r stat.	C _u	$\mathbf{n}_{ hetar}$	n _G			
90	125	35	150	303	36,1	1800	3000	NNCL4918-V		
	140	67	344	569	67	2100	2800	NNCF5018-V		
100	140	40	192	396	45,6	1700	2600	NNC4920-V		
	140	40	192	396	45,6	1700	2600	NNCF4920-V		
	140	40	192	396	45,6	1700	2600	NNCL4920-V		
	150	67	363	624	71	1900	2600	NNCF5020-V		
110	150	40	200	427	48,1	1500	2400	NNC4922-V		
	150	40	200	427	48,1	1500	2400	NNCF4922-V		
	150	40	200	427	48,1	1500	2400	NNCL4922-V		
	170	80	477	807	89	1700	2200	NNCF5022-V		
120	165	45	224	474	52	1500	2200	NNC4924-V		
	165	45	224	474	52	1500	2200	NNCF4924-V		
	165	45	224	474	52	1500	2200	NNCL4924-V		
	180	80	502	884	96	1500	2000	NNCF5024-V		
130	180	50	259	549	59	1500	2000	NNC4926-V		
	180	50	259	549	59	1500	2000	NNCF4926-V		
	180	50	259	549	59	1500	2000	NNCL4926-V		
	200	95	714	1238	131	1300	1900	NNCF5026-V		
140	190	50	270	589	62	1300	1900	NNC4928-V		
	190	50	270	589	62	1300	1900	NNCF4928-V		
	190	50	270	589	62	1300	1900	NNCL4928-V		
	210	95	754	1363	141	1200	1800	NNCF5028-V		

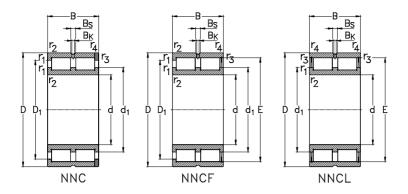


Abutment and fillet dimensions see on page 606

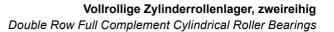

		Gewicht [kg] Weight [kg]							
d	E	d₁ ≈	D₁ ≈	r ₁ , r ₂ min	r ₃ , r ₄ min	B _s ≈	B _K	S ≈	m ≈
90	115,5	103,5		1,1	1,1	5	3,5	1,5	1,34
	130,11	106,5	124	1,5	1,5	5	3,5	4	3,75
100		116,5	125,5	1,1	1,1	5	3,5		2,1
	130	116,5	125,5	1,1	1,1	5	3,5	2	2
	130	116,5		1,1	1,1	5	3,5	2	2
	139,65	116	133,5	1,5	1,5	6	3,5	4	4,05
110		125	134	1,1	1,1	5	3,5		2,3
	138,6	125	134	1,1	1,1	5	3,5	2	2,2
	138,6	125		1,1	1,1	5	3,5	2	2,2
	156,13	127,5	148,5	2	2	6	3,5	5	6,6
120		139	149	1,1	1,1	6	3,5		3,2
	154	139	149	1,1	1,1	6	3,5	3	3
	154	139		1,1	1,1	6	3,5	3	3
	167,58	139	160	2	2	6	3,5	5	7,1
130		149,5	160,5	1,5	1,5	6	3,5		4,2
	166	149,5	160,5	1,5	1,5	6	3,5	4	4
	166	149,5		1,5	1,5	6	3,5	4	4
	183,81	149	174,5	2	2	7	4	5	11
140		160	171	1,5	1,5	6	3,5		4,4
	176,4	160	171	1,5	1,5	6	3,5	4	4,2
	176,4	160		1,5	1,5	6	3,5	4	4,2
	197,82	163	188,5	2	2	7	4	5	11,5

Double Row Full Complement Cylindrical Roller Bearings

Haupta	Hauptabmessungen [mm]		Tragzahlen [kN]			Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Lagertype
Bound	ary dime [mm]	nsions	Lo	ad rating [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Designation
d	D	В	C _r dyn.	C ₀r stat.	C _u	$\mathbf{n}_{ heta r}$	n _G	
150	190	40	234	576	60	1200	1800	NNCF4830-V
	190	40	234	576	60	1200	1800	NNCL4830-V
	210	60	386	852	87	1200	1700	NNC4930-V
	210	60	386	852	87	1200	1700	NNCF4930-V
	210	60	386	852	87	1200	1700	NNCL4930-V
	225	100	791	1425	145	1100	1700	NNCF5030-V
160	200	40	239	600	62	1200	1700	NNCF4832-V
	200	40	239	600	62	1200	1700	NNCL4832-V
	220	60	402	915	92	1100	1600	NNC4932-V
	220	60	402	915	92	1100	1600	NNCF4932-V
	220	60	402	915	92	1100	1600	NNCL4932-V
	240	109	906	1645	163	1000	1500	NNCF5032-V
170	215	45	268	665	67	1100	1600	NNCF4834-V
	215	45	268	665	67	1100	1600	NNCL4834-V
	230	60	411	958	95	1000	1500	NNC4934-V
	230	60	411	958	95	1000	1500	NNCF4934-V
	230	60	411	958	95	1000	1500	NNCL4934-V
	260	122	1163	2147	208	900	1400	NNCF5034-V
180	225	45	272	689	68	1100	1500	NNCF4836-V
	225	45	272	689	68	1100	1500	NNCL4836-V
	250	69	553	1241	120	910	1400	NNC4936-V
	250	69	553	1241	120	910	1400	NNCF4936-V

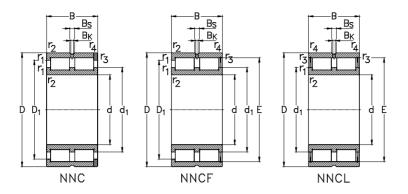


Abutment and fillet dimensions see on page 606

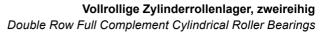

	Lagerabmessungen [mm] Bearing dimensions [mm]											
d	E	d₁ ≈	D₁ ≈	r ₁ , r ₂ min	r ₃ , r ₄ min	B _s ≈	B _K	S ≈	m ≈			
150	178,7	165	174	1,1	1,1	7	4	2	2,8			
	178,7	165		1,1	1,1	7	4	2	2,8			
		172,5	185,5	2	2		4		7			
	192	172,5	185,5	2	2	7	4	4	6,8			
	192	172,5		2	2	7	4	4	6,8			
	206,8	170,5	197,5	2,1	2,1	7	4	6	14			
160	190,1	176,5	185,5	1,1	1,1	7	4	2	3			
	190,1	176,5		1,1	1,1	7	4	2	3			
		184,5	197,5	2	2	7	4		7,2			
	203,9	184,5	197,5	2	2	7	4	4	7,1			
	203,9	184,5		2	2	7	4	4	7,1			
	225	185	214,5	2,1	2,1	7	4	6	16			
170	201,7	187,5	196,5	1,1	1,1	7	4	3	4			
	201,7	187,5		1,1	1,1	7	4	3	4			
		192,5	205,5	2	2	7	4		7,6			
	212,2	192,5	205,5	2	2	7	4	4	7,5			
	212,2	192,5		2	2	7	4	4	7,5			
	242,85	198,5	231,5	2,1	2,1	7	4	6	23			
180	211,3	196	207	1,1	1,1	7	4	3	4,2			
	211,3	196		1,1	1,1	7	4	3	4,2			
		207	223	2	2	7	4		11			
	231,1	207	223	2	2	7	4	4	10,8			

Double Row Full Complement Cylindrical Roller Bearings

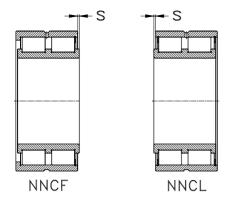
Haupt	Hauptabmessungen [mm]		Tragzahlen [kN]			Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Lagertype
Bound	ary dime [mm]	nsions	Lo	oad rating [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Designation
d	D	В	C _r dyn.	C ₀r stat.	C _u	$n_{ hetar}$	n _G	
180	250	69	553	1241	120	910	1400	NNCL4936-V
	280	136	1344	2521	239	810	1300	NNCF5036-V
190	240	50	311	777	75	1000	1400	NNCF4838-V
	240	50	311	777	75	1000	1400	NNCL4838-V
	260	69	568	1305	125	850	1400	NNC4938-V
	260	69	568	1305	125	850	1400	NNCF4938-V
	260	69	568	1305	125	850	1400	NNCL4938-V
	290	136	1381	2640	248	770	1300	NNCF5038-V
200	250	50	320	817	78	940	1400	NNCF4840-V
	250	50	320	817	78	940	1400	NNCL4840-V
	280	80	664	1503	141	810	1300	NNC4940-V
	280	80	664	1503	141	810	1300	NNCF4940-V
	280	80	664	1503	141	810	1300	NNCL4940-V
	310	150	1580	3063	282	740	1200	NNCF5040-V
220	270	50	336	898	84	830	1200	NNCF4844-V
	270	50	336	898	84	830	1200	NNCL4844-V
	300	80	692	1619	148	730	1200	NNC4944-V
	300	80	692	1619	148	730	1200	NNCF4944-V
	300	80	692	1619	148	730	1200	NNCL4944-V
	340	160	1895	3654	329	610	1100	NNCF5044-V
240	300	60	502	1308	119	710	1100	NNCF4848-V
	300	60	502	1308	119	710	1100	NNCL4848-V



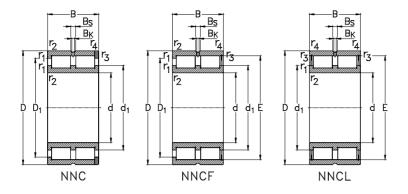
Abutment and fillet dimensions see on page 606


	Lagerabmessungen [mm] Bearing dimensions [mm]											
d	E	d₁ ≈	D₁ ≈	r ₁ , r ₂ min	r ₃ , r ₄ min	B _s ≈	B _K	s ≈	m ≈			
180	231,1	207		2	2	7	4	4	10,8			
	260,5	212,5	248	2,1	2,1	8	4	6	29			
190	225,4	209	220	1,5	1,5	7	4	4	5,5			
	225,4	209		1,5	1,5	7	4	4	5,5			
		217,5	233	2	2	7	4		11,5			
	241,3	217,5	233	2	2	7	4	4	11,3			
	241,3	217,5		2	2	7	4	4	11,3			
	270	222	257,5	2,1	2,1	8	4	8	31,5			
200	235,9	219,5	230	1,5	1,5	7	4	4	5,8			
	235,9	219,5		1,5	1,5	7	4	4	5,8			
		233	251	2,1	2,1	8	4		16			
	260	233	251	2,1	2,1	8	4	5	15,9			
	260	233		2,1	2,1	8	4	5	15,9			
	287,75	237	274,5	2,1	2,1	8	4	9	41			
220	256,9	240,5	251,5	1,5	1,5	7	4	4	6,3			
	256,9	240,5		1,5	1,5	7	4	4	6,3			
		250	268	2,1	2,1	8	4		17,5			
	277,2	250	268	2,1	2,1	8	4	5	17,2			
	277,2	250		2,1	2,1	8	4	5	17,2			
	312,7	255	298	3	3	8	4	9	52,5			
240	282,4	261,5	275,5	2	2	8	4	4	10			
	282,4	261,5		2	2	8	4	4	10			

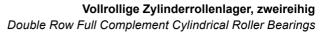
Double Row Full Complement Cylindrical Roller Bearings



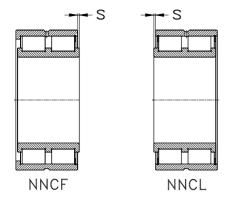
Haupt	Hauptabmessungen [mm]		Tragzahlen [kN]			Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Lagertype
Bound	ary dime [mm]	ensions	Lo	oad rating [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Designation
d	D	В	C _r dyn.	C ₀r stat.	C _u	$n_{\scriptscriptstyle{ hetar}}$	n _G	
240	320	80	727	1773	158	650	1100	NNC4948-V
	320	80	727	1773	158	650	1100	NNCF4948-V
	320	80	727	1773	158	650	1100	NNCL4948-V
	360	160	1996	4005	351	550	1000	NNCF5048-V
260	320	60	526	1423	126	640	1000	NNCF4852-V
	320	60	526	1423	126	640	1000	NNCL4852-V
	360	100	1075	2533	220	560	950	NNC4952-V
	360	100	1075	2533	220	560	950	NNCF4952-V
	360	100	1075	2533	220	560	950	NNCL4952-V
	400	190	2604	5416	461	470	900	NNCF5052-V
280	350	69	687	1879	162	560	950	NNCF4856-V
	350	69	687	1879	162	560	950	NNCL4856-V
	380	100	1121	2729	233	510	900	NNC4956-V
	380	100	1121	2729	233	510	900	NNCF4956-V
	380	100	1121	2729	233	510	900	NNCL4956-V
	420	190	2721	5624	471	440	850	NNCF5056-V
300	380	80	805	2159	183	530	850	NNCF4860-V
	380	80	805	2159	183	530	850	NNCL4860-V
	420	118	1559	3637	302	450	800	NNC4960-V
	420	118	1559	3637	302	450	800	NNCF4960-V
	420	118	1559	3637	302	450	800	NNCL4960-V
	460	218	3414	7072	575	400	750	NNCF5060-V



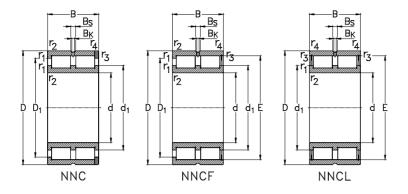
Abutment and fillet dimensions see on page 606


	Lagerabmessungen [mm] Bearing dimensions [mm]												
d	E	d ₁	D ₁	r ₁ , r ₂	r ₃ , r ₄	B _s	\mathbf{B}_{κ}	S	m				
240		≈ 273	≈ 291	min 2,1	min 2,1	≈ 8	4	≈ 	≈ 18,7				
	300,1	273	291	2,1	2,1	8	4	5	18,5				
	300,1	273		2,1	2,1	8	4	5	18,5				
	335,6	278	321	3	3	9,4	5	9	54				
260	304,7	283,5	297,5	2	2	8	4	4	10,8				
	304,7	283,5		2	2	8	4	4	10,8				
		297	320	2,1	2,1	9,4	5		33,1				
	331,5	297	320	2,1	2,1	9,4	5	6	32,2				
	331,5	297		2,1	2,1	9,4	5	6	32,2				
	372,7	308,5	357	4	4	9,4	5	10	83				
280	332,9	309	325	2	2	8	4	4	15,8				
	332,9	309		2	2	8	4	4	15,8				
		319	342	2,1	2,1	9,4	5		34,5				
	353,5	319	342	2,1	2,1	9,4	5	6	34,2				
	353,5	319		2,1	2,1	9,4	5	6	34,2				
	391	324	375	4	4	9,4	5	9	90,5				
300	356,7	330,5	348,5	2,1	2,1	9,4	5	6	22,5				
	356,7	330,5		2,1	2,1	9,4	5	6	22,5				
		346,5	375,5	3	3	9,4	5		53				
	390,2	346,5	375,5	3	3	9,4	5	6	52,8				
	390,2	346,5		3	3	9,4	5	6	52,8				
	432	355	413	4	4	9,4	5	9	123				

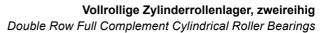
Double Row Full Complement Cylindrical Roller Bearings



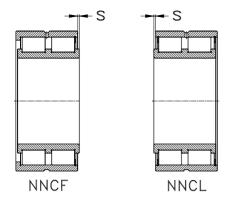
Haupt	auptabmessungen [mm]		Tragzahlen [kN]			Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Lagertype
Bound	lary dime [mm]	nsions	Lo	ad rating [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Designation
d	D	В	C _r dyn.	C ₀r stat.	C _u	$\mathbf{n}_{\theta r}$	n _G	
320	400	80	826	2277	189	490	800	NNCF4864-V
	400	80	826	2277	189	490	800	NNCL4864-V
	440	118	1603	3840	314	410	750	NNC4964-V
	440	118	1603	3840	314	410	750	NNCF4964-V
	440	118	1603	3840	314	410	750	NNCL4964-V
	480	218	3424	6976	562	370	700	NNCF5064-V
340	420	80	858	2430	199	450	750	NNCF4868-V
	420	80	858	2430	199	450	750	NNCL4868-V
	460	118	1645	4043	326	390	700	NNC4968-V
	460	118	1645	4043	326	390	700	NNCF4968-V
	460	118	1645	4043	326	390	700	NNCL4968-V
	520	243	4121	8386	660	330	670	NNCF5068-V
360	440	80	884	2584	208	420	700	NNCF4872-V
	440	80	884	2584	208	420	700	NNCL4872-V
	480	118	1693	4246	337	360	670	NNC4972-V
	480	118	1693	4246	337	360	670	NNCF4972-V
	480	118	1693	4246	337	360	670	NNCL4972-V
	540	243	3979	8080	629	330	630	NNCF5072-V
380	480	100	1299	3641	286	370	670	NNCF4876-V
	480	100	1299	3641	286	370	670	NNCL4876-V
	520	140	2134	5493	427	320	630	NNC4976-V
	520	140	2134	5493	427	320	630	NNCF4976-V



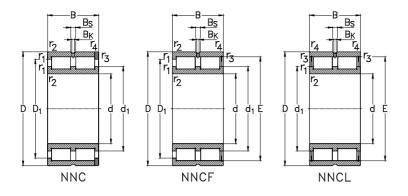
Abutment and fillet dimensions see on page 606


	Lagerabmessungen [mm] Bearing dimensions [mm]											
d	E	d₁ ≈	D₁ ≈	r ₁ , r ₂ min	r ₃ , r ₄ min	B _s ≈	B _K	s ≈	m ≈			
320	380,3	353,5	371,5	2,1	2,1	9,4	5	6	23,8			
	380,3	353,5		2,1	2,1	9,4	5	6	23,8			
		365,5	399	3	3	9,4	5		56			
	409	365,5	399	3	3	9,4	5	6	55,2			
	409	365,5		3	3	9,4	5	6	55,2			
	449,5	370	428	4	4	9,4	5	9	135			
340	397,4	370,5	388,5	2,1	2,1	9,4	5	6	25,2			
	397,4	370,5		2,1	2,1	9,4	5	6	25,2			
		383,5	412,5	3	3	9,4	5		60,5			
	427,1	383,5	412,5	3	3	9,4	5	6	58,8			
	427,1	383,5		3	3	9,4	5	6	58,8			
	485,65	395	468	5	5	9,4	5	11	170			
360	420,2	393	411	2,1	2,1	9,4	5	6	26,5			
	420,2	393		2,1	2,1	9,4	5	6	26,5			
		399	436,5	3	3		5		61			
	446	399	436,5	3	3	9,4	5	6	60,5			
	446	399		3	3	9,4	5	6	60,5			
	503,2	417	482	5	5	9,4	5	11	195			
380	456	421,5	444,5	2,1	2,1	9,4	5	6	44,6			
	456	421,5		2,1	2,1	9,4	5	6	44,6			
		433,5	465,5	4	4	9,4	5		93			
	481,5	433,5	465,5	4	4	9,4	5	7	92,4			

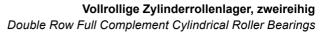
Double Row Full Complement Cylindrical Roller Bearings



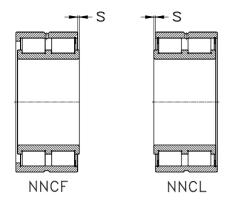
	Hauptabmessungen [mm]		Tragzahlen [kN]			Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Lagertype
Bound	ary dime [mm]	ensions	Lo	ad rating [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Designation
d	D	В	C _r dyn.	C ₀r stat.	C _u	$\mathbf{n}_{ heta r}$	n _G	
380	520	140	2134	5493	427	320	630	NNCL4976-V
	560	243	4341	9189	707	300	600	NNCF5076-V
400	500	100	1317	3771	293	350	630	NNCF4880-V
	500	100	1317	3771	293	350	630	NNCL4880-V
	540	140	2194	5762	442	300	600	NNC4980-V
	540	140	2194	5762	442	300	600	NNCF4980-V
	540	140	2194	5762	442	300	600	NNCL4980-V
	600	272	5115	11053	833	270	560	NNCF5080-V
420	520	100	1359	3967	304	330	600	NNCF4884-V
	520	100	1359	3967	304	330	600	NNCL4884-V
	560	140	2245	6031	456	290	560	NNC4984-V
	560	140	2245	6031	456	290	560	NNCF4984-V
	560	140	2245	6031	456	290	560	NNCL4984-V
440	540	100	1394	4162	315	310	560	NNCF4888-V
	540	100	1394	4162	315	310	560	NNCL4888-V
	600	160	3009	7633	567	250	530	NNC4988-V
	600	160	3009	7633	567	250	530	NNCF4988-V
	600	160	3009	7633	567	250	530	NNCL4988-V
460	580	118	1569	4655	347	300	530	NNCF4892-V
	580	118	1569	4655	347	300	530	NNCL4892-V
	620	160	3041	7836	577	240	500	NNC4992-V
	620	160	3041	7836	577	240	500	NNCF4992-V



Abutment and fillet dimensions see on page 606

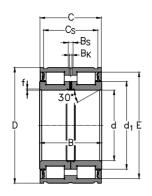

	Lagerabmessungen [mm] Bearing dimensions [mm]											
d	E	d₁ ≈	D₁ ≈	r ₁ , r ₂ min	r ₃ , r ₄ min	B _s ≈	B _K	s ≈	m ≈			
380	481,5	433,5		4	4	9,4	5	7	92,4			
	520,5	434	499	5	5	9,4	5	11	200			
400	470,3	436	459	2,1	2,1	9,4	5	6	46,8			
	470,3	436		2,1	2,1	9,4	5	6	46,8			
		454	486	4	4	9,4	5		97,5			
	502	454	486	4	4	9,4	5	7	96,5			
	502	454		4	4	9,4	5	7	96,5			
	559,1	463	535	5	5	9,4	5	11	270			
420	492,6	458	481	2,1	2,1	9,4	5	6	48,8			
	492,6	458		2,1	2,1	9,4	5	6	48,8			
		470,5	512	4	4	9,4	5		100			
	522,5	470,5	512	4	4	9,4	5	7	99			
	522,5	470,5		4	4	9,4	5	7	99			
440	514,6	480	503	2,1	2,1	9,4	5	6	50,9			
	514,6	480		2,1	2,1	9,4	5	6	50,9			
		503,5	543,5	4	4	9,4	5		140			
	563,5	503,5	543,5	4	4	9,4	5	7	138			
	563,5	503,5		4	4	9,4	5	7	138			
460	543,3	506	531	3	3	9,4	5	7	76,9			
	543,3	506		3	3	9,4	5	7	76,9			
		512	564	4	4	9,4	5		145			
	577	512	564	4	4	9,4	5	7	141			

Double Row Full Complement Cylindrical Roller Bearings



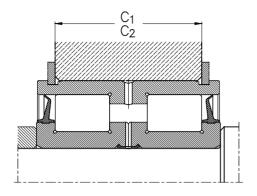
Haupt	abmess [mm]	ungen	[kN]		n	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Lagertype
Bound	ary dime [mm]	ensions	Lo	oad rating [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Designation
d	D	В	C _r dyn.	C ₀r stat.	C _u	n _{er}	n _G	
460	620	160	3041	7836	577	240	500	NNCL4992-V
480	600	118	1608	4881	358	290	500	NNCF4896-V
	600	118	1608	4881	358	290	500	NNCL4896-V
	650	170	3267	8409	611	230	480	NNC4996-V
	650	170	3267	8409	611	230	480	NNCF4996-V
	650	170	3267	8409	611	230	480	NNCL4996-V
500	620	118	1636	5031	366	270	480	NNCF48/500-V
	620	118	1636	5031	366	270	480	NNCL48/500-V
	670	170	3350	8841	633	220	450	NNC49/500-V
	670	170	3350	8841	633	220	450	NNCF49/500-V
	670	170	3350	8841	633	220	450	NNCL49/500-V
530	650	118	1681	5332	382	250	450	NNCF48/530-V
	650	118	1681	5332	382	250	450	NNCL48/530-V
	710	180	3887	10154	717	200	430	NNC49/530-V
	710	180	3887	10154	717	200	430	NNCF49/530-V
	710	180	3887	10154	717	200	430	NNCL49/530-V

Anschlussmaße siehe Seite 606


Abutment and fillet dimensions see on page 606

			Lagerabm [m Bearing di [m	m]					Gewicht [kg] Weight [kg]
d	E	d₁ ≈	D₁ ≈	r ₁ , r ₂ min	r ₃ , r ₄ min	B _s ≈	B _K	s ≈	m ≈
460	577	512		4	4	9,4	5	7	141
480	567,3	530	555	3	3	9,4	5	7	78,5
	567,3	530		3	3	9,4	5	7	78,5
		537	592	5	5	9,4	5		170
	605,5	537	592	5	5	9,4	5	8	166
	605,5	537		5	5	9,4	5	8	166
500	583,5	547	571	3	3	9,4	5	7	83
	583,5	547		3	3	9,4	5	7	83
		568,5	610,5	5	5	9,4	5		179
	631,5	568,5	610,5	5	5	9,4	5	8	175
	631,5	568,5		5	5	9,4	5	8	175
530	615	577,5	602,5	3	3	9,4	5	7	87,2
	615	577,5		3	3	9,4	5	7	87,2
		588	648	5	5	9,4	5		208
	663	588	648	5	5	9,4	5	8	205
	663	588		5	5	9,4	5	8	205

Vollrollige Zylinderrollenlager, zweireihig, abgedichtetSealed Double Row Full Complement Cylindrical Roller Bearings

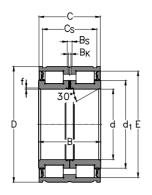


На		nessung m]	en	Tr	agzahle [kN]	en	Grenzdrehzahlen [min ⁻¹]	Lagertype	Sprengring	Sicherungring nach DIN 471
Во	,	dimensio m]	ons	Lo	ad rating [kN]	gs	Speed ratings [rpm]	Designation	Snapring	Snap ring according to DIN 471
d	D	В	С	C _r dyn.	C ₀r stat.	C _u				
25	47	30	29	43,3	59	7,2	3000	NNF5005-2LS-V	WRE47	47X1,75
30	55	34	33	51	72	8,7	2600	NNF5006-2LS-V	WRE55	55X2
35	62	36	35	66	92	11,2	2200	NNF5007-2LS-V	WRE62	62X2
40	68	38	37	80	117	14,2	2000	NNF5008-2LS-V	WRE68	68X2,5
45	75	40	39	96	145	17,7	1800	NNF5009-2LS-V	WRE75	75X2,5
50	80	40	39	101	159	19,4	1700	NNF5010-2LS-V	WRE80	80X2,5
55	90	46	45	119	194	23,6	1500	NNF5011-2LS-V	WRE90	90X3
60	95	46	45	124	209	25,5	1400	NNF5012-2LS-V	WRE95	95X3
65	100	46	45	129	225	27,4	1300	NNF5013-2LS-V	WRE100	100X3
70	110	54	53	190	326	39,7	1200	NNF5014-2LS-V	WRE110	110X4
75	115	54	53	206	343	41,9	1100	NNF5015-2LS-V	WRE115	115X4
80	125	60	59	237	423	51	1000	NNF5016-2LS-V	WRE125	125X4
85	130	60	59	255	443	53	1000	NNF5017-2LS-V	WRE130	130X4
90	140	67	66	302	564	66	900	NNF5018-2LS-V	WRE140	140X4
100	150	67	66	313	574	66	850	NNF5020-2LS-V	WRE150	150X4
110	170	80	79	417	774	86	750	NNF5022-2LS-V	WRE170	170X4
120	180	80	79	404	761	82	750	NNF5024-2LS-V	WRE180	180X4
130	200	95	94	579	1054	111	630	NNF5026-2LS-V	WRE200	200X4
	190	80	79	419	815	87	670	NNF130-2LS-V	WRE190	190X4
140	210	95	94	629	1254	129	600	NNF5028-2LS-V	WRE210	210X5
	200	80	79	434	870	91	630	NNF140-2LS-V	WRE200	200X4
150	225	100	99	694	1296	131	560	NNF5030-2LS-V	WRE225	225X5

Vollrollige Zylinderrollenlager, zweireihig, abgedichtet

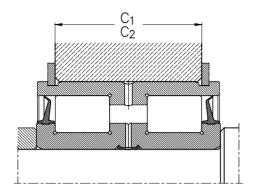
Sealed Double Row Full Complement Cylindrical Roller Bearings

Anschlussmaße siehe Seite 606


Abutment and fillet dimensions see on page 606

					gerabm [m earing di [m	m] imensic							Gewicht [kg] Weight [kg]
d	d₁	D ₁	E	b	b ₁	Bs	Вк	f	C ₁	C ₂	C _s	r ₃ , r ₄	m
25	≈ 33	44,8	40,4	1,8	2,15	≈ 4,5	3	0,5	± (21,2	+ 0,2	min 0,3	≈ 0,23
30	39,7	52,8	47,9	2,1	2,13	6,5	3	0,5	25,2	24,2	28,2	0,3	0,35
35	44,8	59,8	54,5	2,1	2,4	6,5	3	0,5	27,2	26,2	30,2	0,3	0,35
40			61	2,7	2,4	6,5	3	0,8	28,2		32,2	0,6	
	50,5	65,8					3			27,2			0,53
45	56,5	72,8	67,7	2,7	2,4	6,5		0,8	29,2	28,2	34,2	0,6	0,65
50	61,2	77,8	72,5	2,7	2,4	6,5	3	0,8	30,2	29,2	34,2	0,6	0,73
55	68	87,4	80	3,2	2,4	6,5	3,5	1	35,2	34,2	40,2	0,6	1,1
60	73	92,4	85	3,2	2,4	6,5	3,5	1	35,2	34,2	40,2	0,6	1,2
65	78	97,4	90	3,2	2,4	6,5	3,5	1	35,2	34,2	40,2	0,6	1,3
70	85	107,1	100	4,2	2,4	7,5	3,5	1	43,2	40,2	48,2	0,6	1,85
75	91	112	106	4,2	2,4	7,5	3,5	1	43,2	40,2	48,2	0,6	2
80	97	122,1	113,5	4,2	2,4	7,5	3,5	1,5	49,2	46,2	54,2	0,6	2,7
85	101,5	127,1	119,5	4,2	2,4	7,5	3,5	1,5	49,2	46,2	54,2	0,6	2,8
90	109,5	137	127,5	4,2	3,4	7,5	3,5	1,5	54,2	51,2	59,2	0,6	3,8
100	118,5	147	138	4,2	3,4	9	3,5	1,5	54,2	51,2	59,2	0,6	4,05
110	132	167	154,5	4,2	4,4	9	3,5	1,8	65,2	62,2	70,2	0,6	6,45
120	141,5	176	164	4,2	3,9	9	3,5	1,8	65,2	62,2	70,2	0,6	6,9
130	155	196	183,5	4,2	5,4	10,5	4	1,8	77,2	75,2	83,2	0,6	10,5
	151	186	173,5	4,2	3,9	10,5	4	1,8	65,2	63,2	71,2	0,6	7,3
140	167	206	196,08	5,2	5,4	10,5	4	1,8	77,3	73,3	83,2	0,6	10,7
	160,5	196	183	4,2	3,9	10,5	4	1,8	65,2	63,2	71,2	0,6	7,8
150	177,7	221	209,15	5,2	5,9	10,5	4	2	81,2	77,2	87,2	0,6	13,3

Vollrollige Zylinderrollenlager, zweireihig, abgedichtetSealed Double Row Full Complement Cylindrical Roller Bearings



На	uptabm [m	essung m]	en	Ti	ragzahle [kN]	en	Grenzdrehzahlen [min ⁻¹]	Lagertype	Sprengring	Sicherungring nach DIN 471
Во	oundary o [m	dimensio m]	ons	Lo	oad rating [kN]	gs	Speed ratings [rpm]	Designation	Snapring	Snap ring according to DIN 471
d	D	В	С	C _r	\mathbf{C}_{0r}	\mathbf{C}_{u}				
				dyn.	stat.					
150	210	80	79	448	924	95	560	NNF150-2LS-V	WRE210	210X5
160	240	109	108	722	1401	138	500	NNF5032-2LS-V	WRE240	240X5
	220	80	79	469	1006	101	530	NNF160-2LS-V	WRE220	220X5
170	260	122	121	931	1797	174	480	NNF5034-2LS-V	WRE260	260X5
	230	80	79	480	1061	105	530	NNF170-2LS-V	WRE230	230X5
180	280	136	135	1106	2174	206	450	NNF5036-2LS-V	WRE280	280X5
	240	80	79	493	1115	109	500	NNF180-2LS-V	WRE240	240X5
190	290	136	135	1129	2262	212	430	NNF5038-2LS-V	WRE290	290X5
	260	80	79	568	1304	125	450	NNF190-2LS-V	WRE260	260X5
200	310	150	149	1363	2947	270	400	NNF5040-2LS-V	WRE310	310X6
	270	80	79	584	1368	129	430	NNF200-2LS-V	WRE270	270X5
220	340	160	159	1515	3124	280	360	NNF5044-2LS-V	WRE340	340X6
	300	95	94	692	1619	148	400	NNF220-2LS-V	WRE300	300X5
240	360	160	159	1577	3365	296	340	NNF5048-2LS-V	WRE360	360X6
	320	95	94	727	1773	158	380	NNF240-2LS-V	WRE320	320X6
260	340	95	94	902	2130	188	320	NNF260-2LS-V	WRE340	340X6
280	420	190	189	2389	5128	429	320	NNF5056-2LS-V	WRE420	420X7
300	460	218	216	2634	5954	471	300	NNF5060-2LS-V	WRE460	460X7

Vollrollige Zylinderrollenlager, zweireihig, abgedichtet Sealed Double Row Full Complement Cylindrical Roller Bearings

Anschlussmaße siehe Seite 606

Abutment and fillet dimensions see on page 606

					earing d	m]							Gewicht [kg] Weight [kg]
d	d₁ ≈	D ₁	E	b	b ₁	B _s ≈	Вк	f	C ₁	C ₂	C _s + 0,2	r ₃ , r ₄ min	m ≈
150	170	206	192,5	5,2	3,9	10,5	4	1,8	65,2	61,2	71,2	0,6	8,3
160	191	236	222,55	5,2	6,4	10,5	4	2	89,2	85,2	95,2	0,6	16,5
	184,5	216	207	5,2	3,9	10,5	4	1,8	65,2	61,2	71,2	0,6	8,7
170	203	254	239	5,2	6,9	10,5	4	2	99,2	97,2	107,2	0,6	22,5
	194	226	216,5	5,2	3,9	10,5	4	1,8	65,2	61,2	71,2	0,6	8,72
180	220	274	259	5,2	8,4	12	4	2	110,2	108,2	118,2	0,6	30
	203,5	236	226	5,2	3,9	10,5	4	1,8	65,2	61,2	71,2	0,6	9,31
190	228	284	267,3	5,2	8,4	12	4	2	110,2	108,2	118,2	0,6	31,5
	217	254	241	5,2	2,9	10,5	4	1,8	65,2	63,2	73,2	0,6	11,94
200	245	304	284	6,3	10,4	12	4	2	120,2	116,2	128,2	0,6	40,5
	227,5	264	251,5	5,2	2,9	14	4	1,8	65,2	63,2	73,2	0,6	12,3
220	263,5	334	308,5	6,3	10,4	12	4	2	130,2	126,2	138,2	1	52,5
	248,7	294	277,5	5,2	5,4	10,5	4	2	75,2	73,2	83,2	1	19,2
240	282,5	354	327,5	6,3	10,4	14	5	2	130,2	126,2	138,2	1	56
	272	314	300,1	6,3	5,4	12	4	2	75,2	71,2	83,2	1	20,8
260	282,7	334	316,25	6,3	5,4	10,5	4,5	2	75,2	71,2	83,2	1	22
280	333,5	413	390,5	7,3	12,9	14	5	3	152,2	149,2	163,2	1,1	88
300	363,5	453	423,5	7,3	15,4	14	6	3	168,2	171,2	185,2	1,1	126

Kegelrollenlager

Tapered Roller Bearings

Metrische einreihige Kegelrollenlager Metric Single Row Tapered Roller Bearings

Einreihige Kegelrollenlager in Zollabmessungen Single Row Tapered Roller, Inch Sizes

Metrische einreihige Kegelrollenlager, gepaart Paired Metric Single Row Tapered Roller Bearings

IKOS Integral Kegelrollenlager *Tapered Roller Bearing, IKOS Design*

Einreihige Kegelrollenlager

Single Row Tapered Roller Bearings

Einreihige Kegelrollenlager

Normen, Hauptabmessungen

Maßpläne DIN 616

Metrische

Kegelrollenlager DIN 720

Allgemeines

Einreihige Kegelrollenlager sind zerlegbare Radiallager. Sie bestehen aus einem Innenteil (Innenring mit Rollensatz und Käfig) und einem losen Außenring.

Da einreihige Kegelrollenlager Axialkräfte nur in einer Richtung aufnehmen, müssen sie immer gegen ein zweites Lager angestellt werden, das die Führung der Welle in die Gegenrichtung übernimmt.

Kegelrollenlager sind zur Aufnahme sowohl radialer als auch axialer Kräfte geeignet, nehmen aber auch kombinierte Belastungen und Kippmomente gut auf.

Kegelrollenlager übertragen die auf das Lager wirkenden Belastungen unter einem Winkel, dem sogenannten **Druckwinkel** α , zur Mittelachse hin (siehe Abb. 1).

Single Row Tapered Roller Bearings

Standards, Boundary Dimensions

Standard plans DIN 616

Tapered roller bearings,

metric dimensions DIN 720

General

Single row tapered roller bearings are separable radial bearings. They consist of the inner ring with roller set and cage assembly, (cone) and a loose outer ring (cup). As single row tapered roller bearings are only able to accept thrust loads in one direction they must always be used in pairs where one bearing is adjusted against another one which guides the shaft in the opposite direction.

Tapered roller bearings are suitable for both radial and thrust forces but also accept combined loads and tilting moments.

Tapered roller bearings transfer the loads acting on the bearing at a certain angle, the so called "contact angle α " towards the shafts centre line (see fig.1).

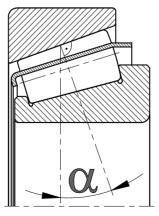
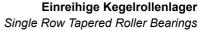



Abb. 1 Fig. 1

Die Eignung zur Aufnahme axialer Belastungen hängt von der Höhe des **Druckwinkels** α ab: Je **größer der Druckwinke**l wird, desto besser ist das betreffende Lager zur Aufnahme axialer Kräfte geeignet.

Der Druckwinkel der meisten Kegelrollenlager liegt zwischen 10° und 16°.

Hingegen sind Kegelrollenlager der Reihe **313** aufgrund deren größeren Druckwinkel (ca. **30°**) zur Axiallastaufnahme geeignet.

Schiefstellung

Schiefstellungen von maximal **1,5** Winkelminuten haben unter normalen Betriebsverhältnissen noch keine negativen Auswirkungen auf die Funktion bei einreihigen Kegelrollenlagern.

Allerdings weisen Lager, die unter Schiefstellungen laufen, erheblich höhere Laufgeräusche auf. Es ist mit einer Verringerung der Gebrauchsdauer durch die entstehenden Zusatzbelastungen zu rechnen.

Toleranzen

Kegelrollenlager werden standardmäßig in Normaltoleranz (**PN, Klasse 4**) gefertigt. Auf Anfrage können diese auch mit eingeengten Toleranzen in den Toleranzklassen **P6X** gefertigt werden.

Detaillierte Werte für die einzelnen Toleranzklassen entnehmen Sie bitte den Tabellen im Abschnitt "Lagerdaten / Toleranzen", Seite 58-63. The ability of tapered roller bearings to accommodate axial loads depends on their **contact** angle α . the larger the angle the better the thrust load capability. The contact angle of most tapered roller bearings lies between 10° and 16°.

Tapered roller bearings of the series **313** are particularly suitable accommodate axial loads due to their comparatively large contact angle (approximately **30°**).

Misalignment

Misalignments not exceeding **1,5** angular minutes from their centre position usually do not negatively affect the function of single row tapered roller bearings.

But it must be considered, that tapered roller bearings which run misaligned are subjected to considerably additional forces that will shorten their service life and generate increased running noise levels.

Tolerances

Tapered roller bearings are produced to normal tolerance class (**PN**, **class 4**) as standard. On request these bearings are also produced to closer tolerances, such as tolerance class **P6X**.

Detailed tolerance values are listed in the tables shown in the chapter "Bearing data / Tolerances", page 243-248.

Einreihige Kegelrollenlager

Single Row Tapered Roller Bearings

Käfige

NKE Kegelrollenlager werden standardmäßig mit Stahlblechkäfigen geliefert.

Da bei den Kegelrollenlagern die Käfige seitlich über die Planfläche vorstehen können, müssen die Anschlussmaße unbedingt eingehalten werden.

Lagerluft

Bei einreihigen Kegelrollenlagern wird die Lagerluft erst durch die Anstellung gegen ein zweites Lager definiert.

Temperaturbedingte Längenänderungen der Welle durch Wärmedehnungen führen zu Änderungen der Betriebslagerluft. Daher ist der Lagerabstand so klein als möglich zu wählen.

Mindestbelastung

Zum kinematisch korrekten Betrieb benötigen Wälzlager in allen Betriebszuständen eine Mindestbelastung.

Für NKE Kegelrollenlager muss die Mindestbelastung 2% der dynamischen Tragzahl betragen.

Cages

NKE tapered roller bearings are fitted with pressed steel cages as standard.

Because the cages of tapered roller bearings usually protrude beyond the bearing faces, special care must be taken to follow the abutment dimensions listed in the product section.

Internal Clearance

The axial play of tapered roller bearings is determined during mounting by adjusting one bearing against another.

The changes in shaft length (e.g. caused by thermal expansion) lead to changes in operating clearance. For this reason the distance between bearing positions should be kept to a minimum.

Minimum Load

Bearings require a minimum load under all operating conditions to ensure kinematically correct rolling element function.

For NKE tapered roller bearings the minimum load must be **2%** of the dynamic load rating.

Äquivalente dynamische Lagerbelastung

Bei einreihigen Kegelrollenlagern gilt:

bei

$$\frac{F_a}{F_r} \le e \text{ gilt } \mathbf{P} = \mathbf{F_r}$$

bzw., wenn

$$\frac{F_a}{F_r}$$
 > e dann **P = 0,4 * F_r + Y * F_a**

Achtung:

Bei Kegelrollenlagern verursacht jede äußere Belastung durch den Druckwinkel eine innere Axialkraft.

Zur Berechnung der Axialkraft **F**_a sind daher die folgenden Hinweise zu beachten. Diese gelten für im Betrieb spielfrei angestellte, aber ohne Vorspannung laufende Lager.

Equivalent Dynamic Bearing Load

In the case of single row tapered roller bearings the following equations should be used:

when

$$\frac{F_a}{F_r} \le e$$
 then $P = F_r$

or, if

$$\frac{F_a}{F_r}$$
 > e then $P = 0.4 * F_r + Y * F_a$

Note:

Each external radial load applied to tapered roller bearings generates an internal thrust force.

For the calculation of axial force \mathbf{F}_a the following information should be considered.

These formulas apply to tapered roller bearings operating without axial clearance and without preload.

Axialbelastung bei einreihigen Kegelrollenlagern

Axial Loads of Single Row Tapered Roller Bearings

Lageranordnung Bearing arrangement	Belastungsfall: bei Load case: if	Axial	elastung loads on bearing
		Α	В
O-Anordnung Back-to-back arrangement	A $\frac{F_{rA}}{Y_A} \geq \frac{F_{rB}}{Y_B} \qquad F_{aA}$ $Fa \geq 0$	$= \frac{0.5 * F_{rA}}{Y_A}$	$F_{aB} = F_{aA} + F_a$
F _{rB} F _{rA} X-Anordnung Face-to-face arrangement A B B	$\frac{F_{rA}}{Y_A} < \frac{F_{rB}}{Y_B} \qquad F_{aA}$ $F_a \ \ge 0.5 * \left(\frac{F_{rB}}{Y_B} - \frac{F_{rB}}{Y_B}\right)$		$F_{aB} = F_{aA} + F_a$
F _{rA} F _{rB}	$\begin{split} C \\ \frac{F_{rA}}{Y_A} < \frac{F_{rB}}{Y_B} \\ F_a &< 0.5 * \left(\frac{F_{rB}}{Y_B} - \frac{F_{rB}}{Y_B}\right) \end{split}$		$F_{aB} = \frac{0.5 * F_{rB}}{Y_B}$
O-Anordnung Back-to-back arrangement B A FrB FrA	$D \label{eq:FrA} \frac{F_{rA}}{Y_A} \leq \frac{F_{rB}}{Y_B}$ $Fa \geq 0$	$F_{aA} = F_{aB} + F_a$	$F_{aB} = \frac{0.5 * F_{rB}}{Y_B}$
X-Anordnung Face-to-face arrangement	$\begin{split} E & \frac{F_{rA}}{Y_A} > \frac{F_{rB}}{Y_B} \\ & F_a \ \geq 0.5 * \Big(\frac{F_{rA}}{Y_A} - \frac{F_{rI}}{Y_B} \Big) \end{split}$	$F_{aA} = F_{aB} + F_a$	$F_{aB} = \frac{0.5 * F_{rB}}{Y_B}$
F _{rA} F _{rB}	$\begin{aligned} F \\ \frac{F_{rA}}{Y_A} &> \frac{F_{rB}}{Y_B} \\ F_{aA} &< 0.5 * \left(\frac{F_{rA}}{Y_A} - \frac{F_{rB}}{Y_B}\right) \end{aligned}$		$F_{aB} = F_{aA} - F_a$

Äquivalente statische Lagerbelastung

Für einreihige Kegelrollenlager gilt:

$$P_0 = 0.5 * F_r + Y_0 * F_a$$

Wird allerdings P_0 kleiner als F_r , ist F_r zur Berechnung der äquivalenten statischen Lagerbelastung heranzuziehen.

Anschlussmaße

Kegelrollenlager erfordern aufgrund der entstehenden inneren Axiallastkomponente eine ausreichende axiale Unterstützung der Lagerringe durch die Umgebungskonstruktion.

Dazu müssen die Schulterhöhen der Anlageflächen an den Wellenbunden bzw. der Gehäuseschultern eine ausreichende Mindesthöhe aufweisen. Allerdings dürfen die Radien der Kantenverrundung der Lagerringe nicht an den Hohlkehlen von Wellenbund oder Gehäuse anliegen.

Daher muß der grösste Hohlkehlradius an den Anschlussteilen (\mathbf{r}_{g} bzw. \mathbf{r}_{g1}) kleiner sein als der kleinste Radius für die Kantenverrundung (\mathbf{r}_{s}) der Lagerringe.

Empfehlungen zur Gestaltung der Anschlussteile sind in den Produkttabellen angegeben.

Förderwirkung bei Ölschmierung

Asymmetrische Lager, wozu auch Kegelrollenlager gehören, weisen eine Pumpwirkung in Richtung des größeren Käfigdurchmessers auf, die bei Ölumlaufschmierung zur Unterstützung der Ölzirkulation herangezogen werden kann.

Bei Ölzuführung in Gegenrichtung ist allerdings mit einem erhöhten Durchflusswiderstand zu rechnen.

Equivalent Static Bearing Load

For single row tapered roller bearings:

$$P_0 = 0.5 * F_r + Y_0 * F_a$$

When P_0 is smaller than F_r , the F_r value must be used for calculating the equivalent static bearing load.

Abutment and Fillet Dimensions

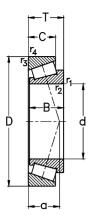
Particularly with tapered roller bearings sufficient support of bearing rings by the adjacent parts is required due to the generated internal thrust force component.

To gain satisfactory support both the shaft shoulders as well as the housing shoulders must have a certain minimum height. The bearing rings, however, must contact adjacent parts with their side faces only. The radii of bearing corners must not touch the shoulder fillet radii of neither the shaft nor housing shoulders.

Therefore, the largest fillet radius (\mathbf{r}_g or \mathbf{r}_{g1} , respectively) must be kept smaller than the minimum fillet dimension of the bearing rings (\mathbf{r}_s) as listed in the bearing tables.

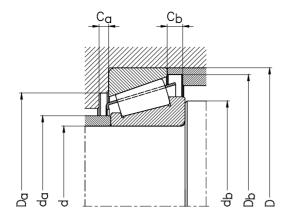
Recommendations for the dimensions of adjacent parts are stated in the bearing tables.

Pumping Effect with Oil Lubrication

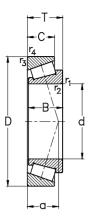

Asymmetrical bearings, to which tapered roller bearings belong, feature a certain pumping effect due to their internal design. This effect may be used to support the oil circulation in the lubricating circuit.

In case of an oil feed in the opposite direction an enlarged resistance against the oil flow must be taken into consideration.

Metrische einreihige Kegelrollenlager

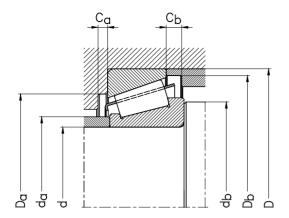

Metric Single Row Tapered Roller Bearings

Haupta	abmess [mm]	sungen	Ti	agzahle [kN]	en	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Gewicht [kg]	Lage	rtype
Bounda	ary dimo [mm]	ensions	Lo	ad ratin [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Weight [kg]	Desig	nation
d	D	Т	C _r dyn.	C ₀r stat.	Cu	n _{er}	n _G	m	DIN 720	ISO 355
15	35	11,75	15,2	14,6	1,8	12700	18000	0,06	30202	
	42	14,25	24,1	20,8	2,5	11600	18000	0,09	30302	T2FB015
17	40	13,25	22,2	21,8	2,7	10800	18000	0,08	30203	T2DB017
	47	15,25	28,1	25	2,75	10500	16000	0,13	30303	T2FB017
	47	20,25	35,4	34,3	3,9	10000	16000	0,18	32303	T2FD017
20	42	15	26,4	28,8	3,5	10900	16000	0,11	32004-X	T3CC020
	47	15,25	31	31,3	3,8	9500	15000	0,13	30204	T2DB020
	52	16,25	34,1	32,3	3,6	9200	14000	0,18	30304	T2FB020
	52	22,25	44,8	46,5	5,3	8900	14000	0,25	32304	T2FD020
22	47	17	34,1	36,5	4,4	10400	15000	0,14		T2CC022
25	47	15	29,5	34,9	4,3	9100	14000	0,12	32005-X	T4CC025
	52	16,25	35,6	38,2	4,7	8400	13000	0,16	30205	T3CC025
	52	19,25	36,5	43,3	5,3	7700	13000	0,18	32205	T2CD025
	52	22	48,3	58	7	8200	13000	0,22	33205	T2DE025
	62	18,25	45,8	44	4,9	7700	12000	0,27	30305	T2FB025
	62	18,25	37,5	39	4,4	6400	11000	0,28	31305	T7FB025
	62	25,25	61	64	7,5	7400	12000	0,38	32305	T2FD025
30	55	17	37,7	47,9	5,8	7800	12000	0,17	32006-X	T4CC030
	62	17,25	47,5	52	6,3	6900	11000	0,22	30206	T3DB030
	62	21,25	52	60	6,9	6400	11000	0,28	32206	T3DC030
	62	25	68	82	9,9	7000	11000	0,35	33206	T2DE030
	72	20,75	58,1	58,5	6,7	6700	10000	0,45	30306	T2FB030

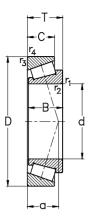


						Berech	nungsf	aktoren		,		ıssmaße m]	9	
						Calcu	ulation fa	actors		Abutme		fillet dim nm]	ensions	
d	В	С	r ₁ , r ₂ min	r ₃ , r ₄ min	a ≈	е	Υ	Y ₀	d a max	d ₅ min	D _a min	D _b min	C _a min	C _b min
15	11	10	0,6	0,6	10	0,24	2,53	1,39	21	21	29	32	2	2
	13	11	1	1	10	0,29	2,11	1,16	22	21	36	38	2	3
17	12	11	1	1	10	0,34	1,74	0,96	23	23	34	37	2	2
	14	12	1	1	10	0,29	2,11	1,16	25	23	40	42	2	3
	19	16	1	1	12	0,18	3,26	1,79	24	23	39	43	3	4
20	15	12	0,6	0,6	10	0,37	1,6	0,88	25	25	36	39	2	3
	14	12	1	1	11	0,34	1,74	0,96	27	26	40	43	2	3
	15	13	1,5	1,5	11	0,3	2	1,1	28	27	44	47	2	3
	21	18	1,5	1,5	14	0,3	2	1,1	27	27	43	47	3	4
22	17,5	13,5	1	1	11	0,33	1,8	1	28	28	40	44	4	3,5
25	15	11,5	0,6	0,6	12	0,43	1,39	0,77	30	30	40	44	3	3,5
	15	13	1	1	13	0,37	1,6	0,88	31	31	44	48	2	3
	18	15	1	1	13	0,43	1,39	0,77	31	31	44	48	2	3
	22	18	1	1	14	0,24	2,53	1,39	30	31	43	49	4	4
	17	15	1,5	1,5	13	0,3	2	1,1	34	32	54	57	2	3
	17	13	1,5	1,5	20	0,83	0,73	0,4	34	32	47	59	3	5
	24	20	1,5	1,5	16	0,44	1,38	0,76	33	32	52	57	3	5
30	17	13	1	1	14	0,43	1,39	0,77	35	36	48	52	3	4
	16	14	1	1	14	0,37	1,6	0,88	38	36	53	57	2	3
	20	17	1	1	16	0,37	1,6	0,88	37	36	52	59	3	4
	25	19,5	1	1	16	0,24	2,53	1,39	36	36	53	59	5	5,5
	19	16	1,5	1,5	15	0,31	1,9	1,05	41	37	62	66	3	4,5

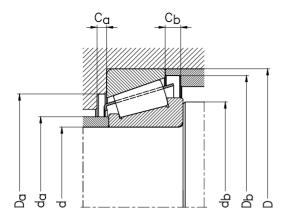
Metrische einreihige Kegelrollenlager


Metric Single Row Tapered Roller Bearings

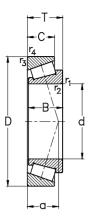
На	auptabr [n	ness nm]	ungen	Tragzahlen [kN]			Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Gewicht [kg]	Lage	rtype
В	oundary [r	dime nm]	nsions	Lo	ad rating [kN]	ıs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Weight [kg]	Desig	nation
	d	D	Т	C _r	C _{0r}	C _u	$\mathbf{n}_{\theta r}$	$n_{\scriptscriptstyle G}$	m	DIN 720	100 255
	30	72	20,75	dyn. 45,9	stat. 48,3	5,5	5700	9500	0,41	31306	ISO 355 T7FB030
		72	28,75	79	88	10,2	6300	10000	0,59	32306	T2FD030
		62	18	46,3	62	7,5	6800	11000	0,23	32007-X	T4CC035
		72	18,25	58	64	7,8	5900	9500	0,32	30207	T3DB035
		72	24,25	68	81	9,4	5600	9500	0,43	32207	T3DC035
		72	28	83	102	12,4	6200	9500	0,59	33207	T2DE035
		80	22,75	73,6	75,8	8,5	6000	9000	0,53	30307	T2FB035
		80	22,75	60,5	65,5	7,6	5100	8500	0,54	31307	T7FB035
		80	32,75	97	114	13,4	5900	9000	0,83	32307	T2FE035
-	40	68	19	52	68	8,3	6300	9500	0,29	32008-X	T3CD040
		75	26	82	107	13,1	5500	9000	0,52	33108	T2CE040
		80	19,75	68	75	9,2	5300	8500	0,43	30208	T3DB040
		80	24,75	77	90	10	4900	8500	0,56	32208	T3DC040
		80	32	114	142	17,4	5600	8500	0,74	33208	T2DE040
		85	33	121	150	18,3	6200	8000	0,9		T2EE040
		90	25,25	89	99	11,4	5300	8000	0,77	30308	T2FB040
		90	25,25	80	82	9,5	4600	7500	0,75	31308	T7FB040
	!	90	35,25	119	145	17	5200	8000	1,2	32308	T2FD040
4	45	75	20	62	84	10,3	5500	8500	0,33	32009-X	T3CC045
		75	24	76	106	12,9	5800	8500	0,43	33009	T2CE045
		80	26	89	122	14,9	4900	8000	0,53	33109	T3CE045
		85	20,75	74	85	10,4	5000	8000	0,5	30209	T3DB045



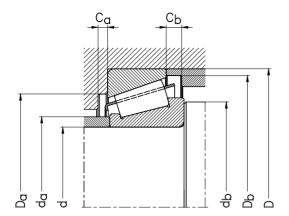
						Berech	nungsf	aktoren		Anschlussmaße [mm]				
						Calcu	ulation fa	actors		Abutme	ent and f [m	fillet dime m]	ensions	
d	В	С	r ₁ , r ₂ min	r ₃ , r ₄ min	a ≈	е	Υ	Y ₀	d a max	d ₅ min	D _a min	D _b min	C _a min	C _b min
30	19	14	1,5	1,5	24	0,83	0,73	0,4	40	37	55	68	3	6,5
	27	23	1,5	1,5	18	0,31	1,9	1,05	39	37	59	66	3	5,5
35	18	14	1	1	16	0,45	1,32	0,73	41	41	54	59	4	4
	17	15	1,5	1,5	15	0,37	1,6	0,88	44	42	62	67	3	3
	23	19	1,5	1,5	18	0,37	1,6	0,88	43	42	61	67	3	5
	28	22	1,5	1,5	18	0,37	1,62	0,89	42	42	61	68	5	6
	21	18	2	1,5	16	0,31	1,9	1,05	46	44	70	74	3	4,5
	21	15	2	1,5	26	0,83	0,73	0,4	45	44	62	76	3	7,5
	31	25	2	1,5	20	0,31	1,9	1,05	44	44	66	76	4	7,5
40	19	14,5	1	1	15	0,38	1,58	0,87	46	44	60	65	4	4,5
	26	20,5	1,5	1,5	18	0,26	2,27	1,25	47	47	65	71	4	5,5
	18	16	1,5	1,5	17	0,37	1,6	0,88	49	47	69	74	3	3,5
	23	19	1,5	1,5	19	0,37	1,6	0,88	49	47	68	75	3	5,5
	32	25	1,5	1,5	21	0,36	1,68	0,92	47	47	67	76	5	7
	32,5	28	2,5	2	22	0,35	1,7	0,9	48	50	70	80	5	5
	23	20	2	1,5	20	0,34	1,74	0,96	53	49	77	81	3	5
	23	17	2	1,5	30	0,83	0,73	0,4	51	49	71	86	3	8
	33	27	2	1,5	23	0,35	1,74	0,96	51	49	73	82	3	8
45	20	15,5	1	1	17	0,38	1,58	0,87	52	51	67	72	4	4,5
	24	19	1	1	16	0,29	2,04	1,12	52	52	72	78	5	7
	26	20,5	1,5	1,5	19	0,29	2,06	1,13	52	52	69	77	4	5,5
	19	16	1,5	1,5	18	0,4	1,48	0,81	54	52	74	80	3	4,5


Metrische einreihige Kegelrollenlager *Metric Single Row Tapered Roller Bearings*

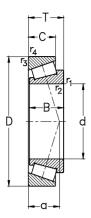
ŀ	Haupta	bmess [mm]	sungen	Ti	ragzahle [kN]	en	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Gewicht [kg]	Lage	rtype
E	Bounda	ary dime [mm]	ensions	Lo	oad ratin [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Weight [kg]	Desig	nation
	d	D	Т	C _r	Cor	Cu	$n_{\theta r}$	n_{G}	m		
	45	85	24.75	dyn. 87	stat.	11,5	4500	8000	0,57	DIN 720 32209	ISO 355 T3DC045
	45		24,75			,					
		85	32	118	153	18,6	5100	7500	0,79	33209	T3DE045
		95	29	90	112	13,65	5500	7500	0,92		T7FC045
		95	36	147	186	22,68	5500	7000	1,2		T2ED045
		100	27,25	110	124	14,6	4800	7000	0,96	30309	T2FB045
		100	27,25	100	105	12,5	4200	6700	1	31309	T7FB045
_		100	38,25	145	185	22	4700	7000	1,5	32309	T5FD045
	50	80	20	65	92	11,2	5100	8000	0,42	32010-X	T3CC050
		80	24	81	115	14	5300	8000	0,42	33010	T2CE050
		85	26	92	110	13,4	4800	7500	0,6	33110	T3CE050
		90	21,75	80	94	11,5	4700	7500	0,54	30210	T3DB050
		90	24,75	85	105	12,3	4200	7500	0,6	32210	T3DC050
		90	32	122	163	19,9	4700	7000	0,85	33210	T3DE050
		100	36	154	200	24,4	4400	7500	1,3		T2ED050
		105	32	108	137	16,6	4300	6300	1,2		T7FC050
		110	29,25	137	144	17,1	4400	6300	1,3	30310	T2FB050
		110	29,25	115	123	14,5	4000	6000	1,4	31310	T7FB050
		110	42,25	180	225	27	4400	6300	1,9	32310	T5FD050
	55	90	23	85	121	14,8	4700	7000	0,58	32011-X	T3CC055
		90	27	100	150	18,2	4800	7000	0,67	33011	T2CE055
		95	30	114	160	19,5	4300	6700	0,89	33111	T3CE055
		100	22,75	98	116	14,1	4200	6700	0,7	30211	T3DB055



						Berechnungsfaktoren Calculation factors				4	Anschlu [m		•	
						Calcu	ulation fa	actors		Abutme	ent and f [m		ensions	
d	В	С	r ₁ , r ₂ min	r ₃ , r ₄ min	a ≈	е	Y	Y ₀	d _a max	d ь min	D _a min	D _b min	C _a min	C _b min
45	23	19	1,5	1,5	20	0,4	1,48	0,81	54	52	73	80	3	5,5
	32	25	1,5	1,5	22	0,39	1,56	0,86	52	52	72	81	5	7
	26,5	20	2,5	2,5	32	0,88	0,68	0,4	54	56	71	91	3	9
	35	30	2,5	2,5	23	0,33	1,8	1	55	56	80	89	6	6
	25	22	2	1,5	21	0,34	1,74	0,96	59	53	86	92	3	5
	25	18	2	1,5	32	0,83	0,73	0,4	57	53	79	95	4	9
	36	30	2	1,5	30	0,55	1,1	0,6	57	53	82	93	4	8
50	20	15,5	1	1	18	0,42	1,43	0,78	57	56	72	77	4	4,5
	24	19	1	1	17	0,32	1,9	1,04	56	56	72	76	4	5
	26	20	1,5	1,5	20	0,32	1,88	1,04	56	57	74	82	4	6
	20	17	1,5	1,5	20	0,42	1,43	0,79	58	57	79	85	3	4,5
	23	19	1,5	1,5	21	0,42	1,43	0,79	58	57	78	85	3	5,5
	32	24,5	1,5	1,5	23	0,42	1,43	0,79	57	57	77	87	5	7,5
	35	30	2,5	2,5	25	0,35	1,7	0,9	59	60	84	94	6	6
	29	22	3	3	36	0,88	0,68	0,4	60	62	78	100	4	10
	27	23	2,5	2	23	0,34	1,74	0,96	65	60	95	102	4	6
	27	19	2,5	2	35	0,83	0,73	0,4	62	60	87	104	4	10
	40	33	2,5	2	33	0,55	1,1	0,6	63	60	90	102	5	9
55	23	17,5	1,5	1,5	20	0,41	1,48	0,81	63	62	81	86	4	5,5
	27	21	1,5	1,5	19	0,31	1,92	1,06	63	62	81	86	5	6
	30	23	1,5	1,5	22	0,29	2,06	1,13	63	62	83	91	5	7
	21	18	2	1,5	21	0,4	1,48	0,81	64	64	88	94	4	4,5

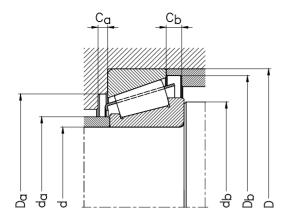

Metrische einreihige Kegelrollenlager *Metric Single Row Tapered Roller Bearings*

Haup	tabmess [mm]	ungen	Ti	ragzahle [kN]	en	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Gewicht [kg]	Lage	rtype
Boun	dary dime [mm]	ensions	Lo	oad ratin [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Weight [kg]	Desig	nation
d	D	Т	C _r	C _{or}	Cu	$n_{\theta r}$	$n_{\scriptscriptstyle G}$	m		
	400	00.75	dyn.	stat.	4= 0	2000	0700		DIN 720	ISO 355
55	100	26,75	108	133	15.6	3800	6700	0,87	32211	T3DC055
	100	35	154	207	25,2	4300	6300	1,21	33211	T3DE055
	110	39	179	232	28,29	4200	6300	1,7		T2ED055
	115	34	125	163	19,87	4000	5600	1,6		T7FC055
	120	31,5	159	167	20	4100	5600	1,8	30311	T2FB055
	120	31,5	122	138	16,5	3700	5600	1,6	31311	T7FB055
	120	45,5	205	260	31	4100	5600	2,55	32311	T2FD055
60	95	23	86	127	15,4	4400	6700	0,63	32012-X	T4CC060
	95	27	102	157	19,1	4500	6700	0,73	33012	T2CE060
	100	30	110	174	21	4000	6300	0,89	33112	T3CE060
	110	23,75	111	131	15,9	3900	6000	0,92	30212	T3EB060
	110	29,75	129	165	19,6	3500	6000	1,14	32212	T3EC060
	110	38	178	242	29,5	4000	6000	1,5	33212	T3EE060
	115	39	168	250	30,5	4400	5600	1,85		T5ED060
	115	40	194	260	31,7	4400	5900	1,85		T2EE060
	125	37	154	204	24,8	4200	5300	2,05		T7FC060
	130	33,5	172	200	23,9	3800	5300	2,1	30312	T2FB060
	130	33,5	144	168	20,1	3400	5300	1,9	31312	T7FB060
	130	48,5	231	307	37	3900	5300	3,15	32312	T5FD060
65	100	23	87	132	16,1	4100	6000	0,62	32013-X	T4CC065
	100	27	103	163	19,9	4300	6300	0,78	33013	T2CE065
	110	34	153	230	28,1	3700	5600	1,34	33113	T3DE065

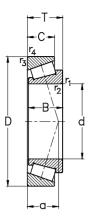


						Berech	nungsf	aktoren		,	Anschlu [m		e	
						Calcu	ulation fa	actors		Abutme	ent and f [m	illet dim m]	ensions	
d	В	С	r ₁ , r ₂ min	r ₃ , r ₄ min	a ≈	е	Y	Y ₀	d _a max	d ь min	D _a min	D _b min	C _a min	C _b min
55	25	21	2	1,5	23	0,4	1,48	0,81	64	64	87	95	4	5,5
	35	27	2	1,5	26	0,4	1,5	0,83	63	64	85	96	6	8
	39	32	2,5	2,5	27	0,35	1,7	0,9	66	65	93	104	7	7
	31	23,5	3	3	39	0,88	0,68	0,4	66	67	86	109	4	10,5
	29	25	2,5	2	25	0,34	1,74	0,96	71	65	104	111	4	6,5
	29	21	2,5	2	39	0,83	0,73	0,4	68	65	94	113	4	10,5
	43	35	2,5	2	30	0,55	1,1	0,6	68	65	99	112	5	10,5
60	23	17,5	1,5	1,5	21	0,43	1,39	0,77	67	67	85	91	4	5
	27	21	1,5	1,5	20	0,33	1,83	1,01	67	67	85	90	5	6
	30	23	1,5	1,5	23	0,4	1,51	0,83	67	67	88	96	5	7
	22	19	2	1,5	22	0,4	1,48	0,81	70	68	96	103	4	4,5
	28	24	2	1,5	24	0,4	1,48	0,81	69	68	95	104	4	5,5
	38	29	2	1,5	28	0,4	1,48	0,81	69	68	93	105	6	9
	38	31	4	2,5	33	0,54	1,1	0,6	70	74	92	110	5	8
	39	33	2,5	2,5	28	0,33	1,8	1	70	70	98	109	6	7
	33,5	26	3	3	41	0,83	0,72	0,4	72	72	94	119	4	11
	31	26	3	2,5	26	0,34	1,74	0,96	77	72	112	120	5	7,5
	31	22	3	2,5	41	0,83	0,73	0,4	74	72	103	123	5	11,5
	46	37	3	2,5	39	0,55	1,1	0,6	74	72	107	120	6	11,5
65	23	17,5	1,5	1,5	23	0,46	1,31	0,72	72	72	90	97	4	5,5
	27	21	1,5	1,5	21	0,35	1,72	0,95	72	72	89	96	5	6
	34	26,5	1,5	1,5	26	0,39	1,55	0,85	74	72	96	106	6	7,5

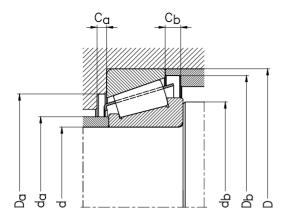
Metrische einreihige Kegelrollenlager


Metric Single Row Tapered Roller Bearings

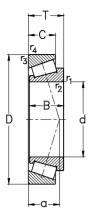
Н	auptab [mess mm]	ungen	Tr	agzahle [kN]	n	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Gewicht [kg]	Lage	type
В	oundary l	/ dime mm]	nsions	Lo	ad rating [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Weight [kg]	Desigi	nation
	d	D	Т	C _r dyn.	C ₀r stat.	C _u	n _{θr}	n _G	m	DIN 720	ISO 355
	65	120	24,75	123	144	17,5	3600	5600	1,1	30213	T3EB065
		120	32,75	154	197	23,7	3300	5600	1,59	32213	T3EC065
		120	39	161	240	29,26	4400	5100	1,95		T5ED065
		120	41	216	295	35,9	3700	5300	2,04	33213	T3EE065
		130	37	157	216	26,34	4000	5000	2,2		T7FC065
		140	36	198	232	27,3	3600	4800	2,4	30313	T2GB065
		140	36	163	189	23	3200	4800	2,6	31313	T7GB065
		140	51	270	343	41,8	3600	4800	3,82	32313	T2GD065
	70	110	25	109	164	19,9	3800	5600	0,97	32014-X	T4CC070
		110	31	140	225	27,5	3900	5600	1,14	33014	T2CE070
		120	37	184	279	34	3400	5300	1,75	33114	T3DE070
		125	26,25	143	176	21,5	3400	5300	1,2	30214	T3EB070
		125	33,25	160	211	25,5	3100	5300	1,7	32214	T3EC070
		125	41	224	312	38,1	3500	5000	2,06	33214	T3EE070
		130	43	233	325	39,6	3900	5600	2,45		T2ED070
		140	39	176	240	28,8	3800	4500	2,65		T7FC070
		140	52	281	405	48,7	3900	4600	3,7		T4FE070
		150	38	224	265	31	3400	4500	3,1	30314	T2GB070
		150	38	186	219	26,5	3100	4500	2,9	31314	T7GB070
		150	54	298	405	48	3300	4300	4,64	32314	T5GD070
	75	105	20	81	127	15,5	3500	6300	0,52	32915	T2BC075
		115	25	97	144	17,5	3800	5300	0,93	32015-X	T4CC075



						Berech	nungsf	aktoren		4		ıssmaße m]	•	
						Calcu	ulation fa	actors		Abutme		fillet dime m]	ensions	
d	В	С	r ₁ , r ₂ min	r ₃ , r ₄ min	a ≈	е	Y	Y ₀	d a max	d ь min	D _a min	D _b min	C _a min	C _b min
65	23	20	2	1,5	23	0,4	1,48	0,81	78	74	106	113	4	4,5
	31	27	2	1,5	27	0,4	1,48	0,81	76	74	104	115	4	5,5
	38	31	4	2,5	35	0,57	1,05	0,6	75	74	96	115	6	8
	41	32	2	1,5	30	0,39	1,54	0,85	75	74	102	115	6	9
	33,5	26	3	3	44	0,88	0,68	0,4	77	77	98	124	4	11
	33	28	3	2,5	28	0,34	1,74	0,96	84	77	122	130	5	8
	33	23	3	2,5	44	0,83	0,73	0,4	80	77	111	132	5	13
	48	39	3	2,5	41	0,55	1,1	0,6	80	77	117	130	6	12
70	25	19	1,5	1,5	24	0,43	1,38	0,76	78	77	98	105	5	6
	31	25,5	1,5	1,5	22	0,28	2,11	1,16	78	77	99	105	5	5,5
	37	29	2	1,5	28	0,38	1,58	0,87	80	79	104	115	6	8
	24	21	2	1,5	25	0,42	1,43	0,79	82	78	110	118	4	5
	31	27	2	1,5	28	0,42	1,43	0,79	80	78	108	119	4	6
	41	32	2	1,5	31	0,41	1,47	0,81	79	78	107	120	7	9
	42	35	3	2,5	30	0,33	1,8	1	81	82	111	123	7	8
	35,5	27	3	3	47	0,88	0,68	0,4	82	82	106	133	5	12
	51	43	5	3	39	0,44	1,35	0,8	82	88	111	133	7	9
	35	30	3	2,5	30	0,34	1,74	0,96	90	82	130	140	5	8
	35	25	3	2,5	47	0,83	0,73	0,4	85	82	118	141	5	13
	51	42	3	2,5	44	0,55	1,1	0,6	86	82	125	140	6	12
75	20	16	1	1	19	0,33	1,8	0,99	81	82	98	101	4	4
	25	19	1,5	1,5	25	0,46	1,31	0,72	83	82	103	110	5	6

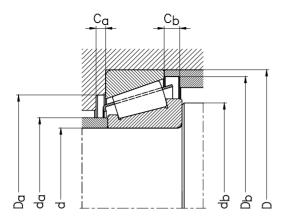

Metrische einreihige Kegelrollenlager *Metric Single Row Tapered Roller Bearings*

Haup	tabmess [mm]	sungen	Ti	ragzahle [kN]	en	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Gewicht [kg]	Lage	rtype
Boun	dary dime [mm]	ensions	Lo	oad rating [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Weight [kg]	Desig	nation
d	D	Т	C _r	C ₀r stat.	C _u	$n_{\theta r}$	\mathbf{n}_{G}	m	DIN 720	ISO 355
75	115	31	dyn. 139	226	27,6	3700	5300	1,12	33015	T2CE075
	125	37	189	293	35,6	3200	5000	1,74	33115	T3DE075
	130	27,25	150	189	22,8	3200	5000	1,4	30215	T4DB075
	130	33,25	166	221	26,3	2900	5000	1,93	32215	T4DC075
	130	41	222	314	38	3300	4800	2,24	33215	T3EE075
	150	42	201	280	32,9	3600	4300	3,25		T7FC075
	160	40	251	295	34,3	3200	4300	3,64	30315	T2GB075
	160	40	206	241	28,4	2900	4300	3,4	31315	T7GB075
	160	58	348	458	54	3100	4000	5,7	32315	T5GD075
80	125	29	148	227	27,4	3400	5000	1,24	32016-X	T3CC080
	125	36	189	315	37,6	3400	5000	1,67	33016	T2CE080
	130	37	193	305	36,7	3100	4800	1,93	33116	T3DE080
	140	28,25	174	214	25,8	3000	4800	1,6	30216	T3EB080
	140	35,25	193	253	29,8	2800	4500	2,18	32216	T3EC080
	140	46	256	394	46,7	3200	4500	3,01	33216	T3EE080
	145	46	281	400	47,1	3400	4300	3,25		T2ED080
	170	42,5	280	335	38,8	3000	4300	4,34	30316	T2GB080
	170	42,5	224	268	31,3	2800	4000	4,2	31316	T7GB080
	170	61,5	393	520	60,5	3000	4300	6,74	32316	T5GD080
85	130	29	147	227	27,1	3300	4800	1,31	32017-X	T4CC085
	130	36	189	315	37,6	3300	4800	1,76	33017	T2CE085
	140	41	230	368	43,3	2900	4500	2,38	33117	T3DE085

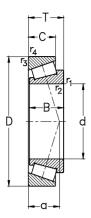


						Berech	nungsf	aktoren		,		ıssmaße m]	e	
						Calcu	ulation fa	actors		Abutme		fillet dim m]	ensions	
d	В	С	r ₁ , r ₂ min	r ₃ , r ₄ min	a ≈	е	Y	Y ₀	d _a max	d ь min	D _a min	D _b min	C _a min	C _b min
75	31	25,5	1,5	1,5	23	0,3	2,01	1,11	84	82	104	110	6	5,5
	37	29	2	1,5	30	0,4	1,51	0,83	84	84	109	120	6	8
	25	22	2	1,5	27	0,44	1,38	0,76	86	84	115	124	4	5
	31	27	2	1,5	29	0,44	1,38	0,76	85	84	114	125	4	6
	41	31	2	1,5	32	0,43	1,4	0,77	84	84	111	125	7	10
	38	29	3	3	50	0,88	0,68	0,4	88	87	114	143	5	13
	37	31	3	2,5	32	0,34	1,74	0,96	96	87	139	149	5	9
	37	26	3	2,5	50	0,83	0,73	0,4	91	87	127	151	6	14
	55	45	3	2,5	47	0,55	1,1	0,6	92	87	133	149	7	13
80	29	22	1,5	1,5	27	0,42	1,42	0,78	90	87	112	120	6	7
	36	29,5	1,5	1,5	26	0,29	2,06	1,13	90	87	112	119	6	6,5
	37	29	2	1,5	31	0,42	1,44	0,79	89	89	114	126	6	8
	26	22	2,5	2	28	0,42	1,43	0,79	92	90	124	132	4	6
	33	28	2,5	2	31	0,42	1,43	0,79	91	90	122	134	5	7
	46	35	2,5	2	35	0,41	1,45	0,8	89	90	119	135	7	11
	45	38	3	2,5	32	0,31	1,9	1,1	92	92	125	137	8	8
	39	33	3	2,5	34	0,34	1,74	0,96	102	92	148	159	5	9,5
	39	27	3	2,5	53	0,83	0,73	0,4	97	92	134	159	6	15,5
	58	48	3	2,5	49	0,55	1,1	0,6	98	92	142	159	7	13,5
85	29	22	1,5	1,5	28	0,44	1,36	0,75	94	92	117	125	6	7
	36	29,5	1,5	1,5	26	0,29	2,06	1,13	94	92	118	125	6	6,5
	41	32	2,5	2	33	0,41	1,48	0,81	95	95	122	135	7	9

Metrische einreihige Kegelrollenlager

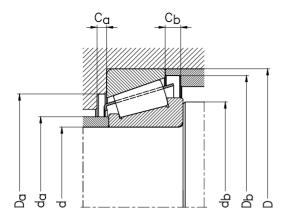

Metric Single Row Tapered Roller Bearings

Haupta	abmess [mm]	ungen	Tr	agzahle [kN]	en	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Gewicht [kg]	Lage	rtype
Bounda	ary dime [mm]	ensions	Lo	ad rating [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Weight [kg]	Desig	nation
d	D	Т	C _r dyn.	C ₀r stat.	C _u	n_{er}	n _G	m	DIN 720	ISO 355
85	150	30,5	190	237	27,6	2900	4300	2,1	30217	T3EB085
	150	38,5	219	295	34,8	2700	4300	2,76	32217	T3EC085
	150	49	300	432	50	3000	4300	3,5	33217	T3EE085
	180	44,5	309	373	41,3	2900	4000	4,83	30317	T2GB085
	180	44,5	247	293	33,8	2700	3800	4,9	31317	T7GB085
	180	63,5	413	570	65	2800	4000	7,86	32317	T5GD085
90	140	32	180	279	32,7	3100	4300	1,69	32018-X	T3CC090
	140	39	242	397	46,4	3000	4500	2,3	33018	T2CE090
	150	45	269	432	49,9	2800	4300	3,07	33118	T3DE090
	155	46	286	430	49,4	3200	4000	3,5		T2ED090
	160	32,5	219	279	31,8	2800	4000	2,6	30218	T3FB090
	160	42,5	256	348	40	2500	4000	3,78	32218	T3FC090
	175	48	270	380	42,5	3200	3200	4,95		T7FC090
	190	46,5	333	403	43,8	2800	4000	5,87	30318	T2GB090
	190	46,5	270	320	36	2600	3400	5,4	31318	T7GB090
	190	67,5	474	640	72	2600	4000	8,5	32318	T2GD090
95	145	32	183	290	33,5	2900	4300	1,8	32019-X	T4CC095
	145	39	240	399	46	3000	4300	2,24	33019	T2CE095
	160	46	297	455	51,6	3100	3800	3,65		T2ED095
	170	34,5	248	320	35,8	2600	3800	3,2	30219	T3FB095
	170	45,5	291	405	45,8	2400	3800	4,23	32219	T3FC095
	200	49,5	350	420	45	2700	3400	6,77	30319	T2GB095

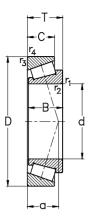


						Berech	nungsf	aktoren		,	Anschlu [m	ssmaße m]	9	
						Calcu	ulation fa	actors		Abutme	ent and f [m	illet dim m]	ensions	
d	В	С	r ₁ , r ₂ min	r ₃ , r ₄ min	a ≈	е	Y	Y ₀	d _a max	d ь min	D _a min	D _b min	C _a min	C _b min
85	28	24	2,5	2	30	0,42	1,43	0,79	97	95	132	141	5	6,5
	36	30	2,5	2	34	0,42	1,43	0,79	97	95	130	142	5	8,5
	49	37	2,5	2	37	0,43	1,41	0,78	96	95	128	144	7	12
	41	34	4	3	36	0,35	1,74	0,96	107	99	156	167	6	10,5
	41	28	4	3	55	0,83	0,73	0,4	103	99	143	169	6	16,5
	60	49	4	3	51	0,55	1,1	0,6	103	99	150	167	7	14,5
90	32	24	2	1,5	30	0,42	1,42	0,78	100	98	125	134	6	8
	39	32,5	2	1,5	28	0,27	2,23	1,23	100	98	127	135	7	6,5
	45	35	2,5	2	36	0,4	1,51	0,83	101	101	130	144	7	10
	46	38	3	3	34	0,33	1,8	1	102	102	135	147	7	8
	30	26	2,5	2	32	0,42	1,43	0,79	104	101	140	150	5	6,5
	40	34	2,5	2	36	0,42	1,43	0,79	102	101	138	152	5	8,5
	45	33	4	4	57	0,83	0,72	0,4	105	104	134	167	6	15
	43	36	4	3	37	0,34	1,74	0,96	113	105	165	176	6	10,5
	43	30	4	3	58	0,83	0,73	0,4	109	105	151	179	6	16,5
	64	53	4	3	47	0,35	1,74	0,96	109	105	157	177	7	14,5
95	32	24	2	1,5	32	0,44	1,36	0,75	105	104	130	139	6	8
	39	32,5	2	1,5	29	0,27	2,26	1,24	104	104	131	139	7	6,5
	46	38	3	3	35	0,33	1,8	1	107	107	140	152	7	8
	32	27	3	2,5	34	0,42	1,43	0,79	110	107	149	159	5	7,5
	43	37	3	2,5	39	0,42	1,43	0,79	109	107	145	161	5	8,5
	45	38	4	3	40	0,34	1,74	0,96	118	110	172	184	6	11,5

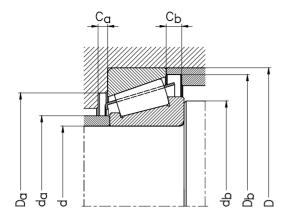
Metrische einreihige Kegelrollenlager


Metric Single Row Tapered Roller Bearings

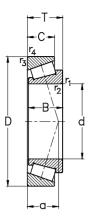
Haupta	bmess [mm]	ungen	Ti	ragzahle [kN]	en	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Gewicht [kg]	Lage	rtype
Bounda	ary dime [mm]	ensions	Lo	oad rating [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Weight [kg]	Desig	nation
d	D	Т	C _r dyn.	C ₀r stat.	C _u	n _{er}	n _G	m	DIN 720	ISO 355
95	200	49,5	297	362	39,3	2400	3400	6,7	31319	T7GB095
	200	71,5	516	695	76	2400	3400	10,3	32319	T2GD095
100	145	24	125	190	21,8	2600	4500	1,15		T4CB100
	150	32	182	291	33,2	2900	4000	1,93	32020-X	T4CC100
	150	39	238	400	45,6	2900	4000	2,33	33020	T2CE100
	180	37	277	360	39,7	2500	3600	3,8	30220	T3FB100
	180	49	327	458	51	2300	3600	5,67	32220	T3FC100
	215	51,5	411	500	58	2500	3200	8,38	30320	T2GB100
	215	56,5	429	522	56	2300	3000	8,8	31320	T7GB100
	215	77,5	596	815	95,5	2200	3000	13,1	32320	T2GD100
105	160	35	215	345	38,7	2700	3800	2,33	32021-X	T4DC105
	160	43	250	437	48,9	2900	3800	3,09	33021	T2DE105
	190	39	282	368	40	2500	3400	4,2	30221	T3FB105
	190	53	372	530	59	2300	3400	6,07	32221	T3FC105
	225	81,5	638	878	101	2100	3000	15,1	32321	T2GD105
110	150	25	133	234	26,4	2500	4300	1,25	32922	T2CC110
	160	27	154	232	25,8	2500	3600	1,6		T4CB110
	170	38	259	413	46	2600	3600	2,96	32022-X	T4DC110
	170	47	301	516	57	2800	3600	3,71	33022	T2DE110
	200	41	344	456	48,7	2300	3200	5,2	30222	T3FB110
	200	56	409	580	63,5	2100	3200	7,35	32222	T3FC110
	240	54,5	474	583	66,5	2200	2800	11,1	30322	T2GB110



						Berech	nungsf	aktoren		,		ıssmaße m]	e	
						Calcu	ulation fa	actors		Abutme		fillet dim nm]	ensions	
d	В	С	r ₁ , r ₂ min	r ₃ , r ₄ min	a ≈	е	Y	Y ₀	d a max	d ₅ min	D _a min	D _b min	C _a min	C _b min
95	45	32	4	3	61	0,83	0,73	0,4	114	110	157	187	6	17,5
	67	55	4	3	49	0,35	1,74	0,96	115	110	166	186	8	16,5
100	22,5	17,5	3	3	30	0,48	1,25	0,7	109	112	133	140	4	6,5
	32	24	2	1,5	33	0,46	1,31	0,72	110	108	134	144	6	8
	39	32,5	2	1,5	29	0,29	2,09	1,15	109	108	135	143	7	6,5
	34	29	3	2,5	36	0,42	1,43	0,79	116	112	157	168	5	8
	46	39	3	2,5	42	0,42	1,43	0,79	115	112	154	171	5	10
	47	39	4	3	42	0,34	1,74	0,96	127	115	184	197	6	12,5
	51	35	4	3	68	0,83	0,73	0,4	121	115	168	202	7	21,5
	73	60	4	3	53	0,35	1,74	0,96	123	115	177	201	8	17,5
105	35	26	2,5	2	35	0,44	1,35	0,74	116	116	143	154	6	9
	43	34	2,5	2	31	0,24	2,53	1,39	117	116	145	153	7	9
	36	30	3	2,5	38	0,31	1,88	1,04	123	117	165	177	6	9
	50	43	3	2,5	44	0,42	1,43	0,79	120	117	161	180	6	10
	77	63	4	3	56	0,35	1,74	0,96	129	120	185	209	9	18,5
110	25	20	1,5	1,5	26	0,36	1,69	0,93	118	117	140	145	5	5
	25,5	19,5	3	3	31	0,44	1,35	0,8	120	122	148	154	5	7,5
	38	29	2,5	2	37	0,43	1,39	0,77	123	121	152	163	7	9
	47	37	2,5	2	33	0,29	2,09	1,15	123	121	152	161	7	10
	38	32	3	2,5	39	0,42	1,43	0,79	129	122	174	187	6	9
	53	46	3	2,5	46	0,42	1,43	0,79	127	122	170	190	6	10
	50	42	4	3	45	0,34	1,74	0,96	142	125	206	220	8	12,5

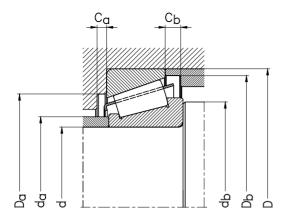

Metrische einreihige Kegelrollenlager *Metric Single Row Tapered Roller Bearings*

	Haupta	abmess [mm]	ungen	Ti	ragzahle [kN]	n	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Gewicht [kg]	Lage	rtype
	Bounda	ary dime [mm]	ensions	Lo	oad rating [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Weight [kg]	Desig	nation
	d	D	Т	C _r	Cor	Cu	$n_{\theta r}$	$n_{\scriptscriptstyle G}$	m	DIN =00	100.0==
ı	110	240	63	dyn. 457	stat. 583	66,5	2000	2800	12,3	DIN 720 31322	ISO 355 T7GB110
	110	240	84,5	684	930	107	1900	2800	18,1	32322	T2GD110
	120	170					2200	3800		32322	T4CB120
	120	180	27	157	250	27,3 45	2500	3400	1,7	 20004 V	
			38	254	416				3,28	32024-X	T4DC120
		180	48	302	539	58	2600	3400	4,06	33024	T2DE120
		215	43,5	371	500	52	2200	3000	6,8	30224	T4FB120
		215	61,5	479	713	82,5	2000	3000	10,1	32224	T4FD120
		260	59,5	566	710	78,3	2000	2600	14,3	30324	T2GB120
		260	68	542	700	78	1900	2400	15,1	31324	T7GB120
		260	90,5	731	1045	114	1700	2600	21,1	32324	T2GD120
	130	180	32	213	387	41,4	2200	3600	2,4	32926	T2CC130
		185	29	194	315	33,5	2100	3200	2,25		T4CB130
		200	45	348	580	61	2300	3000	5,05	32026-X	T4EC130
		230	43,75	401	538	55	2000	2800	7,2	30226	T4FB130
		230	67,75	555	845	96	1800	2800	11,7	32226	T4FD130
		280	63,75	619	775	85	1800	2400	17,2	30326	T2GB130
		280	72	611	788	87	1700	2400	19,2	31326	T7GB130
		280	98,75	840	1130	133	1800	2400	30,2	32326	
	140	190	32	214	399	41,9	2100	3400	2,55	32928	T2CC140
		195	29	194	325	33,9	1900	3200	2,4		T4CB140
		210	45	344	572	60	2200	2800	5,18	32028-X	T4DC140
		250	45,75	442	593	59	1900	2600	8,5	30228	T4FB140

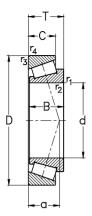


						Berech	nungsf	aktoren		,		ıssmaße m]	•	
						Calcu	ulation fa	actors		Abutme		fillet dime m]	ensions	
d	В	С	r ₁ , r ₂ min	r ₃ , r ₄ min	a ≈	е	Υ	Y ₀	d _a max	d ₅ min	D _a min	D ₅ min	C _a min	C _b min
110	57	38	4	3	75	0,83	0,73	0,4	135	125	188	224	7	25
	80	65	4	3	58	0,35	1,74	0,96	137	125	198	222	9	19,5
120	25	19,5	3	3	34	0,48	1,25	0,7	130	132	157	164	4	7,5
	38	29	2,5	2	40	0,46	1,31	0,72	132	131	161	173	7	9
	48	38	2,5	2	36	0,31	1,97	1,08	132	131	160	171	6	10
	40	34	3	2,5	43	0,44	1,38	0,76	141	132	187	201	6	9,5
	58	50	3	2,5	51	0,44	1,38	0,76	137	132	181	204	7	11,5
	55	46	4	3	48	0,34	1,74	0,96	153	135	221	237	7	13,5
	62	42	4	3	82	0,83	0,73	0,4	145	135	203	244	9	26
	86	69	4	3	66	0,35	1,74	0,96	148	135	213	239	9	21,5
130	32	25	2	1,5	31	0,34	1,77	0,97	141	140	167	172	6	7
	27	21	3	3	37	0,48	1,25	0,7	141	144	171	179	5	8
	45	34	2,5	2	44	0,43	1,38	0,76	144	142	178	192	7	11
	40	34	4	3	46	0,44	1,38	0,76	152	146	203	217	7	9,5
	64	54	4	3	56	0,44	1,38	0,76	146	146	193	219	7	13,5
	58	49	5	4	53	0,34	1,74	0,96	164	150	239	255	8	14,5
	66	44	5	4	87	0,83	0,73	0,4	157	150	218	261	8	28
	93	78	5	4	68	0,34	1,75	0,96	160	147	230	260	10	20,5
140	32	25	2	1,5	33	0,36	1,67	0,92	150	150	177	184	6	7
	27	21	3	3	40	0,5	1,2	0,7	151	152	180	189	5	8
	45	34	2,5	2	46	0,46	1,31	0,72	153	150	187	202	7	11
	42	36	4	3	47	0,44	1,38	0,76	164	156	219	236	7	9,5

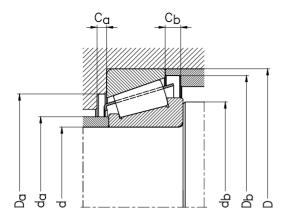
Metrische einreihige Kegelrollenlager


Metric Single Row Tapered Roller Bearings

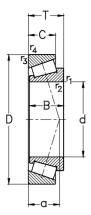
Haupta	bmess [mm]	sungen	Tragzahlen [kN]			Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Gewicht [kg]	Lagertype		
Boundary dimensions [mm]			Load ratings [kN]			Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Weight [kg]	Desig	Designation	
d	D	Т	C _r dyn.	C ₀r stat.	C _u	n _{er}	n _G	m	DIN 720	ISO 355	
140	250	71,75	647	1000	111	1600	2600	14	32228	T4FD140	
	300	67,75	664	845	89,5	1600	2200	20,5	30328	T2GB140	
	300	77	695	903	95	1500	2200	35,5	31328	T7GB140	
	300	107,75	1170	1710	198	1400	2200		32328		
150	210	32	233	390	39,9	1900	3000	3,05		T4DB150	
	225	48	390	663	68	2000	2600	6,31	32030-X	T4EC150	
	270	49	492	665	65	1700	2400	11,1	30230	T4GB150	
	270	77	739	1150	125	1500	2400	18,5	32230	T4GD150	
	320	72	818	1045	107,5	1500	2200	25,5	30330	T2GB150	
	320	82	785	1033	107	1400	2000	28,5	31330	T7GB150	
	320	114	1330	1950	221	1300	2000	45	32330		
160	220	32	242	415	42	1700	2800	3,25		T4DB160	
	240	51	444	767	76	1800	2400	7,78	32032-X	T4EC160	
	290	52	558	760	73	1600	2200	13,2	30232	T4GB160	
	290	84	875	1395	147	1300	2200	23,8	32232	T4GD160	
	340	75	902	1160	118,5	1400	2000	29,9	30332	T2GB160	
170	230	38	289	571	57	1800	2800	4,5	32934	T3DC170	
	260	57	548	956	93	1600	2200	10,6	32034-X	T4EC170	
	310	57	639	878	82	1500	2000	17	30234	T4GB170	
	310	91	1000	1610	165	1200	2000	29,1	32234	T4GD170	
180	250	45	357	728	71	1600	2600	6,65	32936	T4DC180	
	280	64	679	1202	114	1400	2200	14,2	32036-X	T3FD180	



						Berechnungsfaktoren				Anschlussmaße [mm]					
						Calcu	ulation fa	actors		Abutment and fillet dimensions [mm]					
d	В	С	r ₁ , r ₂ min	r ₃ , r ₄ min	a ≈	е	Υ	Y ₀	d a max	d ₅ min	D _a min	D _b min	C _a min	C _b min	
140	68	58	4	3	60	0,44	1,38	0,76	159	156	210	238	8	13,5	
	62	53	5	4	52	0,34	1,74	0,96	176	158	255	283	8	14,5	
	70	47	5	4	94	0,8	0,75	0,41	169	160	235	280	9	30	
	102	85	5	4	74	0,24	2,53	1,39	170	157	194	203	5	9	
150	30	23	3	3	41	0,46	1,3	0,7	162	162	194	203	5	9	
	48	36	3	2,5	50	0,46	1,31	0,72	164	162	200	216	8	12	
	45	38	4	3	52	0,44	1,38	0,76	175	116	234	256	9	11	
	73	60	4	3	64	0,44	1,38	0,76	171	166	226	254	8	17	
	65	55	5	4	60	0,34	1,74	0,96	189	168	273	292	9	17	
	75	50	5	4	100	0,83	0,73	0,4	181	170	251	300	9	32	
	108	90	5	4	79	0,35	1,74	0,96	184	167	264	299	12	24	
160	30	23	3	3	44	0,48	1,25	0,7	172	172	204	213	5	9	
	51	38	3	2,5	53	0,46	1,31	0,72	175	174	213	231	8	13	
	48	40	4	3	51	0,44	1,38	0,79	189	176	252	269	8	12	
	80	67	4	3	69	0,44	1,38	0,76	183	174	242	274	10	17	
	68	58	5	4	63	0,35	1,74	0,96	201	180	290	310	9	17	
170	38	30	2,5	2	42	0,38	1,57	0,86	183	182	213	222	7	8	
	57	43	3	2,5	57	0,44	1,35	0,74	188	184	230	249	10	14	
	52	43	5	4	60	0,44	1,38	0,76	203	190	268	288	8	14	
	86	71	5	4	74	0,44	1,38	0,76	196	190	259	294	10	20	
180	45	34	2,5	2	53	0,48	1,25	0,69	194	192	225	241	8	11	
	64	48	3	2,5	60	0,42	1,42	0,78	199	194	247	267	10	16	

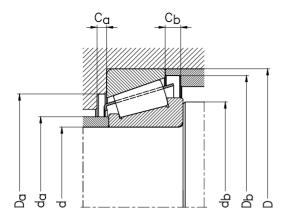

Metrische einreihige Kegelrollenlager *Metric Single Row Tapered Roller Bearings*

	Haupta	abmess [mm]	ungen	Tragzahlen [kN]			Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Gewicht [kg]	Lagertype		
	Boundary dimensions [mm]			Load ratings [kN]			Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Weight [kg]	Designation		
	d	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$n_{\theta r}$	n _G	m	DIN 720	ISO 355				
ı	180	320	57	660	928	86	1400	2000	17,9	30236	T4GB180	
		320	91	1015	1650	169	1100	1900	29,9	32236	T4GD180	
-	190	260	45	375	761	73	1500	2400	7	32938	T4DC190	
		290	64	693	1231	115	1400	2000	14,8	32038-X	T4FD190	
		340	60	752	1043	95	1300	1800	21	30238	T4GB190	
		340	97	1150	1840	200	1100	1800	36,7	32238	T4GD190	
	200	200 280 51 480 976 92 310 70 839 1449 139		1400	2200	9,5	32940	T3EC200				
				1300	1900	18,9	32040-X	T4FD200				
		360	64	822	1147	103	1200	1700	25,1	30240	T4GB200	
		360	104	1265	2035	203	1000	1700	43,7	32240	T3GD200	
	220	285	41	396	830	77	1300	1600	6,45		T2DC220	
		340	76	963	1736	155	1100	1700	24,4	32044-X	T4FD220	
		400	72	983	1367	120	1100	1600	34,6	30244	T4GB220	
		400	114	1575	2625	251	900	1500	60,2	32244		
	240	320	42	429	815	73	1100	1900	8,45		T4EB240	
		320	51	541	1100	99	1100	1900	11	32948	T4EC240	
		360	76	973	1804	158	1000	1600	25,1	32048-X	T4FD240	
		440	127	1825	3250	298	800	1400	78,6	32248		
	260	400	87	1191	2255	192	900	1400	38,1	32052-X	T4FC260	
		480	137	2220	3725	340	700	1200	106	32252		
	280	380	63,5	779	1630	139	900	1600	40,4	32956	T4EC280	
		420	87	1205	2298	149	1000	1300		32056-X	T4FC280	

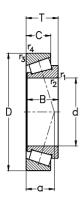


						Berech	nungsf	aktoren		Anschlussmaße [mm]					
						Calcu	ulation fa	actors		Abutment and fillet dimensions [mm]					
d	В	С	r ₁ , r ₂ min	r ₃ , r ₄ min	a ≈	е	Υ	Y ₀	d a max	d ₅ min	D _a min	D ₅ min	C _a min	C _b min	
180	52	43	5	4	62	0,44	1,38	0,76	211	200	278	297	9	14	
	86	71	5	4	77	0,45	1,33	0,73	204	200	267	303	10	20	
190	45	34	2,5	2	55	0,48	1,26	0,69	204	202	235	251	8	11	
	64	48	3	2,5	63	0,44	2,27	1,49	210	204	257	279	10	16	
	55	46	5	4	62	0,44	1,38	0,76	224	210	298	318	9	14	
	92	75	5	4	81	0,44	1,38	0,76	216	207	286	323	10	22	
200	51	39	2,5	1	53	0,39	1,52	0,84	217	214	257	271	9	12	
	70	53	3	2,5	67	0,43	1,39	0,77	222	214	273	297	11	17	
	58	48	5	4	69	0,44	1,38	0,76	237	220	315	336	9	16	
	98	82	5	4	83	0,41	1,48	0,81	231	220	302	340	11	22	
220	40	33	4	3	45	0,31	1,9	1,1	233	234	270	277	7	8	
	76	57	4	3	73	0,43	1,39	0,77	244	236	300	326	12	19	
	65	54	5	4	75	0,42	1,43	0,79	259	242	348	371	10	18	
	108	90	5	4	94	0,44	1,36	0,75	258	242	334	383	13	24	
240	39	30	3	3	60	0,46	1,3	0,7	256	252	299	310	7	12	
	51	30	3	3	60	0,46	1,31	0,72	255	254	294	311	9	12	
	76	57	4	3	79	0,46	1,31	0,72	262	256	318	346	12	19	
	120	100	5	4	105	0,45	1,34	0,73	290	262	365	415	13	27	
260	87	65	5	4	86	0,43	1,38	0,76	287	282	352	383	13	22	
	130	106	6	5	113	0,32	1,88	1,04	303	268	401	458	16	31	
280	63,5	48	3	2,5	74	0,43	1,39	0,76	298	295	348	366	11	15,5	
	87	65	5	4	91	0,46	1,31	0,72	305	302	400	402	14	22	

Metrische einreihige Kegelrollenlager

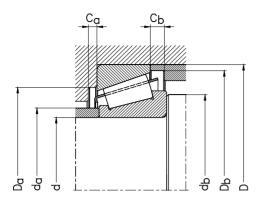

Metric Single Row Tapered Roller Bearings

Haupt	abmess [mm]	ungen	Tragzahlen [kN]			Referenzdrehzahlen Grenzdrehzahlen [min ⁻¹] [min ⁻¹]		Gewicht [kg]	Lagertype	
Bound	ary dime [mm]	ensions	Load ratings [kN]			Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Weight [kg]	Desig	nation
d	D	Т	\mathbf{C}_{r} \mathbf{C}_{0r} \mathbf{C}_{u}		$n_{\theta r}$	$n_{\scriptscriptstyle G}$	m			
			dyn.	stat.					DIN 720	ISO 355
300	420	76	1059	2251	187	800	1400	32	32960	T3FD300
	460	100	1604	3066	251	700	1200	57,2	32060-X	T4GD300
320	480	100	1615	3099	249	700	1100	59,4	32064-X	T4GD320
340	460	76	1092	2433	196	700	1300	35,4	32968	T4FD340
360	480	76	1096	2492	198	600	1200	36,8	32972	T4FD360

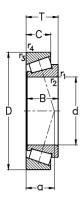


							nungsf				[m ent and t	issmaße m] fillet dime m]		
d	В	С	r ₁ , r ₂ min	r ₃ , r ₄ min	a ≈	е	Y	Y ₀	d a max	d ь min	D _a min	D ₅ min	C _a min	C _b min
300	76	57	4	3	79	0,39	1,52	0,84	324	317	383	404	12	19
	100	74	5	4	98	0,43	1,38	0,76	330	322	404	440	15	26
320	100	74	5	4	104	0,46	1,31	0,72	350	342	424	460	15	26
340	76	57	4	3	90	0,44	1,37	0,75	361	357	421	446	14	19
360	76	57	4	3	97	0.46	1.31	0.72	380	377	439	464	14	 19

Kegelrollenlager in Zollabmessung

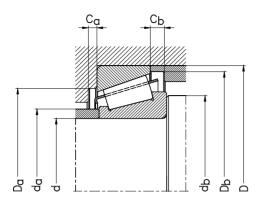

Tapered Roller Bearings Single Row, Inch Sizes

	На	uptabm	essung	en		Tra	igzahlen [kN]	Gre	nzdrehzahlen [min ⁻¹]	Gewicht [kg]	Lagertype	Serie
	Во	undary (dimensio	ns		Loa	ad ratings [kN]	5	Limited speed ratings [rpm]	Weight [kg]	Designation	Series
	d	_	כ	7	Γ	\mathbf{C}_{r}	C ₀	\mathbf{C}_{u}	$n_{\scriptscriptstyle G}$	m		
[inch]	[mm]	[inch]	[mm]	[inch]	[mm]	dyn.	stat.					
3,7500	95,250	5,7500	146,050	,	33,338	176,1	292,9	33,9	4500	1,90	K-47896/47820	47800
		6,0000	152,400	1,5625	39,688	170	261	30,1	4500	2,55	K-594/592A	595
		6,0000	152,400	1,5625	39,688	170	261	30,1	4500	2,55	K-594A/592A	595
		6,6250	168,275	1,6250	41,275	209,6	317,3	35,6	4000	3,80	K-683/672	675
4,0000	101,600	6,6250	168,275	1,6250	41,275	209,6	317,3	35,6	4000	3,45	K-687/672	675
4,2500	107,950	6,2500	158,750	0,9063	23,020	89,5	140	15,7	4300	1,40	K-37425/625	37000
4,5000	114,300	7,0000	177,800	1,6250	41,275	218,3	345,8	37,7	3800	3,60	K-64450/700	64000
		7,1250	180,975	1,3750	34,925	151,4	213,8	23,2	3800	2,95	K-68450/712	68000
5,0000	127,000	7,1875	182,562	1,5625	39,688	214,9	412,1	44	3600	3,30	K-48290/220	48200
		7,7500	196,850	1,8125	46,038	294,6	520,8	54,6	3400	5,20	K-67388/322	67300
5,2500	133,350	6,9688	177,008	1,0000	25,400	123,1	246,6	26,3	3600	1,80	K-L327249/210	L327200
		7,7500	196,850	1,8135	46,038	294,2	520,1	54,4	3400	4,80	K-67391/67322	67300
5,5000	139,700	9,3125	236,538	2,2500	57,150	476,4	777,1	77,9	2800	10,00	K-HM231132/110	HM 231100
5,8750	149,225	9,3125	236,538	2,2500	57,150	476,4	777,1	77,9	2800	10,00	K-HM231148/110	HM 231100
6,0000	152,400	8,7500	222,250	1,8437	46,830	299,6	548,4	55,4	3000	5,90	K-M231649/610	M 231600
6,2500	158,750	8,0938	205,583	0,9375	23,812	114,8	221,9	22,6	3000	1,95	K-L432349/310	L 432300
7,0000	177,800	8,9375	227,012	1,1875	30,162	167,5	372,3	36,7	2800	3,00	K-36990/920	36900
7,3750	187,325	11,1250	282,575	2,0000	50,800	336,3	558,1	52,6	2800	9,80	K-87737/87111	87000
7,5000	190,500	11,1250	282,575	2,0000	50,800	336,7	558,8	52,7	2200	9,60	K-87750/111	87000
7,7500	196,850	9,5000	241,300	0,9375	23,812	138,2	273,7	26,4	2600	2,00	K-LL639249/210	LL639200
		10,1250	257,175	1,5625	39,688	258,5	601,2	57,3	2400	5,30	K-LM739749/710	LM 739749
8,1250	206,375	11,1250	282,575	1,8125	46,038	341,2	727,4	67,8	2200	8,60	K-67985/920	67900
3,1200	_00,070	11,1200	202,010	1,0120	10,000	J+1,2	, LI,7	57,0	2200	0,00	13-01-000/020	07000

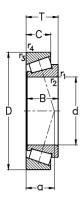


											Berech	nungsfa	aktoren	4	Ansch	lussn	naße [mm]	
											Calcul	ation f	actors	Abutr	nent an	d fillet	dimens	sions [r	nm]
d	d	В	В	С	С	r ₁ , r ₂	r ₁ , r ₂	r ₃ , r ₄	r ₃ , r ₄	а	е	Υ	\mathbf{Y}_{0}	d _a	d _b	\mathbf{D}_{a}	D_{b}	\mathbf{C}_{a}	C _b
						[inch]	[mm]	[inch]	[mm]										
[inch]	[mm]	[inch]	[mm]	[inch]	[mm]	min	min	min	min	≈				max	min	min	min	min	min
3,7500	95,250	1,3750	34,925	1,0313	26,195	0,14	3,5	0,13	3,3	32	0,44	1,37	0,75	103,132	109,982	131,064	139,954	1,866	4,578
		1,4300	36,322	1,1875	30,162	0,14	3,5	0,13	3,3	37	0,46	1,31	0,72	103,886	109,982	134,874	114,018	1,690	5,411
		1,4300	36,322	1,1875	30,162	0,2	5	0,13	3,3	37	0,46	1,31	0,72	103,886	113,03	134,874	144,018	1,690	5,411
		1,6250	41,275	1,1875	30,162	0,14	3,5	0,13	3,3	38	0,47	1,29	0,71	105,918	113,03	149,098	160,02	2,007	6,16
4,0000	101,600	1,6250	41,275	1,1875	30,162	0,14	3,5	0,13	3,3	38	0,47	1,29	0,71	112,014	118,11	149,098	160,02	2,006	6,16
4,2500	107,950	0,8440	21,438	0,6250	15,875	0,14	3,5	0,13	3,3	37	0,58	1,03	0,56	115,062	121,92	143,002	151,892	1,368	4,55
4,5000	114,300	1,6250	41,275	1,1875	30,162	0,14	3,5	0,13	3,3	42	0,51	1,17	0,64	124,968	131,064	160,02	171,958	2,007	5,855
		1,2500	31,750	1,0000	25,400	0,14	3,5	0,13	3,3	40	0,5	1,2	0,66	122,936	130,048	163,068	171,958	0,914	4,394
5,0000	127,000	1,5000	38,100	1,3125	33,338	0,14	3,5	0,13	3,3	34	0,32	1,88	1,04	134,874	140,97	167,894	176,022	1,638	4,470
		1,8125	46,038	1,5000	38,100	0,14	3,5	0,13	3,3	39	0,34	1,78	0,98	137,922	144,018	180,086	188,976	1,321	3,722
5,2500	133,350	1,0313	26,195	0,8125	20,638	0,06	1,5	0,06	1,5	29	0,36	1,68	0,92	139,954	141,986	166,878	170,942	2,472	4
		1,8125	46,038	1,5000	38,100	0,31	8	0,13	3,3	39	0,35	1,73	0,95	143,002	156,972	180,086	188,976	1,321	3,722
5,5000	139,700	2,2300	56,642	1,7500	44,450	0,14	3,5	0,13	3,3	45	0,31	1,94	1,06	155,956	160,02	216,916	224,028	3,175	8,438
5,8750	149,225	2,2300	56,642	1,7500	44,450	0,25	6,4	0,13	3,3	45	0,31	1,94	1,06	163,068	171,958	216,916	224,028	3,175	8,433
6,0000	152,400	1,8437	46,830	1,3750	34,925	0,14	3,5	0,06	1,5	40	0,36	1,66	0,91	163,068	168,91	207,01	213,106	1,473	6,19
		0,9375	23,812	0,7188	18,258	0,06	1,5	0,06	1,5	33	0,39	1,52	0,84	166,116	167,894	195,072	198,882	1,194	3,522
7,0000	177,800	1,1875	30,162	0,9063	23,020	0,06	1,5	0,06	1,5	43	0,44	1,36	0,75	185,928	187,96	214,122	220,98	1,829	4,602
7,3750	187,325	1,8750	47,625	1,4375	36,512	0,14	3,5	0,13	3,3	55	0,41	1,46	0,8	200,914	207,01	261,112	266,7	0,559	5,525
7,5000	190,500	1,8750	47,625	1,4375	36,512	0,14	3,5	0,13	3,3	55	0,4	1,49	0,82	202,946	209,04	261,112	266,7	0,559	5,525
7,7500	196,850	0,9062	23,017	0,6875	17,462	0,06	1,5	0,06	1,5	41	0,38	1,59	0,88	202,946	204,978	231,902	235,966	1,389	4,496
		1,5625	39,688	1,1875	30,162	0,14	3,5	0,13	3,3	50	0,46	1,3	0,72	205,994	213,106	239,014	250,952	2,06	6,076
8,1250	206,375	1,8125	46,038	1,4375	36,512	0,14	3,5	0,13	3,3	62	0,5	1,2	0,66	218,948	224,028	260,096	275,082	1,7	5,056
.,	,.		,	,		,	,-	,			.,.	,	-,	,-	,	,,		,	.,

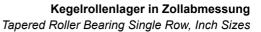
Kegelrollenlager in Zollabmessung


Tapered Roller Bearings Single Row, Inch Sizes

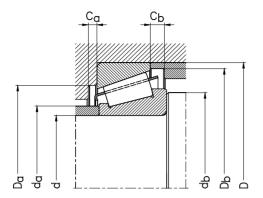
	На	uptabm	essung	en		Tra	ıgzahleı [kN]	n Gre	nzdrehzahlen [min ⁻¹]	Gewicht [kg]	Lagertype	Serie
	Во	undary (dimensic	ons		Loa	ad rating [kN]	s	Limited speed ratings [rpm]	Weight [kg]	Designation	Series
C	t)		Τ	\mathbf{C}_{r}	C ₀	\mathbf{C}_{u}	$n_{\scriptscriptstyle G}$	m		
[inch]	[mm]	[inch]	[mm]	[inch]	[mm]	dyn.	stat.					
8,5200	216,408	11,2500	285,750	1,8125	46,038	348,6	744,2	68,9	2200	7,85	K-LM742747/710	LM 742700
9,1250	231,775	11,8125	300,038	1,3125	33,338	188,2	369,4	33,7	2000	5,30	K-544091/118A	544000
10,0630	255,600	13,5000	342,900	2,2500	57,150	531	1057,6	92,8	1800	14,00	K-M349547/510	M 349500
10,126	257,175	13,5000	342,900	2,2500	57,150	578,6	1185,7	104	1800	14,00	K-M349549/510	M 349500
		14,1250	358,775	2,8125	71,438	706,3	1363,1	118,9	1700	20,50	K-M249747/710	M 249700
10,3750	263,525	12,8125	325,438	1,1250	28,575	187,7	447,7	39,5	1800	53,00	K-38880/820	38800
11,500	292,100	14,7500	374,650	1,8750	47,625	436,2	930,4	79,1	1600	12,00	K-L555249/210	L 555200
12,0000	304,800	15,5000	393,700	2,0000	50,800	498,4	1082,9	90,7	1500	14,50	K-L357049/010	L 357000
13,5100	343,154	17,7500	450,850	2,6250	66,675	828,6	1851,6	149,4	1300	28,00	K-LM361649/610	LM 361600
13,6250	346,075	19,2500	488,950	3,7500	95,250	1470,2	3155,1	250,7	1200	55,00	K-HM262749/710	HM 262700
15,0000	381,000	18,8750	479,425	1,9375	49,213	505,8	113,2	89,2	1200	20,00	K-L865547/512	L 865500
15,1250	384,175	21,5000	546,100	4,1250	104,775	1814,1	3949,4	303,9	1100	77,00	K-HM266449/410	HM266400
15,8750	403,225	18,1250	460,375	1,1250	28,575	194,3	565,5	44,5	1200	6,70	K-LL566848/810	LL 566800
16,0000	406,400	21,6250	549,275	3,3750	85,725	1217,1	2609,2	199,1	1000	53,50	K-LM567949/910	LM 567900
18,0000	457,200	23,7500	603,250	3,3750	85,725	1263,4	2854	211,1	950	61,50	K-LM770949/910	LM 770900
19,2500	488,950	24,9950	634,873	3,3125	84,138	1386,2	3240,1	235,6	850	63,50	K-LM772748/710	LM 772700
19,6250	498,475	24,9950	634,873	3,1875	80,962	1426,6	2857,1	260,2	850	59,50	K-EE243196/250	243000
22,0000	558,800	29,0000	736,600	3,4688	88,108	1726,3	3700,7	257,6	750	92,50	K-EE843220/290	843000
		29,0000	736,600	4,1250	104,775	2163,5	5247,5	365,4	750	115,00	K-LM377449/410	LM 377400
24,0000	609,600	31,0000	787,400	3,6875	93,662	1907,6	4578	311,9	670	110,00	K-EE649240/310	649000
29,5000	749,300	39,0000	990,600	6,2795	159,500	4439,2	11436,2	729,2	500	330,00	K-LM283649/610	LM 283600
29,9183	760,000	35,0000	889,000	2,7500	69,850	1168,3	3521,2	228,5	560	67,50	K-LL483448/418	LL 483448
		,	,	, -	•			,-				



											Berech	nungsfa	aktoren		Ansch	lussn	naße [ı	mm]	
											Calcul	ation f	actors	Abutr	nent an	d fillet	dimens	ions [i	nm]
d	d	В	В	С	С	r ₁ , r ₂	r ₁ , r ₂	r ₃ , r ₄	r ₃ , r ₄	а	е	Υ	Y_0	d _a	d_{b}	\mathbf{D}_{a}	D_{b}	C _a	C _b
						[inch]	[mm]	[inch]	[mm]										
	[mm]					min	min	min	min	≈				max	min	min	min	min	min
	216,408	1,9375	49,212	1,3750	34,924	0,14	3,5	0,13	3,3	60	0,51	1,18	0,65	227,076	232,918	265,938	278,892	1,981	5,982
9,1250	231,775	1,2500	31,750	0,9375	23,812	0,13	3,5	0,13	3,3	49	0,41	1,46	0,8	243,078	246,88	281,94	287,02	1,206	5,306
10,0630	255,600	2,5000	63,500	1,7500	44,450	0,06	1,5	0,13	3,3	60	0,36	1,66	0,91	270,002	270,002	322,072	332,994	6,121	9,728
10,1250	257,175	2,2500	57,150	1,7500	44,450	0,25	6,4	0,13	3,3	60	0,36	1,66	0,91	268,986	280,924	322,072	332,994	3	7,95
		3,0000	76,200	2,1250	53,975	0,06	1,5	0,13	3,3	64	0,35	1,73	0,95	272,034	272,034	335,026	342,9	5,702	10,373
10,3750	263,525	1,1250	28,575	1,0000	25,400	0,06	1,5	0,06	1,5	49	0,34	1,77	0,98	275,082	275,05	311,912	314,96	1,27	1,880
11,5000	292,100	1,8750	47,625	1,3750	34,925	0,14	3,5	0,13	3,3	65	0,41	1,45	0,8	305,054	309,118	355,092	361,95	2,311	7,188
12,0000	304,800	2,0000	50,800	1,5000	38,100	0,25	6,4	0,13	3,3	64	0,37	1,62	0,89	319,024	328,93	373,888	379,984	1,930	7,061
13,5100	343,154	2,6250	66,675	2,0625	52,388	0,33	8,5	0,14	3,5	75	0,37	1,6	0,88	359,918	373,126	424,942	435,102	4,851	9,537
13,6250	346,075	3,7500	95,250	2,9375	74,612	0,25	6,4	0,13	3,3	88	0,34	1,75	0,96	367,03	376,936	455,93	467,106	***	***
15,0000	381,000	1,8750	47,625	1,3750	34,925	0,25	6,4	0,13	3,3	92	0,51	1,19	0,65	394,97	406,908	455,93	465,074	1,156	7,632
15,1250	384,175	4,1250	104,775	3,2500	82,550	0,25	6,4	0,25	6,4	96	0,33	1,8	0,99	406,908	417,068	506,984	519,938	***	***
15,8750	403,225	1,1250	28,575	0,8125	20,638	0,14	3,5	0,13	3,3	70	0,43	1,38	0,76	414,02	418,084	445,008	452,12	1,956	5,880
16,0000	406,400	3,3125	84,138	2,4375	61,962	0,25	6,4	0,13	3,3	100	0,41	1,45	0,8	426,974	436,88	518,922	526,288	1,588	11,113
18,0000	457,200	3,3125	84,138	2,3750	60,325	0,25	6,4	0,13	3,3	115	0,46	1,31	0,72	479,044	488,95	569,976	579,628	1,690	11,988
19,2500	489,950	3,3125	84,138	2,4375	61,912	0,25	6,4	0,13	3,3	124	0,49	1,23	0,68	510,032	521,97	599,948	613,41	2,921	11,939
19,6250	498,475	3,1875	80,962	2,5000	63,500	0,25	6,4	0,13	3,3	98	0,33	1,79	0,99	521,97	528,066	602,996	609,6	2,489	9,359
22,0000	558,800	3,4686	88,108	2,5000	63,500	0,25	6,4	0,25	6,4	111	0,36	1,68	0,92	584,962	591,058	699,009	707,136	***	***
		4,1250	104,775	3,1875	80,962	0,25	6,4	0,25	6,4	130	0,35	1,73	0,95	584,962	594,106	695,96	707,898	***	***
24,0000	609,600	3,6875	93,662	2,7500	69,850	0,25	6,4	0,25	6,4	125	0,37	1,6	0,88	632,968	642,112	747,014	755,396	***	***
29,5000	749,300	6,3125	160,338	4,8425	123,000	0,25	6,4	0,25	6,4	165	0,33	1,82	1	785,876	791,972	935,99	952,5	***	***
29,9183	760,000	2,7500	69,850	2,0000	50,800	0,13	3,3	0,13	3,3	132	0,37	1,61	0,89	776,987	783,082	854,964	858,012	4,699	11,709
		<u> </u>			<u> </u>		-,							,-	- ,-				


Kegelrollenlager in Zollabmessung

Tapered Roller Bearings Single Row, Inch Sizes



	На	uptabm	essung	en		Tra	gzahleı [kN]	n Gre	nzdrehzahlen [min ⁻¹]	Gewicht [kg]	Lagertype	Serie
	Во	undary d	dimensio	ns		Loa	nd rating [kN]	s	Limited speed ratings [rpm]	Weight [kg]	Designation	Series
	t)	7	T	C _r	Co	\mathbf{C}_{u}	$n_{\scriptscriptstyle G}$	m		
[inch]	[mm]	[inch]	[mm]	[inch]	[mm]	dyn.	stat.					
		35,0000	889,000	3,5000	88,900	1768,4	5241,8	339,4	530	94,00	K-L183448/410	L 1837400
30,0000	762,000	35,0000	889,000	2,7500	69,850	1168,3	3521,2	228,5	560	66,50	K-LL483449/418	LL 483400
		35,0000	889,000	3,5000	88,900	1768,4	5241,8	339,4	530	94,00	K-L183449/410	L 183400
33,0000	838,200	41,0000	1041,400	3,6875	93,662	1858,8	4765,2	296,8	460	160,00	K-EE763330/410	763000

											Berech	nungsf	aktoren		Ansch	lussn	naße [r	mm]	
											Calcul	ation i	factors	Abutn	nent an	d fillet	dimens	ions [r	mm]
d	d	В	В	С	С	r ₁ , r ₂	r ₁ , r ₂	r ₃ , r ₄	r ₃ , r ₄	а	е	Υ	\mathbf{Y}_{0}	d _a	d _b	\mathbf{D}_{a}	D_{b}	C _a	C _p
								[inch]	[mm]										
[inch]	[mm]	[inch]	[mm]	[inch]	[mm]	min	min	min	min	≈				max	min	min	min	min	min
		3,5000	88,900	2,8346	72,000	0,13	3,3	0,13	3,3	123	0,31	1,97	1,08	780,034	783,082	864,108	871,982	6,020	12,252
30,0000	762,000	2,7500	69,850	2,0000	50,800	0,13	3,3	0,13	3,3	132	0,37	1,61	0,89	780,034	783,082	854,964	858,012	4,699	11,709
		3,5000	88,900	2,8346	72,000	0,13	3,3	0,13	3,3	123	0,31	1,96	1,08	780,034	783,082	864,108	871,982	6,020	12,252
33,0000	838,200	3,5000	88,900	2,6250	66,675	0,25	6,4	0,25	6,4	177	0,45	1,33	0,73	869,95	876,046	995,934	1001,014	***	***

Allgemeines

Gepaarte einreihige Kegelrollenlager sind einbaufertige, vorabgestimmte Lagereinheiten.

Gepaarte Kegelrollenlager werden dann verwendet, wenn entweder die Tragfähigkeit eines Einzellagers nicht mehr ausreicht, ein bestimmtes Axialspiel der Lagerung erforderlich ist, oder aber um unter den Bedingungen einer Serienmontage das aufwendige Einstellen eines bestimmten Lagerspieles zu vermeiden.

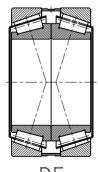
Dazu wird ein Paar einreihiger Kegelrollenlager mit Abstandsringen auf ein definiertes Axialspiel oder eine definierte Vorspannung hin abgestimmt.

Je nach den Erfordernissen des Anwendungsfalles können Kegelrollenlagerpaare in **X-**, **O**-oder **Tandemanordnung** (vgl. Abb. 1) geliefert werden.

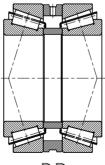
Verschiedene Typen metrischer, gepaarter, einreihiger NKE Kegelrollenlager werden standardmäßig in **X-Anordnung** (Nachsetzzeichen **DF**) angeboten, andere Ausführungen gehören zum Bedarfsprogramm und sind auf Anfrage lieferbar.

General

Paired single row tapered roller bearings are ready-to-mount bearing units.

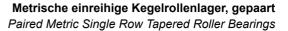

Paired tapered roller bearings are used in applications where either the load capacity of single bearings does not meet the requirements or a defined axial play is required to overcome the time-consuming adjustment of tapered roller bearing assemblies under the conditions of a multiple mounting.

Paired tapered roller bearings consist of two single row tapered roller bearings that have been matched using spacers for a specific axial clearance or, if required, a preload.


Depending on the particular requirements, such pairs may be supplied arranged either in tandem arrangement (suffix "DT"), in face-to-face arrangement (suffix "DF") or in back-to-back arrangement (suffix "DB") as shown in the fig. 1.

Several types of paired metric NKE tapered roller bearings are produced as units arranged face-to-face (suffix **DF**) as standard.

Other arrangements are produced upon order request.


UF X—Anordnung Face to face Arrangement

DB O-Anordnung Back to back Arrangement

Tandem—Anordnung Tandem Arrangement

Abb. 1 Fig. 1

Lagerpaare

Einreihige NKE Kegelrollenlager können paarweise in folgenden Anordnungen geliefert werden:

Tandem-Anordnung, Nachsetzzeichen DT

Kegelrollenlagerpaare in **Tandemanordnung** werden verwendet, wenn die auftretende Axiallast die Tragfähigkeit eines einzelnen Lagers übersteigt.

Bei Tandemanordnung werden Axialkräfte nur in einer Richtung aufgenommen und gleichmäßig auf beide Lager aufgeteilt.

Kegelrollenlager in Tandemanordnung sind immer gegen ein drittes Lager, welches die Wellenführung in der Gegenrichtung übernimmt, anzustellen.

Da bei Kegelrollenlagerpaaren in Tandemanordnung zwei Zwischenringe erforderlich sind, ist bei einer Bestellung immer die gewünschte Gesamtbaubreite der Lagereinheit anzugeben.

X-Anordnung, Nachsetzzeichen DF

Axialkräfte werden in beide Richtungen, aber nur von jeweils einem der Kegelrollenlager aufgenommen.

Aufgrund der geringeren Starrheit dieser Anordnung Kippmomente weniger gut aufgenommen werden.

Bei Lagerpaaren in X-Anordnung führt eine Erwärmung der Welle zu einer Verminderung der Axialluft bzw. zu einer erhöhten Vorspannung.

Bearing Pairs

NKE produces single row tapered roller bearings as units in the following arrangements:

Tandem Arrangement, suffix DT

Tapered roller bearings in tandem arrangements are used where the actual thrust force exceeds the load capacity of a single tapered roller bearing.

With a tandem arrangement thrust forces are accommodated in one direction only and distributed to both bearings equally.

Tapered roller bearings in tandem arrangement must always be adjusted against another bearing arranged in parallel which guides the shaft in the opposite direction.

Tapered roller bearings in tandem arrangements require two spacers for matching as a unit. The desired total width of the bearing arrangement must be defined when ordering.

Face-to-face arrangement, suffix DF

Thrust forces are accommodated in both directions by each of bearing in the direction.

This arrangement is less suitable to support tilting moments due to the lower stiffness.

For bearing pairs arranged face-to-face the thermal expansion of the shaft will cause either a reduction of the axial internal clearance or an increase in preloading forces.

Metrische einreihige Kegelrollenlager, gepaart Paired Metric Single Row Tapered Roller Bearings

O-Anordnung, Nachsetzzeichen DB

Axialkräfte werden, wie bei der X-Anordnung, in beide Richtungen aber nur von jeweils einem Lager aufgenommen.

Kegelrollenlager in O-Anordnung weisen durch ihre **Stützbreite** eine hohe Starrheit auf und sind dadurch auch zur Aufnahme von Kippmomenten gut geeignet.

Lagerpaare in O-Anordnung sind zum Ausgleich von Schiefstellungen nicht geeignet.

Da bei Kegelrollenlagerpaaren in O-Anordnung zwei Zwischenringe erforderlich sind, ist bei einer Bestellung immer die gewünschte Gesamtbaubreite der Lagereinheit anzugeben.

Schiefstellung

Gepaarte einreihige Kegelrollenlager sollten keinen Schiefstellungen ausgesetzt werden, da Verkippungen zwischen Innen- und Außenring erhebliche Zusatzkräfte und höhere Laufgeräusche verursachen.

Darüber hinaus ist mit einer Verringerung der Gebrauchsdauer durch die entstehenden Zusatzbelastungen zu rechnen.

Toleranzen

Gepaarte NKE Kegelrollenlager werden standardmäßig in Normaltoleranz (PN, Class 4) gefertigt.

Auf Anfrage können diese aber auch mit eingeschränkten Toleranzen, wie beispielsweise in der Toleranzklasse P6X, P5, Class 3, Class 2, gefertigt werden.

Die Breitentoleranz der NKE Lagereinheiten in X Anordnung setzt sich aus der Axialluft des Lagerpaares sowie zweimal der Breitenabweichung Δ_{TS} der jeweiligen Einzellager zusammen.

Werte der einzelnen Toleranzklassen entnehmen Sie bitte den Tabellen im Abschnitt "Lagerdaten / Toleranzen", ab Seite 58.

Back-to-back arrangement, suffix DB

Axial forces are, similar to bearings arranged face-to-face, accommodated in both directions by each of the bearings.

Tapered roller bearings arranged back-to-back provide very rigid bearing arrangements due to their **support width**. They also effectively support tilting moments.

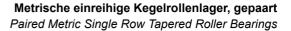
Bearing pairs arranged back-to-back are unsuitable to compensate for any misalignments.

Tapered roller bearing pairs arranged back to back require two spacers for matching as a unit, the desired total width of bearing arrangement must be defined at ordering.

Misalignment

Single row tapered roller bearings arranged in pairs should not be exposed to misalignments as they may generate considerable additional forces and cause high running noise levels.

Such additional forces due to misalignment will shorten the service life of tapered roller bearings significantly.


Tolerances

Paired NKE tapered roller bearings are produced in normal tolerance class (**PN**, **Class 4**) as standard.

These bearings may also be produced with closer tolerance classes (e.g. **P6X**, **P5**, **Class 3**, **Class 2**) on request.

The total width tolerance of NKE tapered roller bearing units arranged face-to-face consist of the internal axial play of the bearing pair and twice the width deviation of the each single bearing, $\Delta_{\rm TS}$.

Values for the single bearing tolerance classes are listed in the tables (see chapter "Bearing Data / Tolerances" from page 243).

Käfige

NKE Kegelrollenlager werden standardmäßig mit Stahlblechkäfigen geliefert.

Da auch bei den Kegelrollenlagerpaaren in X-Anordnung die Käfige seitlich etwas über die Planfläche vorstehen, müssen die entsprechenden Anschlussmaße berücksichtigt werden.

Lagerluft

NKE Kegelrollenlagerpaare in X-Anordnung (Nachsetzzeichen **DF**) werden standardmäßig mit folgenden Axialluftwerten hergestellt.

Auf Anfrage fertigen wir diese Einheiten auch mit Luftwerten nach Kundenspezifikationen.

Cages

NKE tapered roller bearings are fitted with pressed steel cages as standard. Because the cages of tapered roller bearings, arranged in pairs face-to-face protrude beyond the bearings faces, special care must be taken to follow the respective abutment dimensions.

Internal Clearance

NKE tapered roller bearing pairs arranged face-to-face (suffix **DF**) are produced with axial internal clearances values, as listed in the table below, as standard.

NKE also produces other bearing units with alternative internal clearances according to customers' specification.

Axialluft gepaarter NKE Kegelrollenlager in X- Anordnung (DF)

Axial internal clearance of paired NKE tapered roller bearings, arranged face-to-face (DF)

	ohrung boreØ		Axial		ift [μm] earance [mi	crons]	
	5d_	Reihe /	Series	Reihe /	Series	Reihe /	Series
[m	m]	303DF /	323DF	313.	DF	320.	DF
>	≤	min	max	min	max	min	max
-	30	130	170	60	100	80	120
30	40	140	180	70	110	100	140
40	50	160	200	80	120	120	160
50	65	180	220	100	140	140	180
65	80	200	260	110	170	160	200
80	100	240	300	110	170	190	230
100	120	280	340	130	190	220	280
120	140	330	390	160	220	240	300
140	160	370	430	180	240	270	330

Metrische einreihige Kegelrollenlager, gepaart Paired Metric Single Row Tapered Roller Bearings

Äguivalente Dynamische Lagerbelastung

Bei gepaarten einreihigen Kegelrollenlager in X-Anordnung ailt:

bei

$$\frac{F_a}{\Gamma} \le e \text{ gilt}$$
 $P = F_r + Y_1 * F_a$

$$P = F_r + Y_1 * F_a$$

bzw. . wenn

$$\frac{F_a}{F_a}$$
 > e danr

$$\frac{F_a}{F_r}$$
 > e dann $P = 0.67 * F_r + Y_2 * F_a$

F, und F, sind die auf das Lagerpaar wirkenden Kräfte.

Aquivalente statische Lagerbelastung

Für gepaarte einreihige Kegelrollenlager in X-Anordnung gilt:

$$P_0 = F_r + Y_0 * F_a$$

Anschlussmaße

Auch paarweise angeordnete Kegelrollenlager erfordern eine ausreichende axiale Unterstützung der Lagerringe durch die Umgebungskonstruktion.

Empfehlungen zur Gestaltung der Anschlussteile sind in den Produkttabellen angegeben.

Equivalent Dynamic Bearing Load

For single row tapered roller bearings arranged face-to-face, the following formula should be used:

when

$$\frac{F_a}{F_a} \le e \text{ then}$$
 $P = F_r + Y_1 * F_a$

$$P = F_r + Y_1 * F_s$$

or. if

$$\frac{\mathsf{F}_a}{\mathsf{E}}$$
 > e thei

$$\frac{F_a}{F_c}$$
 > e then **P = 0,67 * F_r + Y₂ * F_a**

F_a and F_r are the forces acting on the bearing pairs.

Equivalent Static Bearing Load

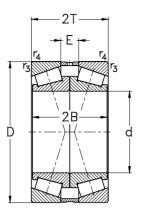

When single row tapered roller bearings are arranged in pairs face to face the equivalent static load on the bearing unit is:

$$P_0 = F_r + Y_0 * F_a$$

Abutment and Fillet Dimensions

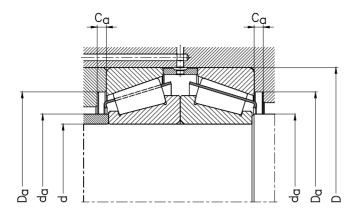
Paired single row tapered roller bearings must be supported axially by surrounding machine components in a satisfactory manner.

Values of the bearing fillet dimensions are stated in the bearing tables.



Gepaarte metrische einreihige Kegelrollenlager in X-Anordnung

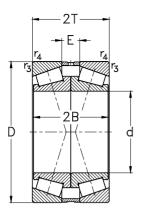
Paired Metric Single Row Tapered Roller Bearings, arranged Face-to-Face



Haupt	abmess [mm]	ungen	Ti	ragzahle [kN]	en	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Gewicht [kg]	Lagertype
Bound	lary dime [mm]	ensions	Lo	oad rating [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Weight [kg]	Designation
d	D	2T	C _r	\mathbf{C}_{0r}	Cu	$\mathbf{n}_{ heta r}$	n _G	m	
			dyn.	stat.					
30	72	41,5	79	97	11	5700	9500	0,86	31306-DF
35	80	45,5	104	131	15,3	5100	8500	1,13	31307-DF
40	90	50,5	138	164	19	4600	7500	1,58	31308-DF
45	100	54,5	173	211	25	4200	6700	2,1	31309-DF
50	110	58,5	199	245	29	4000	6000	2,9	31310-DF
55	120	63	210	275	33	3700	5600	3,45	31311-DF
60	95	46	147	253	30,8	4400	6700	1,9	32012-X-DF
	130	67	248	335	40,3	3400	5300	4,13	31312-DF
65	140	72	281	378	46	3200	4800	5,6	31313-DF
70	110	50	185	327	40	3800	5600	1,8	32014-X-DF
	150	76	320	438	53	3100	4500	6,22	31314-DF
75	160	80	354	483	56,8	2900	4300	7,2	31315-DF
80	125	58	254	453	54,8	3400	5000	2,65	32016-X-DF
	170	85	385	535	62,5	2800	4000	9,1	31316-DF
85	180	89	424	585	67,5	2700	3800	10,5	31317-DF
90	140	64	308	558	65,4	3100	4300	3,65	32018-X-DF
	190	93	464	640	72,3	2600	3400	11,65	31318-DF
95	200	99	511	725	78,5	2400	3400	14,4	31319-DF
100	150	64	311	581	66,4	2900	4000	3,95	32020-X-DF
	215	113	652	945	102	2300	3000	19,1	31320-DF
110	170	76	443	826	92	2600	3600	6,3	32022-X-DF
	200	112	703	1160	127	2100	3200	15,2	32222-DF

Gepaarte metrische einreihige Kegelrollenlager in X-Anordnung

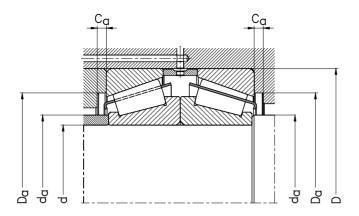
Paired Metric Single Row Tapered Roller Bearings, arranged Face-to-Face



					Berechnun	gsfaktoren				issmaße m]	
					Calculation	on factors		Abutm		fillet dimei m]	nsions
d	2B	r ₃ , r ₄	r ₅	е	Y ₁	Y ₂	Y_0	d_{a}	D_a	D _a	C _a
		min	min.					max	min	max	min
30	38	1,5	0,6	0,83	0,72	1,21	0,4	40	55	65	3
35	42	1,5	0,6	0,83	0,72	1,21	0,4	45	62	71	3
40	46	1,5	0,6	0,83	0,72	1,21	0,4	51	71	81	3
45	50	1,5	0,6	0,83	0,72	1,21	0,4	57	79	91	4
50	54	2	0,6	0,83	0,72	1,21	0,4	62	87	100	4
55	58	2	0,6	0,83	0,72	1,21	0,4	68	94	112	4
	46	1,5	0,6	0,43	1,6	2,3	1,6	67	85	88	4
60	62	2,5	1	0,83	0,72	1,21	0,4	74	103	118	5
65	66	2,5	0,6	0,83	0,72	1,21	0,4	80	111	128	5
70	50	1,5	0,6	0,43	1,6	2,3	1,6	78	98	103	5
	70	2,5	1	0,85	0,72	1,21	0,4	85	118	138	5
75	74	2,5	1	0,83	0,72	1,21	0,4	91	127	148	6
80	58	1,5	0,6	0,43	1,6	2,3	1,6	90	112	117	6
	78	2,5	1	0,83	0,72	1,21	0,4	97	134	158	6
85	82	3	1	0,83	0,72	1,21	0,4	103	143	166	6
90	64	1,5	0,6	0,43	1,6	2,3	1,6	100	125	132	6
	86	3	1	0,83	0,72	1,21	0,4	109	151	176	5
95	90	3	1	0,83	0,72	1,21	0,4	114	157	186	5
100	64	1,5	0,6	0,43	1,6	2,3	1,6	110	134	142	6
	102	3	1	0,83	0,72	1,21	0,4	121	168	201	7
110	76	2	0,6	0,43	1,6	2,3	1,6	123	152	160	7
	106	2,5	0,6	0,43	1,4	2,4	0,8	127	170	188	6
	106	2,5	0,6	0,43	1,4	2,4	0,8	12/	170	188	ь

Gepaarte metrische einreihige Kegelrollenlager in X-Anordnung

Paired Metric Single Row Tapered Roller Bearings, arranged Face-to-Face



Haupt	abmess [mm]	sungen	Ti	ragzahle [kN]	n	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	Gewicht [kg]	Lagertype
Bound	lary dime [mm]	ensions	Lo	oad rating [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]	Weight [kg]	Designation
d	D	2T	C _r dyn.	C₀r stat.	C _u	$n_{ heta r}$	n_{G}	m	
110	240	126	786	1165	133	2000	2800	26,9	31322-DF
120	180	76	433	833	90	2500	3400	6,75	32024-X-DF
	215	123	824	1425	165	2000	3000	20,9	32224-DF
	260	136	933	1400	156	1900	2400	32,8	31324-DF
130	200	90	595	1160	122	2300	3000	10	32026-X-DF
	230	135,5	955	1690	192	1800	2800	24,2	32226-DF
	280	144	1050	1575	174	1700	2400	41,95	31326-DF
140	210	90	588	1140	120	2200	2800	11	32028-X-DF
	250	143,5	1113	2000	221	1600	2600	29	32228-DF
	300	154	1195	1805	190	1500	2200	51,1	31328-DF
150	225	96	667	1325	136	2000	2600	13,5	32030-X-DF
	270	154	1270	2300	250	1500	2400	38,8	32230-DF
	320	164	1350	2065	215	1400	2000	61,9	31330-DF

$\label{lem:continuous} \textbf{Gepaarte metrische einreihige Kegelrollenlager in X-Anordnung}$

Paired Metric Single Row Tapered Roller Bearings, arranged Face-to-Face

					Berechnun	gsfaktoren				ußmaße m]	
					Calculation	on factors		Abutm		fillet dimei m]	nsions
d	2B	r ₃ , r ₄ min	r ₅ min.	е	Y ₁	Y ₂	Y ₀	d a max	D _a min	D _a max	C _a min
110	114	3	1	0,83	0,72	1,21	0,4	135	188	226	7
120	76	2	0,6	0,43	1,6	2,3	1,6	132	161	170	7
	116	2,5	1	0,43	1,4	2,3	0,8	137	181	203	7
	124	3	1	0,83	0,72	1,21	0,4	145	203	245	9
130	90	2	0,6	0,43	1,6	2,3	1,6	144	178	190	7
	128	3	1	0,43	1,4	2,3	0,8	146	193	216	7
	132	4	1,5	0,83	0,72	1,21	0,4	157	218	263	8
140	90	2	0,6	0,43	1,6	2,3	1,6	153	187	200	7
	136	3	1	0,43	1,4	2,3	0,8	159	210	236	8
	140	4	1	0,83	0,72	1,21	0,4	169	235	283	9
150	96	2,5	1	0,43	1,6	2,3	1,6	164	200	213	8
	146	3	1	0,43	1,4	2,3	0,8	171	226	256	8
	150	4	1,5	0,83	0,4	1,21	0,4	181	251	303	9

IKOS Integral-Kegelrollenlager

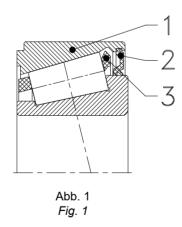
Allgemeines:

NKE Integral-Kegelrollenlager der Baureihe IKOS (siehe Abb. 1) sind einbaufertige Einheiten, die, anders als übliche Kegelrollenlager, nicht zerlegbar sind.

NKE IKOS Integral-Kegelrollenlager weisen eine an der großen Innenring-Planseite in den Außenring (1), integrierte Zweilippendichtung (2) auf.

Diese Lager sind standardmäßig mit einem speziellen, glasfaserverstärkten Polyamid-Fensterkäfig (3) ausgestattet, der in eine Nut im Außenring einrastet und somit ein Auseinanderfallen des Lagers beim Handling oder beim Einbau verhindert.

IKOS Tapered Roller Bearings


General:

The NKE IKOS integral tapered roller bearings are ready for use bearing units (see fig. 1).

Unlike the standard tapered roller bearings, **IKOS** integral tapered roller bearings are non-separable bearing units.

NKE IKOS integral tapered roller bearings have a double lip seal (2) fitted into the outer ring (1), which contacts the inner ring outer diameter.

These bearings are produced with a special glass fibre reinforced window type polyamide cage (3) that snaps into a circumferential groove in the outer ring and thereby preventing the bearing components from separating during handling and mounting.

Befettung:

NKE IKOS Integral-Kegelrollenlager werden standardmäßig mit einer speziellen Fettfüllung (NKE Kurzbezeichnung **MT 32**) geliefert.

Dabei handelt es sich um einen speziell auf die typischen Anforderungen dieser Lager abgestimmten Hochleistungsschmierstoff (KP2 N-25 nach DIN 51502) mit EP-Additivierung.

Dieser Schmierstoff ist für einen Temperaturbereich von -25°C bis +140°C geeignet.

Dadurch kann beim Verbau dieser **NKE IKOS Integral-Kegelrollenlager** die sonst bei der Montage von Kegelrollenlagern erforderliche Befettung entfallen.

Montagehinweise

NKE IKOS Integral-Kegelrollenlager werden in der Regel paarweise in O-Anordnung verbaut, siehe Abb. 2.

Grease Filling:

NKE IKOS integral tapered roller bearings are produced and supplied with a specific grease fill (NKE code **MT 32**) as standard.

This is a high performance lubricant that has been specifically selected to fulfil typical application requirements. This grease fulfils the requirements of KP2 N-25 according to DIN 51502 it also contains EP-additives.

The grease is suitable for an operating temperature range from -25°C (or -13°F) up to +140°C (or +284°F).

For this reason, when using **NKE IKOS** integral tapered roller bearings, the re-greasing of the bearings, which is normally required when using tapered roller bearings, can be omitted.

Mounting Instructions

NKE IKOS integral tapered roller bearings are normally used in pairs in "back-to-back" arrangements, see fig. 2.

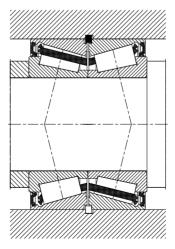


Abb. 2

Fig. 2

IKOS Integral Kegelrollenlager

Tapered Roller Bearings, IKOS Design

Axialluft

Bei **NKE IKOS Integral-Kegelrollenlagern** braucht die Axialluft des Lagerpaares nicht extra eingestellt werden.

Eine ausreichende Axialluft ergibt sich automatisch durch die standardmäßig durchgeführte Abstimmung des Überstandes von Innenringplanfläche zu Außenringplanfläche (Abmessung g).

Bei der Montage von **NKE IKOS Integral-Kegelrollenlagern** ist darauf zu achten, dass die in den Produkttabellen angegebene empfohlene maximale Zusammenspannkraft ($F_{s max}$) nicht überschritten wird, um einer unzulässigen Verspannung der Lager vorzubeugen.

Axiale Belastbarkeit der Sprengringverbindung

Bei **NKE IKOS Integral-Kegelrollenlagern** weisen die Außenringe einen Absatz auf (siehe Abb. 1 / 4). Bei einem paarweise Verbau der Lager in O-Anordnung (siehe Abb. 2) bildet sich dadurch automatisch eine passende Sprengringnut für NKE Sprengringe der Bauform **BR**.

Eine Produkttabelle von Sprengringen der Bauform BR finden Sie auf Seite 706.

Bei der Verwendung von **NKE IKOS Integral-Kegelrollenlagern** ist darauf zu achten, dass die in den Produkttabellen angegebene empfohlene maximale Tragfähigkeit der Sprengringverbindung (**F**_{BR}) nicht überschritten wird.

Es ist weiters darauf zu achten, dass es sich bei den angegebenen Werten um Maximalwerte handelt, die nur bei einer ordnungsgemäßen Anlage des Sprengringes in der Sprengringnut des Gehäuses gewährleistet sind.

Axial Internal Clearance

When mounting **NKE IKOS** integral tapered roller bearings there is no particular set up necessary to ensure an appropriate axial internal clearance.

The correct adjustment is achieved during production due to the careful matching of the recess of the outer ring face relative to the inner ring side face i.e. dimension "g".

When mounting **NKE IKOS** integral tapered roller bearings, particular attention must be taken to ensure that the axial clamping force ($F_{S\ max}$) do not exceed the recommended maximum values as per the product tables. This is to avoid a preloading to the bearings.

Maximum Load Ability of the Snap Ring Joint

The outer rings of **NKE IKOS** integral tapered roller bearings have as standard a step in their large broad face side, see fig. 1 / 4.

Thus, the outer rings automatically build an appropriate snap ring groove for NKE snap rings of **BR** design when used as pairs in "back to back" arrangement.

A product table of BR type snap rings, see page 706.

When using **NKE IKOS** integral tapered roller bearings particular attention must be made to ensure that the recommended maximum values of the load capability of the snap ring joint (**F**_{BR}) is not exceeded.

It must also be taken into consideration that the recommended maximum values (\mathbf{F}_{BR}) only apply when the snap ring is seating properly in the snap ring groove of the housing bore.

Toleranzen

NKE IKOS Integral-Kegelrollenlager werden in Normaltoleranz (PN) gefertigt.

Detaillierte Werte der einzelnen Toleranzklassen ab Seite 58

Wärmebehandlung

Die Rollen und Ringe der NKE IKOS Integral-Kegelrollenlager werden standardmäßig für Betriebstemperaturen bis +150°C (Wärmestabilisierungsklasse S0) maßstabilisiert.

Es muss allerdings beachtet werden, dass die permanente Betriebstemperatur dieser Lager durch die verwendeten Dichtscheiben, die Polyamidkäfige sowie den verwendeten Schmierstoff limitiert wird und daher 120°C nicht übersteigen sollte.

Weiters ist darauf zu achten, dass bei Dauerbetriebstemperaturen über 70°C der Schmierstoffgebrauchsdauer stark reduziert wird.

Weitere Informationen dazu entnehmen Sie bitte dem Abschnitt "Schmierung von Wälzlagern", ab Seite 145.

Passungswahl

Um eine korrekte Einstellung der Axialluft sicherzustellen, darf nur einer der Ringe der **NKE IKOS Integral-Kegelrollenlager** eine feste Passung aufweisen, während der jeweils andere Ring einen Schiebesitz aufweisen muss.

Tolerances

NKE IKOS integral tapered roller bearings are produced, as standard, to normal tolerance class (PN)

Values for the individual tolerance classes are listed in the tables, page 243 onwards.

Thermal Stabilisation Class

The rings and rollers of **NKE IKOS** integral tapered roller bearing are thermal stabilised for operating temperatures up to +150°C or (+302°F) as standard, i.e. thermal stabilisation class **S0**.

However, it must be taken into consideration that an actual constantly operating temperature of + 120°C or (+248 °F) maximum must not be exceeded, due to the double lip seal material, the polyamide cages and the temperature limits of the grease used.

It must also be considered that the actual service life of the grease drops dramatically when the actual operating temperature is constantly above +70°C (+158 °F).

For further specific information please refer to the chapter "Lubrication of Rolling Bearings", page 330 onwards

Selection of Fits

To ensure the correct adjustment of the axial internal clearance when using **NKE IKOS** integral tapered roller bearings only one of the rings may be fixed with a tight fit, whilst the other ring must have a loose fit.

IKOS Integral Kegelrollenlager

Tapered Roller Bearings, IKOS Design

In Abhängigkeit vom jeweiligen Belastungsfall (Punktlast oder Umfangslast) werden daher folgende Wellen- und Gehäusesitze empfohlen:

Depending upon the actual load situation in an individual application, e.g. where point loads or circumferential loads occur, the following fits are recommended to ensure a correct function:

	Umfang	slast an	Punktlast an			
Belastungsfall	Circumferer	ncial load on	Point I	oad on		
Load condition	Welle	Gehäuse	Welle	Gehäuse		
	Shaft	Housing	Shaft	Housing		
empfohlener Lagersitz recommended bearing fit	m6	M7	g6	H7		

Weitere Informationen zur Passungswahl sowie zu den verschiedenen Belastungsfällen auf Seite 101.

Schiefstellung

Grundsätzlich sind Kegelrollenlager zum Ausgleich von Schiefstellungen nur sehr eingeschränkt geeignet.

Da NKE IKOS Integral-Kegelrollenlager in der Regel paarweise in O-Anordnung verbaut werden, weisen die Druckkegelspitzen eine relativ große Stützbreite auf. siehe Abb. 2.

Dadurch bilden NKE IKOS Integral-Kegelrollenlager sehr starre Lagerungen, die jedoch keine Schiefstellungen kompensieren können.

Mindestbelastung

Zum kinematisch korrekten Betrieb benötigen Wälzlager in allen Betriebszuständen eine Mindestbelastung.

Für NKE IKOS Kegelrollenlager muss die Mindestbelastung 2% der dynamischen Tragzahl betragen.

For further general information on the selection of bearing fits and the various loading conditions see page 286.

Misalignment

Normally tapered roller bearings have very limited ability to compensate for any misalignments.

NKE IKOS integral tapered roller bearings are generally used in pairs with "back-to-back" arrangements, see fig. 2.

Thus, the NKE IKOS integral tapered roller bearings build a very rigid bearing arrangement that has no ability for compensation of any misalignments.

Minimum Load

Bearings require a minimum load under all operating conditions to ensure kinematically correct rolling element function.

For NKE tapered roller bearings the minimum load must be 2% of the dynamic load rating.

Äquivalente dynamische Lagerbelastung

Bei einreihigen Kegelrollenlagern gilt:

bei

$$\frac{\mathsf{F}_{\mathsf{a}}}{\mathsf{F}_{\mathsf{r}}} \leq \mathsf{e} \quad \mathsf{gilt} \quad \mathsf{P} = \mathsf{F}_{\mathsf{r}}$$

bzw., wenn

$$\frac{F_a}{F_r}$$
 > e dann **P = 0,4 * F_r + Y * F_a**

Achtung:

Bei Kegelrollenlagern verursacht jede äußere Belastung durch den Druckwinkel eine innere Axialkraft.

Zur Berechnung der Axialkraft F_a sind daher die Hinweise auf Seite 702 zu beachten.

Werte für die Berechnungsfaktoren **e** und **Y** sind für jede Type in den Produkttabellen angegeben.

Äquivalente statische Lagerbelastung

Für NKE IKOS Integral-Kegelrollenlager gilt:

Equivalent Dynamic Bearing Load

In the case of single row tapered roller bearings

when

$$\frac{F_a}{F_r} \le e$$
 then $P = F_r$

or, if

$$\frac{F_a}{F_r}$$
 > e then **P = 0,4 * F_r + Y * F_a**

Note:

Each external radial load applied to tapered roller bearings generates an internal thrust force.

For the calculation of axial force F_a the information given on page 702 must also be considered.

Values for the individual calculating factors **e** and **Y** are given in the product tables for each bearing type.

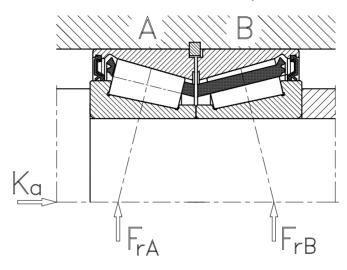
Equivalent Static Bearing Load

For NKE IKOS integral tapered roller bearings:

$$P_0 = 0.5 * F_r + Y_0 * F_a$$

IKOS Integral Kegelrollenlager

Tapered Roller Bearings, IKOS Design



Wird $\mathbf{P_0}$ kleiner als $\mathbf{F_r}$, ist $\mathbf{F_r}$ zur Berechnung der äquivalenten statischen Lagerbelastung heranzuziehen.

Werte für \mathbf{Y}_0 sind für jede Type in den Produkttabellen angegeben.

When $\mathbf{P_0}$ is smaller than $\mathbf{F_r}$, the $\mathbf{F_r}$ value must be used for calculating the equivalent static bearing load.

 $\mathbf{Y}_{\mathbf{0}}$ values for every individual bearing type are listed in the product tables.

Lastverhältnisse Loading conditions	dynamiscl	g zu berücksie Axialkraft F _a li ial load F _a to b ion values for	beträgt für e considered		
$(Y = Y_A = Y_B)$	Lager Bearing	Α	Lager Bearing B		
F _{rA} ≤ F _{rB}	F _a = K _a +	0,5 . F _{rB}	-	-	
$F_{rA} > F_{rB}$ $K_a \le 0.5 \cdot \left(\frac{F_{rA} - F_{rB}}{Y}\right)$		$0.5 \cdot \frac{F_{rB}}{Y}$	-	-	
$F_{rA} > F_{rB}$ $K_a > 0.5 \cdot \left(\frac{F_{rA} - F_{rB}}{Y}\right)$	-	-	Fa = 0,5 .	$\frac{F_{rA}}{Y}$ - K_a	

Anschlussmaße

NKE IKOS Integral-Kegelrollenlager erfordern - wie auch alle anderen Kegelrollenlager - aufgrund der entstehenden inneren Axiallast-komponente eine ausreichende axiale Unterstützung der Lagerringe durch die Umgebungskonstruktion.

Dazu müssen die Schulterhöhen der Anlageflächen an den Wellenbunden bzw. der Gehäuseschultern eine ausreichende Mindesthöhe aufweisen.

Allerdings dürfen die Radien der Kantenverrundung der Lagerringe nicht an den Hohlkehlen von Wellenbund oder Gehäuse anliegen.

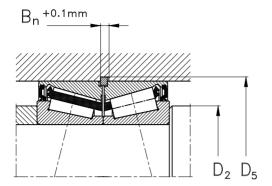
Daher muss der größte Hohlkehlradius an den Anschlussteilen (\mathbf{r}_{g} bzw. \mathbf{r}_{g1}) kleiner sein als der kleinste Radius für die Kantenverrundung (\mathbf{r}_{s}) der Lagerringe.

Empfehlungen zur Dimensionierung der Anschlussteile sind in den Produkttabellen angegeben.

Abutment and fillet dimensions

Like all types of tapered roller bearings the **NKE IKOS** integral tapered roller bearings must have sufficient support, from its adjacent parts, of the bearing rings. This is due to the generated internal thrust force of the components.

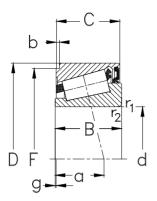
To obtain an acceptable support both the shaft and the housing shoulders must have a certain minimum height.


The bearing rings, however, must contact adjacent parts with their side faces only. The corner radii of bearing rings must not contact the shoulder fillet radii of the shaft or housing shoulders. Therefore, the largest fillet radius (\mathbf{r}_g or \mathbf{r}_{g1} , respectively) must be smaller than the minimum fillet dimension of the bearing rings (\mathbf{r}_s).

The values of bearing fillet dimensions are given in the appropriate bearing tables.

IKOS Integral Kegelrollenlager

Tapered Roller Bearings, IKOS Design

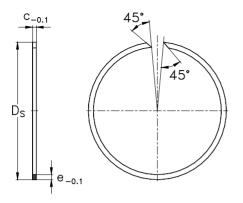


Ha	•	nessun im]	gen		Lagertype	Ti	agzahle [kN]	en				Grenzdrehzahlen [min ⁻¹]
Вои	•	dimensi nm]	ions		Designation	Lo	oad rating [kN]	gs				Limited speed ratings [rpm]
				r ₁ , r ₂		dyn.	stat.					n _{g Fett} 1)
d	D	В	С	min		\mathbf{C}_{r}	C_{or}	C_{u}	F	b	а	n _{g grease} 1)
20	42	17	16,5	0,6	IKOS020	24,5	29	4	38,1	0,75	11,1	4800
25	47	17	16,5	0,6	IKOS025	26,5	34	4	43,1	0,75	12,4	4000
30	55	19	18,5	1	IKOS030	39	47,5	6	51,4	0,75	14,8	3400
35	62	20	19,5	1	IKOS035	46	58	6	58,4	0,75	16,2	3000
40	68	21	20,5	1	IKOS040	54	71	9	64,4	0,75	15,8	2700
45	75	22	21,5	1	IKOS045	60	83	10	70,7	1	17,2	2400
50	80	22	21,5	1	IKOS050	64	95	12	75,7	1	18,7	2200
60	95	26	25	1,5	IKOS060	83	125	15	89,8	1,25	23,1	1800
70	110	27	26,5	1,5	IKOS070	104	160	20	104,8	1,25	25	1500
80	125	30	29,5	1,5	IKOS080	137	212	26	119,8	1,25	28	1300
90	140	33,5	33	2	IKOS090	166	255	29	133,7	1,25	31,6	1200
100	150	33,5	33	2	IKOS100	173	285	31	143,6	1,25	34,4	1100
110	170	40	39,5	2,5	IKOS110	240	390	40	163,7	1,25	38,9	1000
120	180	40	39,5	2,5	IKOS120	250	425	42	173,7	1,25	41,6	900
130	200	47,5	47	2,5	IKOS130	325	550	52	192	1,5	46,3	800
140	210	47,5	47	2,5	IKOS140	315	610	56	202	1,5	49,7	320
150	225	50	49,5	3	IKOS150	375	695	62	217	1,5	48,3	280
160	240	54,5	54	3	IKOS160	415	800	69	232	1,5	56,3	280

1) Empfohlene Richtdrehzahl für Lagerpaare Recommended speed limit for bearing pairs

	Berechnungsfaktoren		Überstand Innenring Toleranz +0,05 [mm]	Anschlus [mn		Maximalbe [kl	-	Gewicht [kg]	
	Calculati	on factor	s	Protrusion inner ring Tolerance +0,05 [mm]	Abutment and fill [mn		Maximu [ki		Weight [kg]
		F _a /F _r ≤ e			Welle Shaft	Nut Groove	F _{S max} 2)	F _{BR} 3)	m
d	е	Υ	Y_0	g	D _{2 min}	D ₅			
20	0,37	1,6	0,9	0,025	25	43,2 +0,16	4,5	13,3	0,1
25	0,42	1,4	0,8	0,015	30	48,2 +0,16	5	14,9	0,128
30	0,43	1,4	0,8	0,02	36	56,5 +0,19	7,2	15,7	0,18
35	0,44	1,4	0,7	0,02	41	63,5 +0,19	7,2	14,2	0,24
40	0,37	1,6	0,9	0,03	46	69,5 +0,19	10	12,9	0,29
45	0,38	1,6	0,9	0,02	51	76,8 +0,19	11	33,8	0,363
50	0,42	1,4	0,8	0,02	56	81,8 +0,22	12	31,4	0,4
60	0,43	1,4	0,8	0,03	67	97 +0,22	15,3	50,2	0,62
70	0,43	1,4	0,8	0,03	77	112,3 +0,22	19,6	49	0,9
80	0,42	1,4	0,8	0,03	87	127,3 +0,25	25,8	40,2	1,33
90	0,42	1,4	0,8	0,03	99	142,6 +0,25	31,2	40,2	1,9
100	0,46	1,3	0,7	0,03	109	152,6 +0,25	33,2	36,2	2
110	0,43	1,4	0,8	0,035	120	172,6 +0,25	45,6	32	3,3
120	0,46	1,3	0,7	0,03	130	182,6 +0,29	47,2	30,8	3,5
130	0,43	1,4	0,8	0,045	140	203 +0,29	63	59	5,2
140	0,48	1,3	0,7	0,04	150	213 +0,29	60	56,8	5,9
150	0,41	1,5	0,8	0,04	162	228 +0,29	71	53,3	7
160	0,47	1,3	0,7	0,04	172	243 +0,29	78	49,6	8,8

2) max. axiale Zusammenspannkraft pro Lagerpaar


max. axial clamping force per bearing pair

3) max. Tragfähigkeit der Sprengringverbindung bei scharfkantiger Anlage

max. loadability of the snap ring joint at sharp-edged contact

IKOS Integral-Sprengringe Snap Rings, IKOS Design

Lagertype Bearing Type	passender Sprengring Snap ring reference		auptabmessung		Gewicht [kg] Weight
			[mm]		[kg]
		D _{s min}	ę	С	[m]
IKOS020	BR 42	43,8	2,3	1,5	2,92
IKOS025	BR 47	48,8	2,3	1,5	3,29
IKOS030	BR 55	57,3	2,3	1,5	3,93
IKOS035	BR 62	64,3	2,3	1,5	4,42
IKOS040	BR 68	70,3	2,3	1,5	4,9
IKOS045	BR 76	78,6	2,8	2	8,89
IKOS050	BR 80	82,6	2,8	2	9,22
IKOS060	BR 95	98	3,4	2,5	16,9
IKOS070	BR 110	113,3	3,4	2,5	19,8
IKOS080	BR 125	128,3	3,4	2,5	22,5
IKOS090	BR 140	143,6	4	2,5	29,3
IKOS100	BR 150	153,6	4	2,5	31,9
IKOS110	BR 170	173,6	4	2,5	36,2
IKOS120	BR 180	183,6	4	2,5	38,3
IKOS130	BR 200	204,5	5	3	64,5
IKOS140	BR 210	214,5	5	3	68,8
IKOS150	BR 225	229,5	5	3	72,9
IKOS160	BR 240	244,5	5	3	80,9

Pendelrollenlager

Spherical Roller Bearings

Pendelrollenlager

Spherical Roller Bearings

Pendelrollenlager auf Spannhülse

Spherical Roller Bearings with Adapter Sleeve

Pendelrollenlager auf Abziehhülse

Spherical Roller Bearings with Withdrawal Sleeve

Pendelrollenlager Spherical Roller Bearings

Pendelrollenlager

Normen, Hauptabmessungen

Maßpläne DIN 616

Pendelrollenlager DIN 635 / Teil 2

Allgemeines:

Pendelrollenlager sind zweireihige, nicht zerlegbare Radiallager. Die beiden Reihen tonnenförmiger Rollen laufen in einer gemeinsamen hohlkugeligen Laufbahn des Außenringes.

Dadurch sind Pendelrollenlager winkeleinstellbar und gleichen Schiefstellungen durch Fluchtungsfehler oder Wellendurchbiegungen sehr gut aus

Pendelrollenlager sind typische Lager für den Großund Schwermaschinenbau. Sie werden verwendet, wenn große Radialkräfte und stoßartige Belastungen aufzunehmen sind und Fluchtungsfehler oder größere Wellendurchbiegungen erwartet werden, sie können aber auch axiale Belastungen in beiden Richtungen aufnehmen.

Aufgrund ihrer kinematischen Eigenschaften sind Pendelrollenlager für geringe bis mittlere Drehzahlen geeignet.

Pendelrollenlager werden häufig mit kegeliger Bohrung verwendet. Dabei werden die Lager mittels Spann- oder Abziehhülsen auf zylindrische Wellen, seltener direkt auf einen kegeligen Wellensitz, montiert. Bei den meisten Pendelrollenlagern mit kegeliger Bohrung beträgt der Kegel 1:12 (Nachsetzzeichen K). Bei den Lagerreihen mit geringerer Querschnittshöhe (Reihen 240 und 241) ist der Kegel flacher (Verhältnis 1:30, Nachsetzzeichen K30).

Durch die kegelige Bohrung können die Lager direkt auf gezogene Wellen bzw. auf Wellen mit lediglich gedrehten Lagersitzen montiert werden, eine aufwendige Feinbearbeitung der Lagersitze kann vermieden werden.

Spherical Roller Bearings

Standards, Boundary Dimensions

Standard plans DIN 616

Spherical roller bearings DIN 635 / Part 2

General:

Spherical roller bearings are non-separable double row radial bearings.

Both rows of barrel shaped rollers rotate, in parallel, within the spherical outer ring. This allows excellent alignment compensation, caused by machining and mounting errors, between the shaft and housing.

Spherical roller bearings are typical bearings for heavy machinery and mining.

They are suitable for applications with large radial loads to or where larger misalignments may occur. They are also able to support minor axial forces in both directions.

Due to their poor kinematic behaviours, spherical roller bearings are only suitable for operating at low to medium speeds.

NKE spherical roller bearings are produced in open design as standard.

They are frequently used with tapered bores (i.e. taper 1:12) namely suffix K or for series 240 and 241 the taper bore is (1:30) namely suffix K30, for ease of mounting. The facility of mounting these bearing types using adapter and withdrawal sleeves enables mounting directly onto drawn or fine turned seats of shaft for applications where high running accuracy is not necessary.

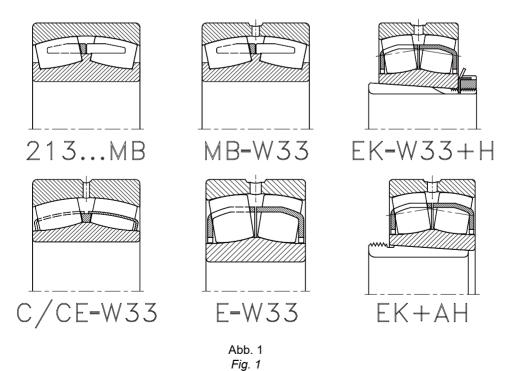
For some applications it remains necessary to mount tapered bore bearings directly onto a tapered seat of the shaft.

Bauformen (siehe Abb. 1 unten)

Je nach Größe und Lagerreihe werden NKE Pendelrollenlager in unterschiedlichen Ausführungen gefertigt.

Lager der Ausführung **MB** haben einen festen Mittelbord und innenringgeführte Messing-Massivkäfige.

Pendelrollenlager der Ausführung C bzw. CE haben Stahlblechkäfige und symmetrische Tonnenrollen


NKE Pendelrollenlager in E-Ausführung weisen einen verstärkten Innenaufbau mit größeren, symmetrischen Rollen und einen Stahlblechkäfig auf. Diese weisen dadurch eine höhere Tragfähigkeit als vergleichbare Lager der Normalausführung auf.

Design Variants (see fig. 1 below)

Depending on their size and series NKE spherical roller bearings are produced in several different design variations.

Bearings of the design **MB** have a fixed centre flange and an inner ring riding, machined, solid brass cage. Bearings of the designs **C** and **CE** have symmetric spherical rollers and are fitted with a pressed steel cage as standard.

NKE spherical roller bearings of the **E**-design feature an optimized internal design with large symmetrical rollers and a pressed steel cage. Therefore, NKE spherical roller bearings of the **E**-design allow for higher load ratings when compared to identical bearings of conventional design.

Pendelrollenlager

Spherical Roller Bearings

Schmiernut und Bohrungen

NKE Pendelrollenlager mit Ausnahme der Reihe 213.. werden zur Vereinfachung der Nachschmierung bereits serienmäßig mit Schmiernut und Schmierbohrungen im Außenring angeboten. Dieses Merkmal wird durch das Nachsetzzeichen W33 beschrieben.

Käfige

NKE Pendelrollenlager der Ausführungen CE und E werden standardmäßig mit Stahlblechkäfigen geliefert, größere Pendelrollenlager haben Messingmassivkäfige, Nachsetzzeichen MB.

Verschiedene Pendelrollenlager sind sowohl mit Stahlblechkäfig als auch alternativ mit Messingmassivkäfigen verfügbar.

Die Liefermöglichkeit von Lagern mit von der Standardausführung abweichenden Käfigen bitten wir anzufragen.

Lagerluft

Bei der Lagerluft von Pendelrollenlagern wird grundsätzlich zwischen Lagern mit zylindrischer und kegeliger Bohrung unterschieden.

Da bei Lagern mit kegeliger **Bohrung** das Risiko einer unbeabsichtigten Verspannung bei der Montage besteht, weisen diese bei gleicher Luftklasse größere Luftwerte im Vergleich zu Lagern mit zylindrischer Bohrung auf.

NKE Pendelrollenlager werden standardmäßig mit der jeweiligen Luftklasse **CN** (Normalluft) gefertigt.

Zusätzlich kann NKE auch Pendelrollenlager mit größerer Lagerluft (Radialluftklassen C3, C4, C5) oder eingeschränkter Radialluft (Klasse C2) liefern.

Werte für die Lagerluft von NKE Pendelrollenlagern sind in den Tabellen auf den folgenden Seiten angegeben.

Diese entsprechen, soweit genormt, den in DIN 620 / Teil 4 bzw. ISO 5753 – 1981 definierten Werten.

Lubricating Groove and Holes

NKE spherical roller bearings - with the exception of series 213.. - are produced incorporating simple re-lubrication features, i.e. a circumferential groove and lubricating holes in the outer ring, as standard. These features are identified with the suffix -W33.

Cages

NKE spherical roller bearings of the designs C and CE are normally fitted with pressed steel cages as standard.

Large bearings are generally fitted with machined brass cages (suffix **MB**) as standard.

Several types of spherical roller bearings are produced with either pressed steel cages or solid brass cages, as standard.

For the availability of spherical roller bearings with other cages, please contact NKE

Internal Clearance

For the internal clearance group of spherical roller bearings a distinction must be made between bearings with cylindrical or tapered bores.

Because of the risk of applying accidental preloading to the bearing during mounting, bearings with tapered bores feature larger values of clearance compared to cylindrical bore bearings even in the same clearance group.

NKE spherical roller bearings are produced all to the relevant normal clearance group **CN** (as standard).

NKE also produces spherical roller bearings with enlarged (radial clearance groups C3, C4 or C5) or reduced radial clearance (clearance group C2) on order request.

The values of clearance groups for NKE spherical roller bearings are given in the tables listed on the tables on the following pages.

These values conform, where standardised, to DIN 620 / part 4 and ISO 5753 – 1981 respectively.

Radialluft der NKE Pendelrollenlager, Bohrung ≤ 250 mm [µm]

Radial internal clearance of **NKE** spherical roller bearings, **bore diameter** ≤ **250 mm** [µm]

Pendelrollenlager mit zylindrischer Bohrung

Spherical roller bearings with cylindrical bore

Lagerbohrung	[mana]	>	18	24	30	40	50	65	80	100	120	140	160	180	200	225
Bore diameter	[mm]	≤	24	30	40	50	65	80	100	120	140	160	180	200	225	250
Luftgruppe	C2	min	10	15	15	20	20	30	35	40	50	60	65	70	80	90
Clearance group	C2	max	20	25	30	35	40	50	60	75	95	110	120	130	140	150
Luftgruppe	CN	min	20	25	30	35	40	50	60	75	95	110	120	130	140	150
Clearance group (NORMAL)	CN	max	35	40	45	55	65	80	100	120	145	170	180	200	220	240
Luftgruppe	C3	min	35	40	45	55	65	80	100	120	145	170	180	200	220	240
Clearance group		max	45	55	60	75	90	110	135	160	190	220	240	260	290	320
Luftgruppe	C4	min	45	55	60	75	90	110	135	160	190	220	240	260	290	320
Clearance group	C4	max	60	75	80	100	120	145	180	210	240	280	310	340	380	420
Luftgruppe	C5	min	60	75	80	100	120	145	180	210	240	280	310	340	380	420
Clearance group	Co	max	75	95	100	125	150	185	225	260	300	350	390	430	470	520

Pendelrollenlager mit kegeliger Bohrung

Spherical roller bearings with tapered bore

Luftgruppe	C2	min	15	20	25	30	40	50	55	65	80	90	100	110	120	140
Clearance group	C2	max	25	30	35	45	55	70	80	100	120	130	140	160	180	200
Luftgruppe	CN	min	25	30	35	45	55	70	80	100	120	130	140	160	180	200
Clearance group (NORMAL)	CIN	max	35	40	50	60	75	95	110	135	160	180	200	220	250	270
Luftgruppe	C3	min	35	40	50	60	75	95	110	135	160	180	200	220	250	270
Clearance group	CS	max	45	55	65	80	95	120	140	170	200	230	260	290	320	350
Luftgruppe	C4	min	45	55	65	80	95	120	140	170	200	230	260	290	320	350
Clearance group	C4	max	60	75	85	100	120	150	180	220	260	300	340	370	410	450
Luftgruppe	C5	min	60	75	85	100	120	150	180	220	260	300	340	370	410	450
Clearance group	Co	max	75	95	105	130	160	200	230	280	330	380	430	470	520	570

Radialluft der NKE Pendelrollenlager, Bohrung > 250 mm [µm]

Radial internal clearance of **NKE** spherical roller bearings, **bore diameter > 250 mm** [μm]

Pendelrollenlager mit zylindrischer Bohrung

Spherical roller bearings with cylindrical bore

Lagerbohrung	[mama]	>	250	280	315	355	400	450	500	560	630	710	800	900	1000	1120
Bore diameter	[mm]	≤	280	315	355	400	450	500	560	630	710	800	900	1000	1120	1250
Luftgruppe	C2	min	100	110	120	130	140	140	150	170	190	210	230	260	290	320
Clearance group		max	170	190	200	220	240	260	280	310	350	390	430	480	530	580
Luftgruppe	CN	min	170	190	200	220	240	260	280	310	350	390	430	480	530	580
Clearance group(NORMAL)	CN	max	260	280	310	340	370	410	440	480	530	580	650	710	770	840
Luftgruppe	C3	min	260	280	310	340	370	410	440	480	530	580	650	710	770	840
Clearance group		max	350	370	410	450	500	550	600	650	700	770	860	930	1050	1140
Luftgruppe	C4	min	350	370	410	450	500	550	600	650	700	770	860	930	1050	1140
Clearance group		max	460	500	550	600	660	720	780	850	920	1010	1120	1220	1430	1560
Luftgruppe	C5	min	460	500	550	600	660	720	780	850	920	1010	1120	1220	1430	1560
Clearance group		max	570	630	690	760	840	910	980	170	1160	1270	1410	1540	1820	1990

Pendelrollenlager mit kegeliger Bohrung

Spherical roller bearings with tapered bore

Luftgruppe	C2	min	150	170	190	210	230	260	290	320	350	390	440	490	540	600
Clearance group	C2	max	220	240	270	300	330	370	410	460	510	570	640	710	780	860
Luftgruppe	CN	min	220	240	270	300	330	370	410	460	510	570	640	710	780	860
Clearance group(NORMAL)	CN	max	300	330	360	400	440	490	540	600	670	750	840	930	1020	1120
Luftgruppe	C3	min	300	330	360	400	440	490	540	600	670	750	840	930	1020	1120
Clearance group	CS	max	390	430	470	520	570	630	680	760	850	960	1070	1190	1300	1420
Luftgruppe	C4	min	390	430	470	520	570	630	680	760	850	960	1070	1190	1300	1420
Clearance group	C4	max	490	540	590	650	720	790	870	980	1090	1220	1370	1520	1650	1800
Luftgruppe	C5	min	490	540	590	650	720	790	870	980	1090	1220	1370	1520	1650	1800
Clearance group	Co	max	620	680	740	820	910	1000	1100	1230	1360	1500	1690	1860	2030	2220

Toleranzen

NKE Pendelrollenlager werden standardmäßig in Normaltoleranz (**PN**) gefertigt.

Werte zu den einzelnen Toleranzklassen entnehmen Sie den Tabellen im Abschnitt "Lagerdaten / Toleranzen", ab Seite 52.

Schiefstellung

Pendelrollenlager sind zum Ausgleich von Schiefstellungen optimal geeignet.

Die Größe der maximal zulässigen Verkippung um die Mittelachse Ψ hängt dabei von der jeweiligen Lagerreihe ab.

Unter normalen Betriebsbedingungen und bei rotierendem Innenring sind folgende Werte zulässig:

Tolerances

NKE spherical roller bearings are produced to normal tolerance class (**PN**) as standard.

Values for the individual tolerance classes are listed in the tables in the chapter "Bearing Data / Tolerances", page 237.

Misalignment

Spherical roller bearings are optimized to compensate misalignments.

The maximum permissible misalignment from their centre position (Ψ) , is dependant upon bearing design, series and actual operating conditions.

The following values are permissible:

Maximal zulässige Schiefstellung bei NKE Pendelrollenlagern

Maximum permissible misalignment for **NKE** spherical roller bearings

Lagerreihe Bearing series	Maximal zulässige Schiefstellung Maximum permissible misalignment Ψ ≤ [°]
213	1,0
222	1,5
223	2,0
230	1,5
231	1,5
232	2,5
239	1,5
240	2,0
241	2,5

Mindestbelastung:

Zum kinematisch korrekten Betrieb benötigen Wälzlager in allen Betriebszuständen eine Mindestbelastung.

Für NKE Pendelrollenlager muss die Mindestradialbelastung 2% der dynamischen Tragzahl betragen.

Minimum Load

Bearings require a minimum load under all operating conditions to ensure kinematically correct rolling element function.

For NKE spherical roller bearings the minimum radial load must be 2% of the dynamic loadrating.

Äquivalente Dynamische Lagerbelastung

bei

$$\frac{F_a}{F_r} \le e$$
 gilt $P = F_r + Y * F_a$

bzw., wenn

$$\frac{F_a}{F_c}$$
 > e dann **P = 0,67** * F_r + Y * F_a

Werte für Y und e sind in den Produkttabellen angegeben.

Äguivalente Statische Lagerbelastung

Bei Pendelrollenlagern gilt:

$$P_0 = F_r + Y_0 * F_a$$

Y₀ - Werte sind in den Produkttabellen angegeben.

Anschlussmaße

Die Radien der Kantenverrundungen der Lagerringe dürfen nicht an den Hohlkehlen von Wellenbund oder Gehäuse anliegen. Dazu muss der größte Hohlkehlradius an den Anschlussteilen (\mathbf{r}_g bzw. \mathbf{r}_{g1}) kleiner sein als der kleinste Radius für die Kantenverrundung (\mathbf{r}_s) der Lagerringe.

Equivalent Dynamic Bearing Load

where

$$\frac{F_a}{F_r} \le e$$
 then $P = F_r + Y * F_a$

or, if

$$\frac{F_a}{F_r}$$
 > e then **P = 0,67 * F_r + Y * F_a**

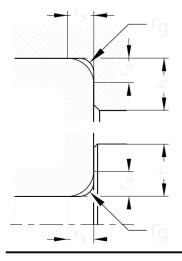
Values of Y and e are stated in the product tables.

Equivalent Static Bearing Load

For spherical roller bearings:

$$P_0 = F_r + Y_0 * F_a$$

Values of **Y**₀ are stated in the product tables.


Abutment and Fillet Dimensions

The corner radii of bearing rings must not touch the shoulder fillet radii of shaft or housing shoulders. Therefore, the largest fillet radius (\mathbf{r}_{g} or \mathbf{r}_{g1}) must be smaller than the minimum fillet dimension of the bearing rings (\mathbf{r}_{s}), see also the drawings on following pages.

Values of bearing fillet dimensions are stated in the bearing tables.

Anschlussmaße für Pendelrollenlager nach DIN 5418

Abutment and Fillet Dimensions for Spherical Roller Bearing According to DIN 5418

r _{s min}	r _{g max}	h _{min} Lagerreihen Bearing Series									
		230 239 240	213, 231, 223, 241, 222, 233, 232								
1	1	2,3	2,8								
1,1	1	3	3,5								
1,5	1,5	3,5	4,5								
2	2	4,4	5,5								
2,1	2,1	5,1	6								
3	2,5	6,2	7								
4	3	7,3	8,5								
5	4	9	10								
6	5	11,5	13								
7,5	6	14	16								
9,5	8	17	20								

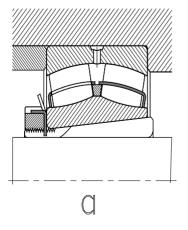
Pendelrollenlager auf Spann- oder Abziehhülsen

Wenn, wie in Abb. 2a dargestellt, Pendelrollenlager auf Spannhülsen ohne festen seitlichen Anschlag auf glatten Wellen montiert werden, darf die auf das Lager wirkende Axialkraft eine bestimmte Höhe nicht überschreiten, da diese nur durch die Reibung zwischen Spannhülse und Welle aufgenommen wird.

Die Höhe der zulässigen Axiallast lässt sich wie folgt abschätzen:

$$F_{amax} \le 3 * d * B$$

wobei:


F_{amax} maximal zulässige Axiallast bei Pendelrollenlagern auf Spannhülse [N]

B Lagerbreite [mm]

d Bohrungsdurchmesser des Lagers [mm]

Beim Auftreten größerer Axialkräfte müssen die Lager axial durch zusätzliche Stützringe gesichert werden, siehe Abb. 2b.

Zur Auslegung der Stützringe sind folgende Anschlussmaße zu beachten:

Spherical Roller Bearings Mounted on Adapter or Withdrawal Sleeves

For applications where spherical roller bearings and adapter sleeves are mounted on straight shafts without additional axial support (fig. 2a), their ability to accept axial forces is limited by the friction between the adapter sleeve and the shaft.

The permissible thrust load may be estimated using the following formula:

$$F_{amax} \le 3 * d * B$$

where:

F_{amax} maximum permissible thrust load for spherical roller bearings mounted on adapter sleeves [N]

B bearing width [mm]

d bearing bore diameter [mm]

With higher axial forces, the bearing must be secured additionally by supporting rings as shown in fig. 2b.

When designing such supporting rings, however, specific dimensions have to be obtained:

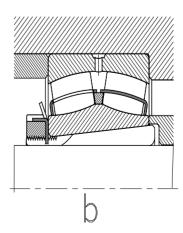


Abb. 2 Fig. 2

Spherical Roller Bearings

Montagehinweise

Bei der Montage von Pendelrollenlagern mit kegeliger Bohrung ist besonders auf die Einhaltung einer verbleibenden Mindest-Radialluft nach der Montage zu achten.

Bitte beachten Sie in diesem Zusammenhang die ausführlichen Hinweise im Abschnitt "Handling, Ein- und Ausbau von Wälzlagern", Seite 157.

Pendelrollenlager in Sonderausführung für Vibrationsmaschinen

NKE Pendelrollenlager der Sonderausführung **SQ 34** wurden besonders für einen Einsatz in Vibrationsmaschinen, wie beispielsweise in Schwingsieben und Rüttlern, ausgelegt.

Für eine optimale Funktionserfüllung weisen die Lager dieser Ausführung folgende Merkmale auf:

- außenringgeführte Messingmassivkäfige
- eingeschränkte Toleranz des Außendurchmessers
- eingeschränkte Bohrungstoleranz bei den Pendelrollenlagern mit zylindrischer Bohrung

NKE Pendelrollenlager der Sonderausführung **SQ 34** werden sowohl mit zylindrischer Bohrung als auch mit kegeliger Bohrung, Kegel 1:12 hergestellt.

Mounting Instructions

Particularly when mounting spherical roller bearings with tapered bores special care must be taken to retain a minimum radial internal bearing clearance after mounting.

Please see the relevant detailed information in the chapter "Handling, Mounting and Dismounting Rolling Bearings", page 342.

Spherical Roller Bearings in Special Execution for Vibrating Applications

NKE spherical roller bearings suffix (**SQ34**) are especially designed for use in vibrating applications, (e.g. shaker screens or compactors).

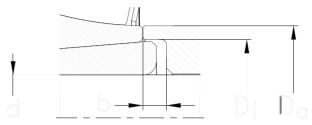
To perform in an optimum way, bearings of the special design "SQ34" have the following additional quality features:

- outer ring land riding solid brass cages
- reduced tolerance of outer diameter
- reduced bore tolerance for spherical roller bearings with cylindrical bore diameter

NKE spherical roller bearings "SQ34" are produced with either, cylindrical bores, or tapered bores, (taper 1:12).

Bohrungstoleranzen der NKE Pendelrollenlager, Ausführung SQ 34 [μm] Bore tolerances of NKE "SQ 34" spherical roller bearings [μm]

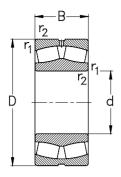
Nennmaß der Lagerbohrung d [mm]	>	30	50	80	120	180	250
Nominal bore diameter, d [mm]	≤	50	80	120	180	250	315
Abweichung		0	0	0	0	0	0
Deviation	Δ_{dmp}	-7	-9	-12	-15	-18	-21

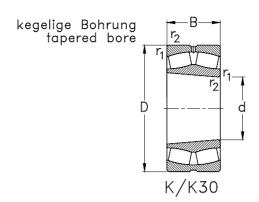

Toleranzen des Außendurchmessers von NKE Pendelrollenlagern, Ausführung SQ 34 [μm] Tolerances of outer ring outer diameter of NKE "SQ 34" spherical roller bearings [μm]

Nennmaß des Außendurchmessers D [mm]	>	80	150	180	315	400	500
Nominal outer diameter, D [mm]	≤	150	180	315	400	500	630
Abweichung	Α	-5	-5	-10	-13	-13	-15
Deviation	Δ_{Dmp}	-13	-18	-23	-28	-30	-35

Anschlussmaße bei Stützringen für Pendelrollenlager auf Spannhülse [mm]

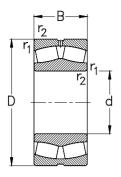
Abutment and Fillet Dimensions for Supporting Rings of Spherical Roller Bearings [mm]

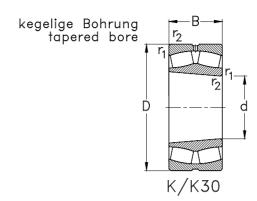



	Bohrungs					/ Bea				
Shaft	kennzahl		239K			230K			231K	-
ød	Bore reference	Di	Da	b	Di	Da	b	Di	Da	b
[mm]	number	min	max		min	max	min	min	max	min
90	20							107	113	7
100	22		-					117	124	7
110	24	-	-		127	133	7	128	136	7
115	26		-		137	145	8	138	145	8
125	28		-		147	155	8	149	157	8
135	30		-		158	166	8	160	170	8
140	32				168	177	8	170	183	8
150	34				179	189	8	180	193	8
160	36		-		189	201	8	191	204	8
170	38				199	211	9	202	216	9
180	40				210	223	9	212	231	9
200	44				231	247	9	233	253	9
220	48				251	268	11	254	276	11
240	52		-		272	291	11	276	302	11
260	56				292	310	12	296	321	12
280	60				313	337	12	318	347	12
300	64				334	357	12	338	369	12
320	68				355	382	14	360	395	14
340	72				375	402	14	380	416	14
360	76				396	422	15	401	436	15
380	80				417	448	15	421	457	15
400	84				437	468	15	443	483	16
410	88				458	488	17	463	504	17
430	92				478	509	17	484	533	17
450	96				499	529	18	505	554	18
470	/500	516	543	18	519	550	18	527	578	18
500	/530	546	576	18						
530	/560	577	609	18						
560	/600	618	653	20						
600	/630	649	688	20		-				
630	/670	689	730	20						
670	/710	730	770	22		-				
710	/750	771	810	23						
750	/800	822	865	25					-	
800	/850	873	917	25						
850	/900	923	972	27						
900	/950	974	1030	27						

Welle	Bohrungs					gerrei							
Shaft	kennzahl	2	222K			232K	(213k	(:	223K	(
ød	Bore reference	Di	D_a	b	D _i	D_a	b	Di	D_a	b	Di	D_a	b
[mm]	number	min	max	min	min	max	min	min	max	min	min	max	min
20	05	28	31	5									
25	06	33	37	5									
30	07	39	43	5				39	47	7			
35	08	44	48	5				44	53	5	45	52	5
40	09	50	54	7				50	59	5	50	58	5
45	10	55	59	9				55	66	5	56	63	5
50	11	60	67	10				60	72	6	61	68	6
55	12	65	71	9				65	79	6	66	74	6
60	13	70	79	8				70	85	6	72	83	6
60	14	75	84	11				75	92	6	77	86	6
65	15	80	89	12				80	98	6	82	92	6
70	16	85	94	12				85	105	6	88	98	6
75	17	91	99	12				91	111	7	94	104	7
80	18	86	106	10	100	104	18	96	117	7	100	110	7
85	19	102	112	9				102	124	7	105	115	7
90	20	108	118	8	110	116	19	108	131	7	110	124	7
100	22	118	129	6	121	129	17	118	146	9	121	143	7
110	24	128	141	11	131	139	17			_	131	150	7
115	26	138	151	8	142	150	21				142	162	8
125	28	149	164	8	152	162	22				152	173	8
135	30	160	177	15	163	174	20				163	185	8
140	32	170	190	14	174	186	18				174	191	8
150	34	180	199	10	185	199	18				185	204	8
160	36	191	211	18	195	210	22				195	217	8
170	38	202	223	21	206	222	21				206	228	9
180	40	212	234	23	216	237	19				216	240	9
200	44	233	258	21	236	259	10				236	272	9
220	48	254	283	19	257	284	6				257	296	11
240	52	276	308	25	278	309	2				278	322	11
260	56	296	324	28	299	329	11				299	349	12
280	60	318	352	32	321	353	12						
300	64	338	378	38	343	378	12						_
320	68				364	402	14						_
340	72				385	424	14						
360	76				405	447	15						
380	80				427	473	15			_			
400	84				449	495	15			_			
410	88				469	516	17						
430	92				490	541	17						
450	96		-		513	568	18						
470	/500				534		18						
4/0	/500				JJ4	აჟა	10						

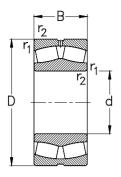
717 www.nke.at

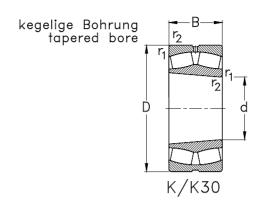

Ha	auptabm [m	iessuną m]	gen	Lagertype	Tr	agzahle [kN]	n	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]
Во	oundary o [m	dimensi m]	ons	Designation	Lo	ad rating [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]
d	D	В	r ₁ , r ₂ min		C _r dyn.	C _{or} stat.	C _u	n _{er}	n _G
25	52	18	1	22205-E-W33	46	46	6	9500	17000
	52	18	1	22205-E-K-W33	46	46	6	9500	17000
30	62	20	1	22206-E-W33	61	65	8	8000	14000
	62	20	1	22206-E-K-W33	61	65	8	8000	14000
35	72	23	1,1	22207-E-W33	81	92	11	7100	12000
	72	23	1,1	22207-E-K-W33	81	92	11	7100	12000
40	80	23	1,1	22208-E-W33	93	105	13	6200	11000
	80	23	1,1	22208-E-K-W33	93	105	13	6200	11000
	90	33	1,5	22308-E-W33	140	160	20	5700	8000
	90	33	1,5	22308-E-K-W33	140	160	20	5700	8000
45	85	23	1,1	22209-E-W33	97	113	14	5700	10000
	85	23	1,1	22209-E-K-W33	97	113	14	5700	10000
	100	36	1,5	22309-E-W33	167	194	24	5200	7000
	100	36	1,5	22309-E-K-W33	167	194	24	5200	7000
50	90	23	1,1	22210-E-W33	105	124	15	5200	9500
	90	23	1,1	22210-E-K-W33	105	124	15	5200	9500
	110	40	2	22310-E-W33	200	238	29	4900	6300
	110	40	2	22310-E-K-W33	200	238	29	4900	6300
55	100	25	1,5	22211-E-W33	125	147	18	4800	8500
	100	25	1,5	22211-E-K-W33	125	147	18	4800	8500
	120	43	2	22311-E-W33	230	279	34	4500	5600
	120	43	2	22311-E-K-W33	230	279	34	4500	5600



Abutment and fillet dimensions see on page 717

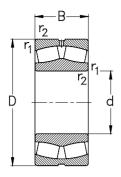
	Berechnungsfaktoren Calculation factors										
d	е	F _a /F _r ≤ e	$F_a/F_r > e$	\mathbf{Y}_{0}			m				
		Y ₁	Y ₂		B _s	B_{κ}					
25	0,34	2	3	2	4	2	0,16				
	0,34	2	3	2	4	2	0,16				
30	0,31	2,1	3,2	2,1	4	2	0,25				
	0,31	2,1	3,2	2,1	4	2	0,25				
35	0,31	2,2	3,3	2,1	4	2	0,42				
	0,31	2,2	3,3	2,1	4	2	0,41				
40	0,27	2,5	3,7	2,4	2,5	5,4	0,51				
	0,27	2,5	3,7	2,4	2,5	5,4	0,5				
	0,36	1,8	2,6	1,8	3	5,5	1,05				
	0,36	1,8	2,6	1,8	3	5,5	1,03				
45	0,26	2,6	3,9	2,6	2,5	5,8	0,55				
	0,26	2,6	3,9	2,6	2,5	5,8	0,53				
	0,36	1,9	2,8	1,9	3	5,5	1,4				
	0,36	1,9	2,8	1,9	3	5,5	1,37				
50	0,24	2,8	4,2	2,8	2,5	5,8	0,59				
	0,24	2,8	4,2	2,8	2,5	5,8	0,57				
	0,36	1,9	2,7	1,8	3	5,5	1,87				
	0,36	1,9	2,7	1,8	3	5,5	1,83				
55	0,23	2,9	4,4	2,9	3	5,5	0,83				
	0,23	2,9	4,4	2,9	3	5,5	0,82				
	0,35	1,9	2,8	1,9	3	5,5	2,36				
	0,35	1,9	2,8	1,9	3	5,5	2,31				

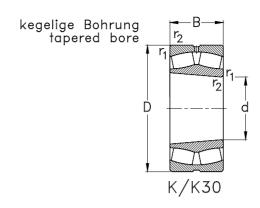

Ha	auptabm [m		jen	Lagertype	Tr	agzahle [kN]	n	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]
Во	oundary o [m		ons	Designation	Lo	ad rating [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]
d	D	В	r ₁ , r ₂ min		C _r dyn.	C ₀r stat.	Cu	n _{er}	n_{G}
60	110	28	1,5	22212-E-W33	152	183	22	4600	7500
	110	28	1,5	22212-E-K-W33	152	183	22	4600	7500
	130	46	2,1	22312-E-W33	273	315	38	4300	5300
	130	46	2,1	22312-E-K-W33	273	315	38	4300	5300
65	120	31	1,5	22213-E-W33	182	224	27	4300	7000
	120	31	1,5	22213-E-K-W33	182	224	27	4300	7000
	140	48	2,1	22313-E-W33	304	351	42	4000	5000
	140	48	2,1	22313-E-K-W33	304	351	42	4000	5000
70	125	31	1,5	22214-E-W33	189	239	29	4100	6700
	125	31	1,5	22214-E-K-W33	189	239	29	4100	6700
	150	51	2,1	22314-E-W33	344	402	48	3800	4500
	150	51	2,1	22314-E-K-W33	344	402	48	3800	4500
75	130	31	1,5	22215-E-W33	196	255	31	3800	6300
	130	31	1,5	22215-E-K-W33	196	255	31	3800	6300
	160	55	2,1	22315-E-W33	396	489	57	3500	4300
	160	55	2,1	22315-E-K-W33	396	489	57	3500	4300
80	140	33	2	22216-E-W33	224	295	35	3600	6000
	140	33	2	22216-E-K-W33	224	295	35	3600	6000
	170	58	2,1	22316-E-W33	443	551	63	3400	4000
	170	58	2,1	22316-E-K-W33	443	551	63	3400	4000
85	150	36	2	22217-E-W33	260	337	39	3500	5600
	150	36	2	22217-E-K-W33	260	337	39	3500	5600



Abutment and fillet dimensions see on page 717

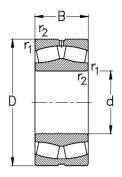
		Berechnun Calculatio	gsfaktoren on factors				Gewicht [kg] Weight [kg]
d	е	F _a /F _r ≤ e Y₁	$F_a/F_r > e$ Y_2	\mathbf{Y}_{0}	B s	В	m
60	0,24	2,8	4,2	2,8	3	Β _κ 5,5	1,14
00	0,24	2,8	4,2	2,8	3	5,5	1,12
	0,35	1,9	2,9	1,9	3	5,5	2,91
	0,35	1,9	2,9	1,9	3	5,5	2,84
65	0,24	2,9	4,2	2,8	3	5,5	1,51
	0,24	2,9	4,2	2,8	3	5,5	1,48
	0,34	2	3	2	3	5,5	3,46
	0,34	2	3	2	3	5,5	3,38
70	0,23	2,9	4,2	2,8	3	5,5	1,61
	0,23	2,9	4,2	2,8	3	5,5	1,57
	0,34	2	3	2	3	5,5	4,19
	0,34	2	3	2	3	5,5	4,1
75	0,22	3,1	4,5	2,9	3	5,5	1,7
	0,22	3,1	4,5	2,9	3	5,5	1,66
	0,33	2	3	2	4,5	8,3	5,27
	0,33	2	3	2	4,5	8,3	5,15
80	0,22	3,1	4,5	3	3	5,5	2,11
	0,22	3,1	4,5	3	3	5,5	2,07
	0,33	2	3	2	4,5	8,3	6,25
	0,33	2	3	2	4,5	8,3	6,11
85	0,22	3	4,4	2,9	3	5,5	2,66
	0,22	3	4,4	2,9	3	5,5	2,61

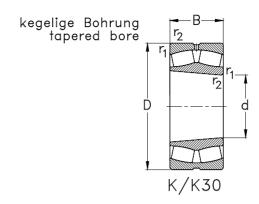

Ha	uptabm [m	nessung im]	jen	Lagertype	Tr	agzahle [kN]	en	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]
Вс	oundary ([m	dimensio nm]	ons	Designation	Lo	ad rating [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]
d	D	В	r ₁ , r ₂ min		C _r dyn.	C ₀r stat.	C _u	n _{er}	n _G
85	180	60	3	22317-E-W33	482	603	68	3200	3800
	180	60	3	22317-E-K-W33	482	603	68	3200	3800
90	160	40	2	22218-E-W33	308	406	46	3400	5300
	160	40	2	22218-E-K-W33	308	406	46	3400	5300
	160	52,4	2	23218-MB-W33	303	412	47	2900	3800
	160	52,4	2	23218-K-MB-W33	303	412	47	2900	3800
	190	64	3	22318-E-W33	536	673	74	3700	3800
	190	64	3	22318-E-K-W33	536	673	74	3000	3800
95	170	43	2,1	22219-E-W33	346	464	52	3300	4800
	170	43	2,1	22219-E-K-W33	346	464	52	3300	4800
	200	67	3	22319-E-W33	587	744	81	2800	3400
	200	67	3	22319-E-K-W33	587	744	81	2800	3400
100	165	52	2	23120-MB-W33	327	502	56	2900	4000
	165	52	2	23120-K-MB-W33	327	502	56	2900	4000
	180	46	2,1	22220-E-W33	379	510	56	3200	4500
	180	46	2,1	22220-E-K-W33	379	510	56	3200	4500
	180	60,3	2,1	23220MB-W33	390	532	59	2700	3400
	180	60,3	2,1	23220-K-MB-W33	390	532	59	2700	3400
	215	73	3	22320-E-W33	682	842	90	2600	3000
	215	73	3	22320-E-K-W33	682	842	90	2600	3000
110	170	45	2	23022-MB-W33	274	447	49,2	3100	4300
	170	45	2	23022-K-MB-W33	274	447	49,2	3100	4300



Abutment and fillet dimensions see on page 717

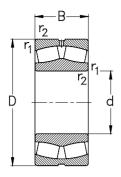
		Berechnun Calculatio					Gewicht [kg] Weight [kg]
d	е	F _a /F _r ≤ e	F _a /F _r > e	Y _o			m
		Y ₁	Y ₂	v	B _s	B _K	
85	0,32	2,1	3,1	2	4,5	8,3	7,16
	0,32	2,1	3,1	2	4,5	8,3	7,01
90	0,23	2,9	4,2	2,8	4,5	8,3	3,4
	0,23	2,9	4,2	2,8	4,5	8,3	3,33
	0,33	2	3	1,9	3	5,5	4,7
	0,33	2	3	1,9	3	5,5	4,6
	0,33	2,1	3,1	2	4,5	8,3	8,54
	0,33	2,1	3,1	2	4,5	8,3	8,35
95	0,23	2,9	4,2	2,7	4,5	8,3	4,17
	0,23	2,9	4,2	2,7	4,5	8,3	4,08
	0,33	2,1	3,1	2	4,5	8,3	9,86
	0,33	2,1	3,1	2	4,5	8,3	9,64
100	0,26	2,55	3,8	2,5	6,5	3	4,5
	0,26	2,55	3,8	2,5	6,5	3	4,5
	0,24	2,9	4,1	2,7	4,5	8,3	5,01
	0,24	2,9	4,1	2,7	4,5	8,3	4,9
	0,34	2	2,8	1,9	4,5	8,3	6,9
	0,34	2	2,8	1,9	4,5	8,3	6,7
	0,33	2	3	2	4,5	8,3	12,3
	0,33	2	3	2	4,5	8,3	12,1
110	0,24	2,84	4,23	2,78	6,5	3	3,54
	0,24	2,84	4,23	2,78	6,5	3	3,54

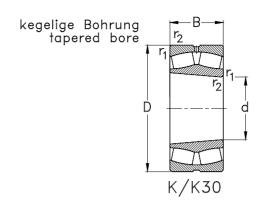

На		nessung m]	en	Lagertype	Tr	agzahle [kN]	en	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]
Во		dimensio m]	ons	Designation	Lo	ad rating [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]
d	D	В	r ₁ , r ₂ min		C _r dyn.	C ₀r stat.	C _u	$n_{\scriptscriptstyle{ hetar}}$	\mathbf{n}_{G}
110	180	56	2	23122-MB-W33	354	541	59	2800	3600
	180	56	2	23122-K-MB-W33	354	541	59	2800	3600
	180	69	2	24122-CE-W33	458	752	82	2000	3000
	180	69	2	24122-CE-K30-W33	458	752	82	2000	3000
	200	53	2,1	22222-E-W33	488	653	70	3000	4000
	200	53	2,1	22222-E-K-W33	488	653	70	3000	4000
	200	69,8	2,1	23222-MB-W33	524	778	83	2200	3200
	200	69,8	2,1	23222-K-MB-W33	524	778	83	2200	3200
	240	80	3	22322-E-W33	805	1000	103	2300	2800
	240	80	3	22322-E-K-W33	805	1000	103	2300	2800
120	180	46	2	23024-MB-W33	287	467	50	3000	4000
	180	46	2	23024-K-MB-W33	287	467	50	3000	4000
	180	60	2	24024-CE-W33	382	671	73	2400	3400
	180	60	2	24024CE-K30-W33	382	671	73	2400	3400
	200	62	2	23124-MB-W33	430	648	69	2500	3400
	200	62	2	23124-K-MB-W33	430	648	69	2500	3400
	200	80	2	24124-CE-W33	581	958	102	1800	2600
	200	80	2	24124-CE-K30-W33	581	958	102	1800	2600
	215	58	2,1	22224-E-W33	553	775	81	2800	3800
	215	58	2,1	22224-E-K-W33	553	775	81	2800	3800
	215	76	2,1	23224-MB-W33	564	803	84	2100	2800
	215	76	2,1	23224-K-MB-W33	564	803	84	2100	2800



Abutment and fillet dimensions see on page 717

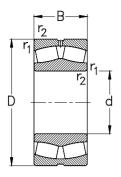
		Berechnun Calculation					Gewicht [kg] Weight
d	е	F _a /F _r ≤ e Y ₁	F _a /F _r > e Y ₂	\mathbf{Y}_{0}	B _s	B _K	[kg] m
110	0,31	2,2	3,1	2,1	4,5	8,3	6
	0,31	2,2	3,1	2,1	4,5	8,3	5,8
	0,37	1,8	2,69	1,76	6,5	3	6,94
	0,37	1,8	2,69	1,76	6,5	3	6,83
	0,25	2,7	4	2,6	4,5	8,3	7,09
	0,25	2,7	4	2,6	4,5	8,3	6,94
	0,35	1,95	2,9	1,91	9,2	4,5	9,9
	0,35	1,95	2,9	1,91	9,2	4,5	9,6
	0,33	2,1	3,1	2	6	11,1	17,2
	0,33	2,1	3,1	2	6	11,1	16,8
120	0,24	2,7	4,2	2,6	3	5,5	4,3
	0,24	2,7	4,2	2,6	3	5,5	4,2
	0,32	2,12	3,15	2,07	6,5	3	5,36
	0,32	2,12	3,15	2,07	6,5	3	5,36
	0,31	2,1	3,1	2	4,5	8,3	8,2
	0,31	2,1	3,1	2	45	8,3	8
	0,37	1,8	2,69	1,76	6,5	3	10
	0,37	1,8	2,69	1,76	6,5	3	10
	0,25	2,7	3,9	2,5	4,5	8,3	8,96
	0,25	2,7	3,9	2,5	4,5	8,3	8,76
	0,36	1,9	2,7	1,8	4,5	8,3	12,3
	0,36	1,9	2,7	1,8	4,5	8,3	11,9

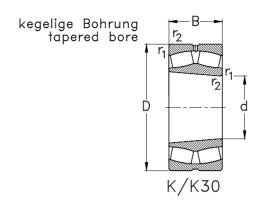

На	uptabm [m		jen	Lagertype	Tr	agzahle [kN]	en	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]
Во	undary o		ons	Designation	Lo	ad rating [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]
d	D	В	r ₁ , r ₂ min		C _r dyn.	C ₀r stat.	C _u	n _{er}	n _G
120	260	86	3	22324-E-W33	938	1180	119	2100	2600
	260	86	3	22324-E-K-W33	938	1180	119	2100	2600
130	200	52	2	23026-MB-W33	367	579	61	2800	3600
	200	52	2	23026-K-MB-W33	367	579	61	2800	3600
	200	69	2	24026-CE-W33	476	823	86	2200	3000
	200	69	2	24026-CE-K30-W33	476	823	86	2200	3000
	210	64	2	23126-MB-W33	474	752	78	2300	3200
	210	64	2	23126-K-MB-W33	474	752	78	2300	3200
	210	80	2	24126-CE-W33	597	1012	105	1600	2400
	210	80	2	24126-CE-K30-W33	597	1012	105	1600	2400
	230	64	3	22226-E-W33	641	948	97	2500	3600
	230	64	3	22226-E-K-W33	641	948	97	2500	3600
	230	80	3	23226-MB-W33	636	948	97	1900	2600
	230	80	3	23226-K-MB-W33	636	948	97	1900	2600
	280	93	4	22326-E-W33	1090	1380	136	1900	2400
	280	93	4	22326-E-K-W33	1090	1380	136	1900	2400
140	210	53	2	23028-MB-W33	380	633	65	2600	3400
	210	53	2	23028-K-MB-W33	380	633	65	2600	3400
	210	69	2	24028-CE-W33	503	900	93	2000	2800
	210	69	2	24028-CE-K30-W33	503	900	93	2000	2800
	225	68	2,1	23128-MB-W33	540	865	88	2100	2800
	225	68	2,1	23128-K-MB-W33	540	865	88	2100	2800



Abutment and fillet dimensions see on page 717

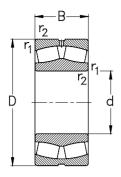
	Berechnungsfaktoren Calculation factors										
d	е	F _a /F _r ≤ e	F _a /F _r > e	Y_0			[kg] m				
		Y ₁	Y ₂		B_s	\mathbf{B}_{K}					
120	0,33	2,1	3,1	2	6	11,1	21,5				
	0,33	2,1	3,1	2	6	11,1	21,1				
130	0,26	2,6	3,8	2,5	3	5,,5	6,3				
	0,26	2,6	3,8	2,5	3	5,5	6,1				
	0,32	2,12	3,15	2,07	6,5	3	7,95				
	0,32	2,12	3,15	2,2	6,5	3	7,95				
	0,3	2,2	3,2	2,1	4,5	8,3	9,1				
	0,3	2,2	3,2	2,1	4,5	8,3	8,8				
	0,37	1,8	2,69	1,76	6,5	3	10,6				
	0,34	1,8	2,69	1,76	6,5	3	10,6				
	0,26	2,6	3,8	2,5	6	11,1	11,2				
	0,26	2,6	3,8	2,5	6	11,1	11				
	0,35	1,9	2,7	1,8	6	11,1	15				
	0,35	1,9	2,7	1,8	6	11,1	14,4				
	0,33	2,1	3,1	2	7,5	13,9	26,8				
	0,33	2,1	3,1	2	7,5	13,9	26,2				
140	0,24	2,7	4,2	2,6	4,5	8,3	6,9				
	0,24	2,7	4,2	2,6	4,5	8,3	6,7				
	0,29	2,32	3,45	2,26	6,5	3	8,42				
	0,29	2,32	3,45	2,26	6,5	3	8,42				
	0,3	2,2	3,2	2,1	4,5	8,3	10,8				
	0,3	2,2	3,2	2,1	4,5	8,3	10,5				

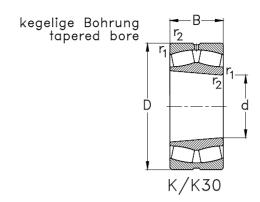

На	•	nessung m]	jen	Lagertype	Tr	agzahle [kN]	n	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]
Во	,	dimensio m]	ons	Designation	Lo	ad rating [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]
d	D	В	r ₁ , r ₂ min		C _r dyn.	C ₀r stat.	C _u	$n_{\scriptscriptstyle{ hetar}}$	n _G
140	225	85	2,1	24128-CE-W33	677	1156	118	1500	2400
	225	85	2,1	24128-CE-K30-W33	677	1156	118	1500	2400
	250	68	3	22228-E-W33	747	1080	108	2300	3200
	250	68	3	22228-E-K-W33	747	1080	108	2300	3200
	250	88	3	23228-MB-W33	815	1320	132	1600	2400
	250	88	3	23228-K-MB-W33	815	1320	132	1600	2400
	300	102	4	22328-MB-W33	993	1270	122	1900	2200
	300	102	4	22328-K-MB-W33	993	1270	122	1900	2200
150	225	56	2,1	23030-MB-W33	419	697	70	2400	3200
	225	56	2,1	23030-K-MB-W33	419	697	70	2400	3200
	225	75	2,1	24030-CE-W33	572	1044	105	1800	2600
	225	75	2,1	24030-CE-K30-W33	572	1044	105	1800	2600
	250	80	2,1	23130-MB-W33	711	1130	112	1900	2600
	250	80	2,1	23130-K-MB-W33	711	1130	112	1900	2600
	250	100	2,1	24130-CE-W33	899	1544	153	1300	2200
	250	100	2,1	24130-CE-K30-W33	899	1544	153	1300	2200
	270	73	3	22230-E-W33	863	1260	123	2100	3000
	270	73	3	22230-E-K-W33	863	1260	123	2100	3000
	270	96	3	23230-MB-W33	874	1300	127	1600	2200
	270	96	3	23230-K-MB-W33	874	1300	127	1600	2200
	320	108	4	22330-MB-W33	1190	1610	152	1700	2000
	320	108	4	22330-K-MB-W33	1190	1610	152	1700	2000



Abutment and fillet dimensions see on page 717

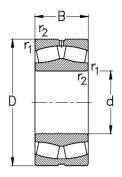
		Berechnun	gsfaktoren				Gewicht [kg]
		Calculation	on factors				Weight [kg]
d	е	F _a /F _r ≤ e Y₁	$F_a/F_r > e$ Y_2	Y_0	B _s	B _κ	m
140	0,35	1,95	2,9	1,91	9,3	4,5	12,8
	0,35	1,95	2,9	1,91	9,3	4,5	12,8
	0,25	2,7	3,9	2,5	6	11,1	14,1
	0,25	2,7	3,9	2,5	6	11,1	13,8
	0,33	2	3	2	6	11,1	18,6
	0,33	2	3	2	6	11,1	18
	0,38	1,8	2,5	1,7	7,5	13,9	35,6
	0,38	1,8	2,5	1,7	7,5	13,9	34,8
150	0,24	2,7	4,2	2,6	4,5	8,3	8,3
	0,24	2,7	4,2	2,6	4,5	8,3	8
	0,32	2,12	3,15	2,07	6,5	3	10,5
	0,32	2,12	3,15	2,07	6,5	3	10,5
	0,32	2,1	3	2	4,5	8,3	16,6
	0,32	2,1	3	2	4,5	8,3	16,1
	0,37	1,8	2,69	1,76	9,3	4,5	19,9
	0,37	1,8	2,69	1,76	9,3	4,5	19,9
	0,25	2,7	3,9	2,5	7,5	13,9	17,9
	0,25	2,7	3,9	2,5	7,5	13,9	17,5
	0,36	1,8	2,7	1,8	7,5	13,9	24,6
	0,36	1,8	2,7	1,8	7,5	13,9	23,9
	0,37	1,8	2,7	1,8	9	16,7	41,7
	0,37	1,8	2,7	1,8	9	16,7	40,8

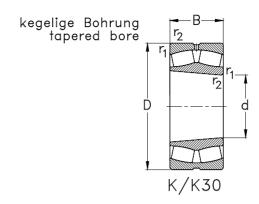

Ha	uptabm [m	nessung im]	jen	Lagertype	Tr	agzahle [kN]	en	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]
Вс	oundary ([m	dimensio nm]	ons	Designation	Lo	ad rating [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]
d	D	В	r ₁ , r ₂ min		C _r dyn.	C ₀r stat.	C _u	$n_{\scriptscriptstyle{ hetar}}$	n _G
160	240	60	2,1	23032-MB-W33	521	903	89	2100	3000
	240	60	2,1	23032-K-MB-W33	521	903	89	2100	3000
	240	80	2,1	24032-CE-W33	659	1211	120	1700	2400
	240	80	2,1	24032-CE-K30-W33	659	1211	120	1700	2400
	270	86	2,1	23132-MB-W33	817	1310	127	1700	2400
	270	86	2,1	23132-K-MB-W33	817	1310	127	1700	2400
	270	109	2,1	24132-CE-W33	1038	1758	170	1200	1900
	270	109	2,1	24132-CE-K30-W33	1038	1758	170	1200	1900
	290	80	3	22232-E-W33	978	1440	138	1900	2800
	290	80	3	22232-E-K-W33	978	1440	138	1900	2800
	290	104	3	23232-MB-W33	1130	1830	175	1300	2200
	290	104	3	23232-K-MB-W33	1130	1830	175	1300	2200
	340	114	4	22332-MB-W33	1250	1680	156	1600	1900
	340	114	4	22332-K-MB-W33	1250	1680	156	1600	1900
170	260	67	2,1	23034-MB-W33	618	1050	102	2000	2800
	260	67	2,1	23034-K-MB-W33	618	1050	102	2000	2800
	260	90	2,1	24034-CE-W33	808	1486	144	1600	2400
	260	90	2,1	24034-CE-K30-W33	808	1486	144	1600	2400
	280	88	2,1	23134-MB-W33	826	1350	129	1600	2400
	280	88	2,1	23134-K-MB-W33	826	1350	129	1600	2400
	280	109	2,1	24134-CE-W33	1076	1864	178	1100	1900
	280	109	2,1	24134-CE-K30-W33	1076	1864	178	1100	1900



Abutment and fillet dimensions see on page 717

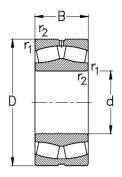
	Berechnungsfaktoren Calculation factors										
d	e	F _a /F _r ≤ e Y₁	F _a /F _r > e Y ₂	Y ₀	B _s	B _K	[kg] m				
160	0,24	2,8	4	2,6	6	11,1	10,3				
	0,24	2,8	4	2,6	6	11,1	10				
	0,29	2,32	3,45	2,26	9,3	4,5	12,7				
	0,29	2,32	3,45	2,26	9,3	4,5	12,7				
	0,32	2,1	3	2	6	11,1	21,3				
	0,32	2,1	3	2	6	11,1	20,7				
	0,4	1,68	2,5	1,64	9,3	4,5	25,4				
	0,4	1,68	2,5	1,64	9,3	4,5	25,4				
	0,26	2,6	3,8	2,5	7,5	13,9	22,7				
	0,26	2,6	3,8	2,5	7,5	13,9	22,2				
	0,36	1,9	2,8	1,8	7,5	13,9	31				
	0,36	1,9	2,8	1,8	7,5	13,9	30,1				
	0,37	1,8	2,6	1,7	9	16,7	51,9				
	0,37	1,8	2,6	1,7	9	16,7	50,8				
170	0,25	2,7	3,9	2,6	6	11,1	13,8				
	0,25	2,7	3,9	2,6	6	11,1	13,4				
	0,32	2,12	3,15	2,07	9,3	4,5	17,8				
	0,32	2,12	3,15	2,07	9,3	4,5	17,8				
	0,31	2,1	3,1	2	6	11,1	22,8				
	0,31	2,1	3,1	2	6	11,1	22,2				
	0,37	1,8	2,69	1,76	9,3	4,5	26,4				
	0,37	1,8	2,69	1,76	9,3	4,5	26,4				

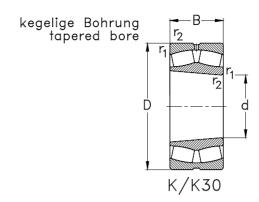

На	uptabm [m		en	Lagertype	Tr	agzahle [kN]	n	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]
Во	oundary o [m		ons	Designation	Lo	ad rating [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]
d	D	В	r ₁ , r ₂ min		C _r dyn.	C ₀r stat.	C _u	$n_{\scriptscriptstyle{ hetar}}$	n _G
170	310	86	4	22234-MB-W33	921	1310	123	1900	2600
	310	86	4	22234-K-MB-W33	921	1310	123	1900	2600
	310	110	4	23234-MB-W33	1280	1880	176	1300	2000
	310	110	4	23234-K-MB-W33	1280	1880	176	1300	2000
	360	120	4	22334-MB-W33	1400	1970	179	1400	1800
	360	120	4	22334-K-MB-W33	1400	1970	179	1400	1800
180	250	52	2	23936-MB-W33	422	823	80	1900	2800
	250	52	2	23936-K-MB-W33	422	823	80	1900	2800
	280	74	2,1	23036-MB-W33	725	1230	117	1900	2600
	280	74	2,1	23036-K-MB-W33	725	1230	117	1900	2600
	280	100	2,1	24036-MB-W33	953	1740	165	1400	2200
	280	100	2,1	24036-K30-MB-W33	953	1740	165	1400	2200
	300	96	3	23136-MB-W33	957	1540	144	1500	2200
	300	96	3	23136-K-MB-W33	957	1540	144	1500	2200
	300	118	3	24136-MB-W33	1233	2162	203	1000	1700
	300	118	3	24136-K30-MB-W33	1233	2162	203	1000	1700
	320	86	4	22236-MB-W33	943	1380	128	1800	2600
	320	86	4	22236-K-MB-W33	943	1380	128	1800	2600
	320	112	4	23236-MB-W33	1360	2110	195	1200	1900
	320	112	4	23236-K-MB-W33	1360	2110	195	1200	1900
	380	126	4	22336-MB-W33	1540	2130	191	1300	1700
	380	126	4	22336-K-MB-W33	1540	2130	191	1300	1700



Abutment and fillet dimensions see on page 717

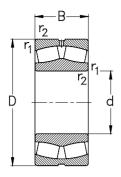
	Berechnungsfaktoren Calculation factors										
d	е	F _a /F _r ≤ e Y ₁	$F_a/F_r > e$ Y_2	Y_0	B s	B _K	[kg] m				
170	0,29	2,3	3,3	2,1	7,5	13,9	30				
	0,29	2,3	3,3	2,1	7,5	13,9	29,4				
	0,36	1,9	2,8	1,8	7,5	13,9	37,7				
	0,36	1,9	2,8	1,8	7,5	13,9	36,4				
	0,37	1,8	2,6	1,7	9	16,7	59,2				
	0,37	1,8	2,6	1,7	9	16,7	58,2				
180	0,18	3,66	5,46	3,58	6,5	3	8,12				
	0,18	3,66	5,46	3,58	6,5	3	8,12				
	0,26	2,6	3,7	2,5	6	11,1	17,6				
	0,23	2,6	3,7	2,5	6	11,1	17,1				
	0,32	2,12	3,15	2,07	9,3	4,5	23,4				
	0,32	2,12	3,15	2,07	9,3	4,5	23,4				
	0,32	2,1	3	2	6	11,1	28,9				
	0,32	2,1	3	2	6	11,1	28				
	0,37	1,8	2,69	1,76	12,2	6	33,8				
	0,37	1,8	2,69	1,76	12,2	6	33,8				
	0,28	2,4	3,4	2,3	9	16,7	31,5				
	0,28	2,4	3,4	2,3	9	16,7	30,8				
	0,36	1,9	2,8	1,9	7,5	13,9	39,8				
	0,36	1,9	2,8	1,9	7,5	13,9	38,6				
	0,37	1,8	2,6	1,7	12	22,3	73,2				
	0,37	1,8	2,6	1,7	12	22,3	71,7				

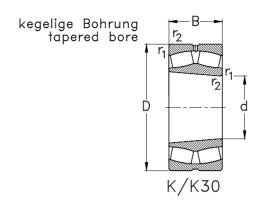

На	uptabm [m		jen	Lagertype	Tr	agzahle [kN]	n	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]
Во	oundary o [m		ons	Designation	Lo	ad rating [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]
d	D	В	r ₁ , r ₂ min		C _r dyn.	C _{or} stat.	C _u	$n_{\scriptscriptstyle{ hetar}}$	$n_{\rm G}$
190	260	52	2	23938-MB-W33	406	795	76	1800	2600
	260	52	2	23938-K-MB-W33	406	795	76	1800	2600
	290	75	2,1	23038-MB-W33	759	1310	123	1800	2400
	290	75	2,1	23038-K-MB-W33	759	1310	123	1800	2400
	290	100	2,1	24038-MB-W33	976	1822	171	1400	2000
	290	100	2,1	24038-K30-MB-W33	976	1822	171	1400	2000
	320	104	3	23138-MB-W33	1130	1840	169	1400	2000
	320	104	3	23138-K-MB-W33	1130	1840	169	1400	2000
	320	128	3	24138-MB-W33	1412	2506	231	900	1600
	320	128	3	24138-K30-MB-W33	1412	2506	231	900	1600
	340	92	4	22238-MB-W33	1040	1550	141	1700	2400
	340	92	4	22238-K-MB-W33	1040	1550	141	1700	2400
	340	120	4	23238-MB-W33	1550	2420	220	1100	1800
	340	120	4	23238-K-MB-W33	1550	2420	220	1100	1800
	400	132	5	22338-MB-W33	1920	2710	239	1200	1600
	400	132	5	22338-K-MB-W33	1920	2710	239	1200	1600
200	280	60	2,1	23940-MB-W33	550	1055	99	1700	2400
	280	60	2,1	23940-K-MB-W33	550	1055	99	1700	2400
	310	82	2,1	23040-MB-W33	880	1550	143	1600	2200
	310	82	2,1	23040-K-MB-W33	880	1550	143	1600	2200
	310	109	2,1	24040-MB-W33	1129	2122	195	1300	1900
	310	109	2,1	24040-K30-MB-W33	1129	2122	195	1300	1900



Abutment and fillet dimensions see on page 717

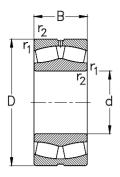
	Berechnungsfaktoren Calculation factors										
d	е	F _a /F _r ≤ e	F _a /F _r > e	Y ₀			[kg] m				
		Y ₁	Y_2		B _s	B_{κ}					
190	0,16	4,28	6,37	4,19	6,5	3	8,46				
	0,16	4,28	6,37	4,19	6,5	3	8,46				
	0,25	2,7	3,8	2,5	6	11,1	18,8				
	0,25	2,7	3,8	2,5	6	11,1	18,3				
	0,32	2,12	3,15	2,7	9,3	4,5	24,5				
	0,32	2,12	3,15	2,7	9,3	4,5	24,5				
	0,32	2,1	3	2	7,5	13,9	36,1				
	0,32	2,1	3	2	7,5	13,9	35				
	0,37	1,8	2,69	1,76	12,2	6	41,9				
	0,37	1,8	2,69	1,76	12,2	6	41,9				
	0,29	2,3	3,4	2,2	9	16,7	38,4				
	0,29	2,3	3,4	2,2	9	16,7	37,7				
	0,36	1,9	2,8	1,9	9	16,7	47,7				
	0,36	1,9	2,8	1,9	9	16,7	47,1				
	0,36	1,9	2,8	1,9	12	22,3	84,1				
	0,36	1,9	2,8	1,9	12	22,3	82,9				
200	0,18	3,66	5,46	3,58	9,3	4,5	11,5				
	0,18	3,66	5,46	3,58	9,3	4,5	11,5				
	0,25	2,7	4	2,7	6	11,1	23,8				
	0,25	2,7	4	2,7	6	11,1	23,4				
	0,32	2,12	3,15	2,07	12,2	6	30,5				
	0,32	2,12	3,15	2,07	12,2	6	30,5				

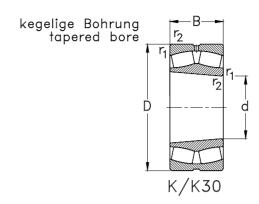

	Hauptabm [m	nessung m]	jen	Lagertype	Tr	agzahle [kN]	n	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]
	Boundary ([m	dimensio m]	ons	Designation	Lo	ad rating [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]
d	D	В	r ₁ , r ₂ min		C _r dyn.	C ₀r stat.	C _u	$n_{ hetar}$	n _G
200	340	112	3	23140-MB-W33	1240	2010	182	1300	1900
	340	112	3	23140-K-MB-W33	1240	2010	182	1300	1900
	340	140	3	24140-MB-W33	1579	2773	251	860	1500
	340	140	3	24140-K30-MB-W33	1579	2773	251	860	1500
	360	98	4	22240-MB-W33	1160	1760	158	1600	2200
	360	98	4	22240-K-MB-W33	1160	1760	158	1100	2200
	360	128	4	23240-MB-W33	1710	2760	247	1000	1700
	360	128	4	23240-K-MB-W33	1710	2760	247	1000	1700
	420	138	5	22340-MB-W33	1820	2650	230	1200	1500
	420	138	5	22340-K-MB-W33	1820	2650	230	1200	1500
220	300	60	2,1	23944-MB-W33	544	1075	98	1500	2200
	300	60	2,1	23944-K-MB-W33	544	1075	98	1500	2200
	340	90	3	23044-MB-W33	1020	1850	166	1500	2000
	340	90	3	23044-K-MB-W33	1020	1850	166	1500	2000
	340	118	3	24044-MB-W33	1361	2585	232	1100	1700
	340	118	3	24044-K30-MB-W33	1361	2585	232	1100	1700
	370	150	4	24144-MB-W33	1929	3523	311	720	1400
	370	150	4	24144-K30-MB-W33	1929	3523	311	720	1400
	370	120	4	23144-K-MB-W33	1480	2470	218	1100	1700
	370	120	4	23144-MB-W33	1480	2470	218	1100	1700
	400	108	4	22244-MB-W33	1380	2080	181	1400	2000
	400	108	4	22244-K-MB-W33	1380	2080	181	1400	2000



Abutment and fillet dimensions see on page 717

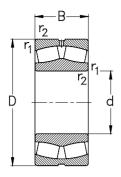
	Berechnungsfaktoren Calculation factors										
d	е	F _a /F _r ≤ e Y ₁	$F_a/F_r > e$ Y_2	Y_0	${f B_s}$	B _K	[kg] m				
200	0,33	2	2,9	1,9	9	16,7	44				
	0,33	2	2,9	1,9	9	16,7	42,7				
	0,4	1,68	2,5	1,64	12,2	6	52,5				
	0,4	1,68	2,5	1,64	12,2	6	52,5				
	0,29	2,3	3,3	2,2	9	16,7	46				
	0,29	2,3	3,3	2,2	9	16,7	45,1				
	0,36	1,9	2,8	1,8	9	16,7	58,6				
	0,36	1,9	2,8	1,8	9	16,7	56,7				
	0,36	1,9	2,7	1,8	12	22,3	99				
	0,36	1,9	2,7	1,8	12	22,3	97				
220	0,18	3,66	5,46	3,58	9,3	4,5	13				
	0,18	3,66	5,46	3,58	9,3	4,5	13				
	0,25	2,7	4	2,7	7,5	13,9	32,1				
	0,25	2,7	4	2,7	7,5	13,9	31,2				
	0,32	2,12	3,15	2,07	12,2	6	39,5				
	0,32	2,12	3,15	2,07	12,2	6	39,5				
	0,4	1,68	2,5	1,64	12,2	6	65,5				
	0,4	1,68	2,5	1,64	12,2	6	65,5				
	0,32	2	3	2	9	16,7	55,2				
	0,32	2	3	2	9	16,7	56,8				
	0,28	2,4	3,4	2,2	9	16,7	63				
	0,28	2,4	3,4	2,2	9	16,7	61				

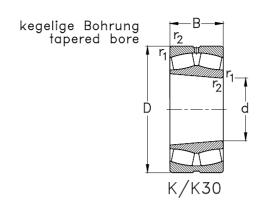

На	uptabm [m	essung m]	jen	Lagertype	Tr	agzahle [kN]	en	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]
Во	undary ([m	dimensio m]	ons	Designation	Lo	ad rating [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]
d	D	В	r ₁ , r ₂ min		\mathbf{C}_{r} \mathbf{C}_{0r} \mathbf{C}_{u} dyn. stat.		C _u	$n_{\theta r}$	n _G
220	400	144	4	23244-MB-W33	2040	3290	286	880	1500
	400	144	4	23244-K-MB-W33	2040	3290	286	880	1500
	460	145	5	22344-MB-W33	2110	3130	264	1000	1400
	460	145	5	22344-K-MB-W33	2110	3130	264	1000	1400
240	320	60	2,1	23948-K-MB-W33	592	1233	110	1400	2000
	320	60	2,1	23948-MB-W33	592	1233	110	1400	2000
	360	92	3	23048-K-MB-W33	1080	2010	176	1300	1900
	360	92	3	23048-MB-W33	1080	2010	176	1300	1900
	360	118	3	24048-K30-MB-W33	1393	2841	238	1000	1600
	360	118	3	24048-MB-W33	1393	2718	238	1000	1600
	400	160	4	24148-MB-W33	2115	3921	337	660	1600
	400	160	4	24148-K30-MB-W33	2115	3921	337	660	1600
	400	128	4	23148-K-MB-W33	1690	2860	246	1000	1300
	400	128	4	23148-MB-W33	1690	2860	246	1000	1300
	440	120	4	22248-MB-W33	1660	2560	216	1300	1800
	440	120	4	22248-K-MB-W33	1660	2560	216	1300	1800
	440	160	4	23248-MB-W33	2440	3920	331	790	1300
	440	160	4	23248-K-MB-W33	2440	3920	331	790	1300
	500	155	5	22348-MB-W33	2440	3690	304	890	1300
	500	155	5	22348-K-MB-W33	2440	3690	304	890	1300
260	360	75	2,1	23952-K-MB-W33	882	1827	159	1200	1900
	360	75	2,1	23952-MB-W33	882	1827	159	1200	1900



Abutment and fillet dimensions see on page 717

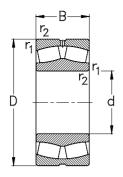
	Berechnungsfaktoren Calculation factors										
d	е	F _a /F _r ≤ e	$F_a/F_r > e$	Y_0			m				
		Y ₁	Y ₂		B _s	B _K					
220	0,36	1,9	2,8	1,8	9	16,7	83				
	0,36	1,9	2,8	1,8	9	16,7	79				
	0,35	1,9	2,8	1,8	9	16,7	125				
	0,35	1,9	2,8	1,8	9	16,7	122				
240	0,16	4,28	6,37	4,19	9,3	4,5	14				
	0,16	4,28	6,37	4,19	9,3	4,5	14				
	0,24	2,8	4,2	2,8	7,5	13,9	33,8				
	0,24	2,8	4,2	2,8	7,5	13,9	34,9				
	0,29	2,32	3,45	2,26	12,2	6	42,5				
	0,29	2,32	3,45	2,26	12,2	6	42,5				
	0,4	1,68	2,5	1,64	12,2	6	79,5				
	0,4	1,68	2,5	1,64	12,2	6	79,5				
	0,32	2,1	3	2	9	16,7	66,7				
	0,32	2,1	3	2	9	16,7	68,7				
	0,29	2,3	3,3	2,2	12	22,3	85				
	0,29	2,3	3,3	2,2	12	22,3	83,2				
	0,35	1,9	2,9	1,8	12	22,3	111				
	0,35	1,9	2,9	1,8	12	22,3	108				
	0,34	2	2,9	1,9	12	22,3	159				
	0,34	2	2,9	1,9	12	22,3	156				
260	0,18	3,66	5,46	3,58	9,3	4,5	24				
	0,18	3,66	5,46	3,58	9,3	4,5	24				

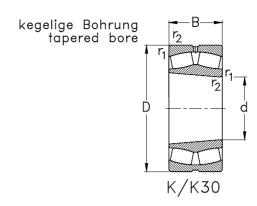

На	auptabm [m	_	jen	Lagertype	Tr	agzahle [kN]	n	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]
Во	oundary o [m		ons	Designation	Lo	ad rating [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]
d	D	В	r ₁ , r ₂ min		C _r dyn.	C ₀r stat.	C _u	$n_{\scriptscriptstyle{ hetar}}$	n _G
260	400	104	4	23052-K-MB-W33	1460	2360	201	1200	1700
	400	104	4	23052-MB-W33	1460	2360	201	1200	1700
	400	140	4	24052-K30-MB-W33	1811	3528	301	900	1400
	400	140	4	24052-MB-W33	1811	3528	301	900	1400
	440	180	4	24152-MB-W33	2608	4821	404	570	1200
	440	180	4	24152-K30-MB-W33	2608	4821	404	570	1200
	440	144	4	23152-K-MB-W33	2240	3720	312	890	1400
	440	144	4	23152-MB-W33	2240	3720	312	890	1400
	480	130	5	22252-MB-W33	1940	3030	250	1100	1600
	480	130	5	22252-K-MB-W33	1940	3030	250	1100	1600
	540	165	6	22352-MB-W33	2760	4220	340	800	1200
	540	165	6	22352-K-MB-W33	2760	4220	340	800	1200
280	380	75	2,1	23956-K-MB-W33	869	1830	156	1100	1700
	380	75	2,1	23956-MB-W33	869	1830	156	1100	1700
	420	106	4	23056-K-MB-W33	1440	2690	225	1100	1600
	420	106	4	23056-MB-W33	1440	2690	225	1100	1600
	420	140	4	24056-K30-MB-W33	1904	3836	321	820	1400
	420	140	4	24056-MB-W33	1904	3836	321	820	1400
	460	146	5	23156-K-MB,W33	2312	4182	345	810	1300
	460	146	5	23156-MB-W33	2312	4182	345	810	1300
	460	180	5	24156-MB-W33	2683	5090	419	530	1100
	460	180	5	24156-K30-MB-W33	2683	5090	419	530	1100



Abutment and fillet dimensions see on page 717

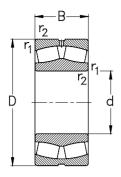
	Berechnungsfaktoren Calculation factors										
d	е	F _a /F _r ≤ e Y ₁	$F_a/F_r > e$ Y_2	Y ₀	B _s	B _K	[kg] m				
260	0,25	2,7	4	2,7	9	16,7	45,3				
	0,25	2,7	4	2,7	9	16,7	46,8				
	0,32	2,12	3,15	2,07	12,2	6	66				
	0,32	2,12	3,15	2,07	12,2	6	66				
	0,4	1,68	2,5	1,64	15	7,5	110				
	0,4	1,68	2,5	1,64	15	7,5	110				
	0,32	2	3,1	2	9	16,7	87,8				
	0,32	2	3,1	2	9	16,7	90,5				
	0,29	2,3	3,4	2,2	12	22,3	111				
	0,29	2,3	3,4	2,2	12	22,3	109				
	0,34	2	2,9	1,9	12	22,3	196				
	0,34	2	2,9	1,9	12	22,3	192				
280	0,16	4,28	6,37	4,19	12,2	6	26				
	0,16	4,28	6,37	4,19	12,2	6	26				
	0,24	2,7	4	2,6	9	16,7	54,5				
	0,24	2,7	4	2,6	9	16,7	52,9				
	0,32	2,12	3,15	20,7	12,2	6	68,5				
	0,32	2,12	3,15	20,7	12,2	6	68,5				
	0,29	2,32	3,45	2,26	17,7	9	99				
	0,29	2,32	3,45	2,26	17,7	9	103				
	0,4	1,68	2,5	1,64	15	7,5	99				
	0,4	1,68	2,5	1,64	15	7,5	118				

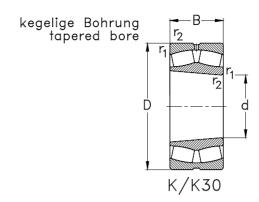

На	uptabm [m	nessung m]	jen	Lagertype	Tr	agzahle [kN]	n	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]
Во	undary ([m	dimensio m]	ons	Designation	Lo	ad rating [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]
d	D	В	r ₁ , r ₂ min		C _r dyn.	C ₀r stat.	C _u	$n_{\scriptscriptstyle{ hetar}}$	n _G
280	500	130	5	22256-MB-W33	2010	3200	259	1000	1500
	500	130	5	22256-K-MB-W33	2010	3200	259	1000	1500
	500	176	5	23256-MB-W33	2850	4770	387	660	1100
	500	176	5	23256-K-MB-W33	2850	4770	387	660	1100
	580	175	6	22356-MB-W33	3300	4940	389	720	1100
	580	175	6	22356-K-MB-W33	3300	4940	389	720	1100
300	420	90	3	23960-K-MB-W33	1202	2512	209	1000	1600
	420	90	3	23960-MB-W33	1202	2512	209	1000	1600
	460	118	4	23060-K-MB-W33	1780	3240	265	1000	1500
	460	118	4	23060-MB-W33	1780	3240	265	1000	1500
	460	160	4	24060-K30-MB-W33	2432	4920	402	720	1200
	460	160	4	24060-MB-W33	2432	4920	402	720	1200
	500	160	5	23160-K-MB-W33	2560	4490	361	760	1200
	500	160	5	23160-MB-W33	2560	4490	361	760	1200
	500	200	5	24160-MB-W33	3287	6292	506	460	1000
	500	200	5	24160-K30-MB-W33	3287	6292	506	460	1000
	540	140	5	22260-MB-W33	2350	3810	302	950	1400
	540	140	5	22260-K-MB-W33	2350	3810	302	950	1400
320	440	90	3	23964-K-MB-W33	1254	2712	222	940	1500
	440	90	3	23964-MB-W33	1254	2712	222	940	1500
	480	121	4	23064-K-MB-W33	1890	3510	282	950	1400
	480	121	4	23064-MB-W33	1890	3510	282	950	1400



Abutment and fillet dimensions see on page 717

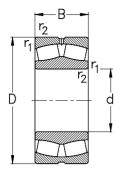
	Berechnungsfaktoren Calculation factors										
d	е	F _a /F _r ≤ e Y₁	$F_a/F_r > e$ Y_2	Y_0	B_{s}	B _K	[kg] m				
280	0,28	2,4	3,5	2,3	12	22,3	119				
	0,28	2,4	3,5	2,3	12	22,3	116				
	0,36	1,9	2,7	1,8	12	22,3	157				
	0,36	1,9	2,7	1,8	12	22,3	152				
	0,31	2,2	3,2	2,1	12	22,3	232				
	0,31	2,2	3,2	2,1	12	22,3	227				
300	0,18	3,66	5,46	3,58	12,2	6	40				
	0,18	3,66	5,46	3,58	12,2	6	40				
	0,25	2,7	3,8	2,5	9	16,7	73,6				
	0,25	2,7	3,8	2,5	9	16,7	75,8				
	0,32	2,12	3,15	2,07	15	7,5	97				
	0,32	2,12	3,15	2,07	15	7,5	97				
	0,32	2,1	3	2	9	16,7	130				
	0,32	2,1	3	2	9	16,7	134				
	0,4	1,68	2,5	1,64	15	7,5	159				
	0,4	1,68	2,5	1,64	15	7,5	159				
	0,27	2,5	3,6	2,4	12	22,3	150				
	0,27	2,5	3,6	2,4	12	22,3	147				
320	0,18	3,66	5,46	3,58	12,2	6	42				
	0,18	3,66	5,46	3,58	12,2	6	42				
	0,24	2,7	3,9	2,6	9	16,7	78,8				
	0,24	2,7	3,9	2,6	9	16,7	81,2				

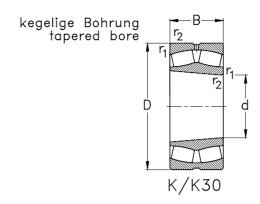

Н	auptabm [m		en	Lagertype	Tr	agzahle [kN]	en	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]
В	oundary ([m	dimensio m]	ons	Designation	Lo	ad ratin [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]
d	D	В	r ₁ , r ₂ min		C _r dyn.	C ₀r stat.	Cu	$n_{\scriptscriptstyle{ hetar}}$	n _G
320	480	160	4	24064-K30-MB-W33	2486	5138	413	680	1200
	480	160	4	24064-MB-W33	2486	5138	413	680	1200
	540	176	5	23164-MB-W33	3020	5390	424	690	1100
	540	176	5	23164-K-MB-W33	3020	5390	424	690	1100
	540	218	5	24164-MB-W33	3739	7102	559	430	900
	540	218	5	24164-K30-MB-W33	3739	7102	559	430	900
	580	150	5	22264-MB-W33	2700	4430	344	860	1300
	580	150	5	22264-K-MB-W33	2700	4430	344	860	1300
	580	208	5	23264-MB-W33	3880	6520	506	540	950
	580	208	5	23264-K-MB-W33	3880	6520	506	540	950
340	460	90	3	23968-K-MB-W33	1271	2793	225	880	1400
	460	90	3	23968-MB-W33	1271	2793	225	880	1400
	520	133	5	23068-K-MB-W33	2320	4330	341	860	1300
	520	133	5	23068-MB-W33	2320	4330	341	860	1300
	520	180	5	24068-K30-MB-W33	3007	6196	488	620	1100
	520	180	5	24068-MB-W33	3007	6196	488	620	1100
	580	190	5	23168-K-MB-W33	3510	6230	481	630	1000
	580	190	5	23168-MB-W33	3510	6230	481	630	1000
	580	243	5	24168-MB-W33	4683	8726	673	370	850
	580	243	5	24168-K30-MB-W33	4683	8762	673	370	850
	620	224	6	23268-MB-W33	4430	7560	576	490	800
	620	224	6	23268-K-MB-W33	4430	7560	576	490	800



Abutment and fillet dimensions see on page 717

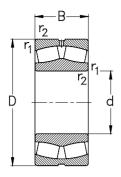
	Berechnungsfaktoren Calculation factors										
d	е	F _a /F _r ≤ e Y₁	$F_a/F_r > e$ Y_2	\mathbf{Y}_{0}	B s	B _K	[kg] m				
320	0,32	2,12	3,15	2,07	- s 15	7,5	106				
	0,32	2,12	3,15	2,07	15	7,5	106				
	0,32	2	3	2	12	22,3	175				
	0,32	2	3	2	12	22,3	170				
	0,4	1,68	2,5	1,64	17,7	9	215				
	0,4	1,68	2,5	1,64	17,7	9	215				
	0,27	2,5	3,6	2,3	12	22,3	187				
	0,27	2,5	3,6	2,3	12	22,3	181				
	0,37	1,8	2,6	1,7	12	22,3	253				
	0,37	1,8	2,6	1,7	12	22,3	246				
340	0,16	4,28	6,37	4,19	12,2	6	45				
	0,16	4,28	6,37	4,19	12,2	6	45				
	0,25	2,7	3,9	2,6	12	22,3	108				
	0,25	2,7	3,9	2,6	12	22,3	105				
	0,32	2,12	3,15	2,07	17,7	9	143				
	0,32	2,12	3,15	2,07	17,7	9	143				
	0,33	2	2,9	1,9	12	22,3	209				
	0,33	2	2,9	1,9	12	22,3	202				
	0,4	1,68	2,5	1,64	17,7	9	266				
	0,4	1,68	2,5	1,64	17,7	9	266				
	0,37	1,8	2,6	1,7	12	22,3	313				
	0,37	1,8	2,6	1,7	12	22,3	304				

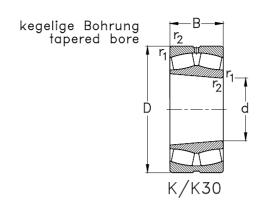

Ha	auptabm [m	iessung m]	jen	Lagertype	Tr	agzahle [kN]	n	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]
Во	oundary o [m	dimensi m]	ons	Designation	Lo	ad rating [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]
d	D	В	r ₁ , r ₂ min		C _r dyn.	C ₀r stat.	C _u	$n_{\scriptscriptstyle{ hetar}}$	n _G
360	480	90	3	23972-K-MB-W33	998	2054	163	900	1300
	480	90	3	23972-MB-W33	998	2054	163	900	1300
	540	134	5	23072-K-MB-W33	2360	4460	346	810	1200
	540	134	5	23072-MB-W33	2360	4460	346	810	1200
	540	180	5	24072-K30-MB-W33	3079	6466	502	580	1000
	540	180	5	24072-MB-W33	3079	6466	502	580	1000
	600	192	5	23172-K-MB-W33	3630	6550	499	590	1000
	600	192	5	23172-MB-W33	3630	6550	499	590	1000
	600	243	5	24172-MB-W33	4888	9340	712	350	800
	600	243	5	24172-K30-MB-W33	4888	9340	712	350	800
	650	232	6	23272-MB-W33	4780	8550	641	440	750
	650	232	6	23272-K-MB-W33	4780	8550	641	440	750
380	520	106	4	23976-K-MB-W33	1720	3830	298	760	1200
	520	106	4	23976-MB-W33	1720	3830	298	760	1200
	560	135	5	23076-K-MB-W33	2410	4700	360	770	1200
	560	135	5	23076-MB-W33	2410	4700	360	770	1200
	560	180	5	24076-K30-MB-W33	3151	6758	518	550	950
	560	180	5	24076-MB-W33	3151	6758	518	550	950
	620	194	5	23176-K-MB-W33	3740	6970	524	560	1000
	620	194	5	23176-MB-W33	3740	6970	524	560	1000
	620	243	5	24176-MB-W33	5067	9903	745	320	850
	620	243	5	24176-K30-MB-W33	5067	9903	745	320	850



Abutment and fillet dimensions see on page 717

	Berechnungsfaktoren Calculation factors										
d	е	F _a /F _r ≤ e Y₁	$F_a/F_r > e$ Y_2	Y ₀	B s	B _K	m				
360	0,17	4,28	6,37	4,19	12,2	6	47				
	0,17	4,28	6,37	4,19	12,2	6	47				
	0,24	2,8	4	2,6	12	22,3	111				
	0,24	2,8	4	2,6	12	22,3	114				
	0,32	2,12	3,15	2,07	17,7	9	145				
	0,32	2,12	3,15	2,07	17,7	9	145				
	0,32	2	3	2	12	22,3	224				
	0,32	2	3	2	12	22,3	232				
	0,4	1,68	2,5	1,64	17,7	9	278				
	0,4	1,68	2,5	1,64	17,7	9	278				
	0,35	1,9	2,9	1,8	12	22,3	342				
	0,35	1,9	2,9	1,8	12	22,3	332				
380	0,18	3,66	5,46	3,58	15	7,5	70				
	0,18	3,66	5,46	3,58	15	7,5	70				
	0,23	2,9	4,2	2,7	12	22,3	117				
	0,23	2,9	4,2	2,7	12	22,3	120				
	0,29	2,32	3,45	2,26	17,7	9	152				
	0,29	2,32	3,45	2,26	17,7	9	152				
	0,31	2,2	3,1	2,1	12	22,3	237				
	0,31	2,2	3,1	2,1	12	22,3	244				
	0,37	1,8	2,69	1,76	17,7	9	290				
	0,37	1,8	2,69	1,76	17,7	9	290				

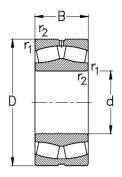

Ha	auptabm [m	essung m]	jen	Lagertype	Tr	agzahle [kN]	n	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]
Вс	oundary ([m	dimension] m]	ons	Designation	Lo	ad rating [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]
d	D	В	r₁, r₂ min		C _r dyn.	C ₀r stat.	C _u	$\mathbf{n}_{ extsf{ hetar}}$	$n_{\scriptscriptstyle G}$
380	680	240	6	23276-MB-W33	5160	8920	660	430	750
	680	240	6	23276-K-MB-W33	5160	8920	660	430	750
400	540	106	4	23980-MB-W33	1749	3954	303	720	1200
	540	106	4	23980-K-MB-W33	1749	3954	303	720	1200
	600	148	5	23080-K-MB-W33	2860	5500	414	710	1100
	600	148	5	23080-MB-W33	2860	5500	414	710	1100
	600	200	5	24080-MB-W33	3767	8049	606	500	900
	600	200	5	24080-K30-MB-W33	3767	8049	606	500	900
	650	200	6	23180-K-MB-W33	4040	7580	562	520	950
	650	200	6	23180-MB-W33	4040	7580	562	520	950
	650	250	6	24180-MB-W33	5407	10582	785	300	800
	650	250	6	24180-K30-MB-W33	5407	10582	785	300	800
	720	256	6	23280-MB-W33	5800	10120	736	390	670
	720	256	6	23280-K-MB-W33	5800	10120	736	390	670
420	560	106	4	23984-K-MB-W33	1838	4120	327	680	1100
	560	106	4	23984-MB-W33	1938	4120	327	680	1100
	620	150	5	23084-K-MB-W33	2950	5850	435	670	1100
	620	150	5	23084-MB-W33	2950	5850	435	670	1100
	620	200	5	24084-K30-MB-W33	3845	8382	623	470	900
	620	200	5	24084-MB-W33	3845	8382	623	470	900
	700	224	6	23184-MB-W33	5030	9740	708	460	500
	700	224	6	23184-K-MB-W33	5030	9740	708	460	500

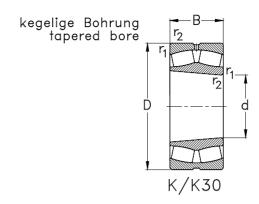


Abutment and fillet dimensions see on page 717

	Berechnungsfaktoren Calculation factors										
d	е	F _a /F _r ≤ e	$F_a/F_r > e$	Y_0			m				
		Y ₁	Y_2		B_s	B_{κ}					
380	0,36	1,9	2,7	1,8	12	22,3	394				
	0,36	1,9	2,7	1,8	12	22,3	382				
400	0,16	4,28	6,37	4,19	15	7,5	72				
	0,16	4,28	6,37	4,19	15	7,5	72				
	0,24	2,8	4	2,7	12	22,3	152				
	0,24	2,8	4	2,7	12	22,3	156				
	0,29	2,32	3,45	2,26	23,5	12	205				
	0,29	2,32	3,45	2,26	23,5	12	205				
	0,3	2,2	3,2	2,1	12	22,3	265				
	0,3	2,4	3,2	2,1	12	22,3	273				
	0,37	1,8	2,69	1,76	23,5	12	326				
	0,37	1,8	2,69	1,76	23,5	12	326				
	0,36	1,8	2,7	1,8	12	22,3	476				
	0,36	1,8	2,7	1,8	12	22,3	363				
420	0,16	4,28	6,37	4,19	17,7	9	75				
	0,16	4,28	6,37	4,19	17,7	9	75				
	0,23	2,9	4,1	2,7	12	22,3	159				
	0,23	2,8	4,1	2,7	12	22,3	164				
	0,29	2,32	3,45	2,26	23,5	12	214				
	0,29	2,32	3,45	2,26	23,5	12	214				
	0,32	2,1	3,2	2	12	22,3	363				
	0,32	2,1	3,2	2	12	22,3	348				

	Hauptabmessungen [mm]				Lagertype	Tragzahlen [kN]			Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]
	Boundary dimensions [mm]			ons	Designation	Load ratings [kN]			Thermal speed ratings [rpm]	Limited speed ratings [rpm]
	d	D	В	r ₁ , r ₂ min		C _r dyn.	C _{or} stat.	C _u	$n_{ hetar}$	n_{G}
	420	700	224	6	24184-MB-W33	6504	12611	917	240	700
		700	224	6	24184-K30-MB-W33	6504	12611	917	240	700
		760	272	7,5	23284-MB-W33	6400	11300	809	360	630
		760	272	7,5	23284-K-MB-W33	6400	11300	809	360	630
	440	600	118	4	23988-K-MB-W33	2128	4864	362	640	1000
		600	118	4	23988-MB-W33	2128	4864	362	640	1000
		650	157	6	23088-K-MB-W33	3210	6410	470	630	1000
		650	157	6	23088-MB-W33	3210	6410	470	630	1000
		650	212	6	24088-K30-MB-W33	4221	9095	684	450	850
		650	212	6	24088-MB-W33	4221	9095	684	450	850
		720	226	6	23188-MB-W33	4480	9350	673	460	850
		720	226	6	23188-K-MB-W33	4480	9350	673	460	850
		720	280	6	24188-MB-W33	6933	13939	1003	250	700
		720	280	6	24188-K30-MB-W33	6933	13939	1003	250	700
		790	280	7,5	23288-MB-W33	6820	12030	851	340	600
		790	280	7,5	23288-K-MB-W33	6820	12030	851	340	600
	460	580	118	3	24892-MB-W33	1753	4938	355	560	1100
		620	118	4	23992-K-MB-W33	2180	5023	369	610	1100
		620	118	4	23992-MB-W33	2180	5023	369	610	1000
		680	163	6	23092-K-MB-W33	3480	7000	506	600	1000
		680	163	6	23092-MB-W33	3480	7000	506	600	950
_		680	218	6	24092-K30-MB-W33	4525	9940	719	420	950

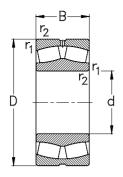


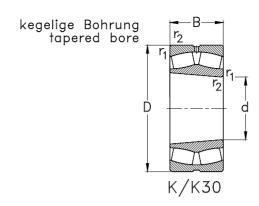

Anschlussmaße siehe Seite 717

Abutment and fillet dimensions see on page 717

		Berechnun	_				Gewicht [kg]
		Calculation	on factors				Weight [kg]
d	е	F _a /F _r ≤ e Y₁	$F_a/F_r > e$ Y_2	Y ₀	B _s	B _K	m
420	0,37	1,8	2,69	1,76	23,5	12	443
	0,37	1,8	2,69	1,76	23,5	12	443
	0,36	1,7	2,7	1,8	12	22,3	535
	0,36	1,7	2,7	1,8	12	22,3	520
440	0,18	3,66	5,46	3,58	17,7	9	102
	0,18	3,66	5,46	3,58	17,7	9	102
	0,23	2,9	4,1	2,7	12	22,3	182
	0,23	2,9	4,1	2,7	12	22,3	188
	0,29	2,32	3,45	2,26	23,5	12	249
	0,29	2,32	3,45	2,26	23,5	12	249
	0,32	2,1	3	2	12	22,3	390
	0,32	2,1	3	2	12	22,3	379
	0,37	1,8	2,69	1,76	23,5	12	454
	0,37	1,8	2,69	1,76	23,5	12	454
	0,36	1,8	2,7	1,8	12	22,3	613
	0,36	1,8	2,7	1,8	12	22,3	595
460	0,18	3,66	5,46	3,58	17,7	9	75,5
	0,16	4,28	6,37	4,19	17,7	9	105
	0,16	4,28	6,37	4,19	17,7	9	105
	0,23	2,9	4,2	2,8	12	22,3	207
	0,23	2,9	4,2	2,8	12	22,3	214
	0,29	2,32	3,45	2,26	23,5	12	280

На	uptabm [m	nessung m]	jen	Lagertype	Tr	agzahle [kN]	n	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]
Во	oundary ([m	dimensio m]	ons	Designation	Lo	ad rating [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]
d	D	В	r₁, r₂ min		C _r dyn.	C ₀r stat.	C _u	$n_{\scriptscriptstyle{\thetar}}$	\mathbf{n}_{G}
460	680	218	6	24092-MB-W33	4525	9940	719	420	800
	760	240	7,5	23192-MB-W33	5720	10950	776	410	800
	760	240	7,5	23192-K-MB-W33	5720	10950	776	410	800
	760	300	7,5	24192-MB-W33	7378	14889	1056	240	800
	760	300	7,5	24192-K30-MB-W33	7378	14889	1056	240	670
	830	296	7,5	23292-MB-W33	7601	14003	976	310	560
	830	296	7,5	23292-K-MB-W33	7601	14003	976	310	560
480	650	128	5	23996-K-MB-W33	2525	5692	413	580	1000
	650	128	5	23996-MB-W33	2525	5692	413	580	1000
	700	165	6	23096-K-MB-W33	3660	7490	536	560	950
	700	165	6	23096-MB-W33	3660	7490	536	560	950
	700	218	6	24096-K30-MB-W33	4634	10361	742	400	750
	700	218	6	24096-MB-W33	4634	10361	742	400	750
	790	248	7,5	23196-MB-W33	6150	12000	840	390	750
	790	248	7,5	23196-K-MB-W33	6150	12000	840	390	750
	790	308	7,5	24196-MB-W33	7891	15938	1116	220	630
	790	308	7,5	24196-K30-MB-W33	7891	15938	1116	220	630
	870	310	7,5	23296-MB-W33	8261	15278	1051	290	530
	870	310	7,5	23296-K-MB-W33	8261	15278	1051	290	530
500	670	128	5	239/500-K-MB-W33	2537	5984	430	550	950
	670	128	5	239/500-MB-W33	2537	5984	430	550	950
	720	167	6	230/500-K-MB-W33	3830	7970	565	540	900

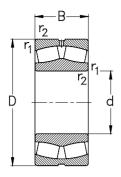


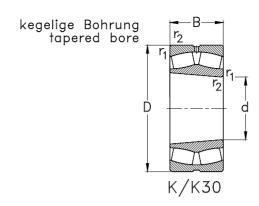

Anschlussmaße siehe Seite 717

Abutment and fillet dimensions see on page 717

	Berechnungsfaktoren Calculation factors									
d	е	F _a /F _r ≤ e Y₁	$F_a/F_r > e$ Y_2	Y_0	\mathbf{B}_{s}	B _K	m			
460	0,29	2,32	3,45	2,26	23,5	12	280			
	0,31	2,1	3,1	2	12	22,3	456			
	0,31	2,1	3,1	2	12	22,3	441			
	0,37	1,8	2,69	1,76	23,5	12	578			
	0,37	1,8	2,69	1,76	23,5	12	578			
	0,35	1,95	2,9	1,91	23,5	12	695			
	0,35	1,95	2,9	1,91	23,5	12	695			
480	0,18	3,66	5,46	3,58	17,7	9	128			
	0,18	3,66	5,46	3,58	17,7	9	128			
	0,23	2,9	4,4	2,9	12	22,3	223			
	0,23	2,9	4,4	2,9	12	22,3	230			
	0,26	2,55	3,8	2,5	23,5	12	288			
	0,26	2,55	3,8	2,5	23,5	12	288			
	0,31	2,2	3,1	2,1	12	22,3	485			
	0,31	2,2	3,1	2,1	12	22,3	469			
	0,37	1,8	2,69	1,76	23,5	12	639			
	0,37	1,8	2,69	1,76	23,5	12	639			
	0,4	1,68	2,5	1,64	23,5	12	835			
	0,4	1,68	2,5	1,64	23,5	12	835			
500	0,16	4,28	6,37	4,19	23,5	12	130			
	0,16	4,28	6,37	4,19	12	12	130			
	0,22	3	4,3	2,9	12	22,3	228			

На	uptabm [m	nessung m]	jen	Lagertype	Tr	agzahle [kN]	n	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]
Во	undary ([m	dimensio m]	ons	Designation	Lo	ad rating [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]
d	D	В	r ₁ , r ₂ min		C _r dyn.	C ₀r stat.	C _u	$n_{\scriptscriptstyle{ hetar}}$	n _G
500	720	167	6	230/500-MB-W33	3830	7970	565	540	900
	720	218	6	240/500-K30-MB-W33	4846	11112	788	370	700
	720	218	6	240/500-MB-W33	4846	11112	788	370	700
	830	264	7,5	231/500-K-MB-W33	6800	13040	901	370	700
	830	264	7,5	231/500-MB-W33	6800	13040	901	230	700
	830	325	7,5	241/500-MB-W33	8705	17263	1193	210	600
	830	325	7,5	241/500-K30-MB-W33	8705	17263	1193	210	600
	920	336	7,5	232/500-MB-W33	9506	17818	1207	260	500
	920	336	7,5	232/500-K-MB-W33	9506	17819	1207	260	500
530	650	118	3	248/530-K-MB-W33	1835	5266	377	490	950
	710	136	5	239/530-MB-W33	2801	6583	464	510	900
	710	136	5	239/530-K-MB-W33	2801	6583	464	510	900
	780	185	6	230/530-MB-W33	4470	9310	646	490	800
	780	185	6	230/530-K-MB-W33	4470	9310	646	490	800
	780	250	6	240/530-MB-W33	5852	13318	924	340	670
	780	250	6	240/530-K30-MB-W33	5852	13318	924	340	670
	870	335	7,5	241/530-MB-W33	9372	19144	1302	190	560
	870	335	7,5	241/530-K30-MB-W33	9372	19144	1302	190	560
	870	272	7,5	231/530-K-MB-W33	7230	14197	966	340	670
	870	272	7,5	231/530-MB-W33	7230	14197	966	340	670
560	750	140	5	239/560-K-MB-W33	3029	7228	502	480	850
	750	140	5	239/560-MB-W33	3029	7228	502	480	850

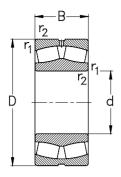


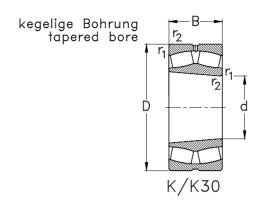

Anschlussmaße siehe Seite 717

Abutment and fillet dimensions see on page 717

		Berechnun Calculatio	_				Gewicht [kg] Weight [kg]
d	е	F _a /F _r ≤ e Y₁	$F_a/F_r > e$ Y_2	Y_0	Bs	B _K	m
500	0,22	3	4,3	2,9	12	22,3	236
	0,26	2,55	3,8	2,5	23,5	12	236
	0,26	2,55	3,8	2,5	23,5	12	297
	0,31	2,1	3	2	12	22,3	550
	0,31	2,1	3	2	12	22,3	570
	0,37	1,8	2,69	1,76	23,5	12	753
	0,37	1,8	2,69	1,76	23,5	12	753
	0,35	1,95	2,9	1,91	23,5	12	1010
	0,35	1,95	2,9	1,91	23,5	12	1010
530	0,16	4,28	6,37	4,19	17,7	9	86
	0,18	3,66	5,46	3,58	23,5	12	150
	0,18	3,66	5,46	3,58	23,5	12	150
	0,22	3	4,3	2,9	12	22,3	323
	0,22	3	4,3	2,9	12	22,3	314
	0,29	2,32	3,45	2,26	23,5	12	410
	0,29	2,32	3,45	2,26	23,5	12	410
	0,37	1,8	2,69	1,7	23,5	12	838
	0,37	1,8	2,69	1,7	23,5	12	838
	0,29	2,32	3,45	2,26	23,5	12	645
	0,29	2,32	3,45	2,26	23,5	12	645
560	0,16	4,28	6,37	4,19	23,5	12	183
	0,16	4,28	6,37	4,19	23,5	12	183

На	uptabm [m		en	Lagertype	Tr	agzahle [kN]	n	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]
Во	undary ([m	dimensio m]	ons	Designation	Lo	ad rating [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]
d	D	В	r ₁ , r ₂ min		C _r dyn.	C ₀r stat.	C _u	$n_{\scriptscriptstyle{ hetar}}$	n _G
560	820	195	6	230/560-K-MB-W33	5110	10690	730	460	750
	820	195	6	230/560-MB-W33	5110	10690	730	460	750
	820	258	6	240/560-K30-MB-W33	6398	14709	1005	310	630
	820	258	6	240/560-MB-W33	6398	14709	1005	310	630
	920	280	7,5	231/560-K-MB-W33	7980	15900	76	660	630
	920	280	7,5	231/560-MB-W33	7980	15900	76	660	630
	920	355	7,5	241/560-MB-W33	10512	21598	1445	180	500
	920	355	7,5	241/560-K30-MB-W33	10512	21598	1445	180	500
600	800	150	5	239/600-K-MB-W33	3420	8314	566	440	750
	800	150	5	239/600-MB-W33	3420	8314	566	440	750
	870	200	6	230/600-K-MB-W33	5500	11420	260	420	700
	870	200	6	230/600-MB-W33	5500	11420	260	420	700
	870	272	6	240/600-K30-MB-W33	7274	17119	1148	280	560
	870	272	6	240/600-MB-W33	7274	17119	1148	280	560
	980	300	7,5	231/600-MB-W33	9108	18396	1207	280	560
	980	300	7,5	231/600-K-MB-W33	9108	18396	1207	280	560
	980	375	7,5	241/600-MB-W33	11631	24141	1584	160	480
	980	375	7,5	241/600-K30-MB-W33	11631	24141	1584	160	480
630	850	165	6	239/630-K-MB-W33	4055	9794	655	410	750
	850	165	6	239/630-MB-W33	4055	9794	655	410	750
	920	212	7,5	230/630-K-MB-W33	6270	13360	881	390	670
	920	212	7,5	230/630-MB-W33	6270	13360	881	390	670

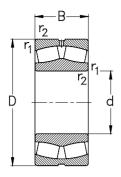


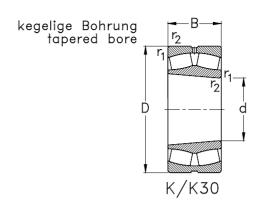

Anschlussmaße siehe Seite 717

Abutment and fillet dimensions see on page 717

		Berechnun					Gewicht [kg]
		Calculation	on factors				Weight [kg]
d	е	F _a /F _r ≤ e Y₁	$F_a/F_r > e$ Y_2	\mathbf{Y}_{0}	B s	B _κ	m
560	0,22	3,1	4,6	3	12	22,3	346
	0,22	3,1	4,6	3	12	22,3	357
	0,29	2,32	3,45	2,26	23,5	12	469
	0,29	2,32	3,45	2,26	23,5	12	469
	0,29	2,32	3,45	2,26	23,5	12	740
	0,29	2,32	3,45	2,26	23,5	12	740
	0,37	1,8	2,69	1,76	23,5	12	979
	0,37	1,8	2,69	1,76	23,5	12	979
600	0,16	4,28	6,37	4,19	23,5	12	221
	0,16	4,28	6,37	4,19	23,5	12	221
	0,22	2,9	4,2	2,8	12	22,3	400
	0,22	2,9	4,2	2,8	12	22,3	405
	0,29	2,32	3,45	2,26	23,5	12	550
	0,29	2,32	3,45	2,26	23,5	12	550
	0,29	2,32	3,45	2,26	23,5	12	933
	0,29	2,32	3,45	2,26	23,5	12	933
	0,37	1,8	2,69	1,76	23,5	12	1180
	0,37	1,8	2,69	1,76	23,5	12	1180
630	0,16	4,28	6,37	4,19	23,5	12	280
	0,16	4,28	6,37	4,19	23,5	12	280
	0,21	3,1	4,5	2,9	12	22,3	470
	0,21	3,1	4,5	2,9	12	22,3	485

Ha	auptabm [m	_	jen	Lagertype	Tr	agzahle [kN]	n	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]
Во	oundary o [m	dimensio m]	ons	Designation	Lo	ad rating [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]
d	D	В	r ₁ , r ₂ min		C _r dyn.	C ₀r stat.	C _u	$n_{\scriptscriptstyle{ hetar}}$	n _G
630	920	290	7,5	240/630-K30-MB-W33	7745	18127	1196	270	530
	920	290	7,5	240/630-MB-W33	7745	18127	1196	270	530
	1030	400	7,5	241/630-MB-W33	12920	27231	1760	150	450
	1030	400	7,5	241/630-K30-MB-W33	12920	27231	1760	150	450
670	820	150	4	248/670-K-MB-W33	3113	9594	641	370	700
	900	170	6	239/670-K-MB-W33	4388	10796	710	370	670
	900	170	6	239/670-MB-W33	4388	10796	710	280	670
	980	230	7,5	230/670-K-MB-W33	6820	14690	951	360	600
	980	230	7,5	230/670-MB-W33	6820	14690	951	360	600
	980	308	7,5	240/670-K30-MB-W33	8792	20770	1345	250	500
	980	308	7,5	240/670-MB-W33	8792	20770	1345	250	500
	1090	412	7,5	241/670-MB-W33	14112	29716	1887	130	400
	1090	412	7,5	241/670-K30-MB-W33	14112	29716	1887	130	400
710	950	180	6	239/710-K-MB-W33	4874	12104	782	350	600
	950	180	6	239/710-MB-W33	4874	12104	782	350	600
	950	243	6	249/710-MB-W33	5952	15840	1024	300	500
	1030	236	7,5	230/710-K-MB-W33	7402	16453	1049	330	500
	1030	236	7,5	230/710-MB-W33	7402	16453	1049	330	560
	1030	315	7,5	240/710-K30-MB-W33	9421	23139	1475	220	560
	1030	315	7,5	240/710-MB-W33	9421	23139	1475	220	450
	1150	438	9,5	241/710-MB-W33	15441	32939	2058	120	380
	1150	438	9,5	241/710-K30-MB-W33	15441	32939	2058	120	380

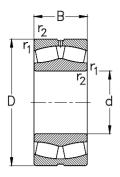


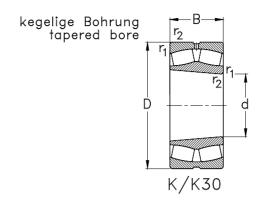

Anschlussmaße siehe Seite 717

Abutment and fillet dimensions see on page 717

	Calculation factors								
d	е	F _a /F _r ≤ e Y₁	$F_a/F_r > e$ Y_2	Y_0	B s	B _K	m		
630	0,29	2,32	3,45	2,26	23,5	12	661		
	0,29	2,32	3,45	2,26	23,5	12	661		
	0,37	1,8	2,69	1,76	23,5	12	1410		
	0,37	1,8	2,69	1,76	23,5	12	1410		
670	0,16	4,28	6,37	4,19	17,7	9	172		
	0,16	4,28	6,37	4,19	23,5	12	326		
	0,16	4,28	6,37	4,19	23,5	12	326		
	0,23	3	4,4	2,9	12	22,3	593		
	0,23	3	4,4	2,9	12	22,3	611		
	0,29	2,32	3,45	2,26	23,5	12	802		
	0,29	2,32	3,45	2,26	23,5	12	802		
	0,37	1,8	2,69	1,76	23,5	12	1610		
	0,37	1,8	2,69	1,76	23,5	12	1610		
710	0,16	4,28	6,37	4,19	23,5	12	386		
	0,16	4,28	6,37	4,19	23,5	12	386		
	0,21	3,2	4,77	3,13	23,5	12	670		
	0,21	3,2	4,77	3,13	23,5	12	495		
	0,21	3,2	4,77	3,13	23,5	12	670		
	0,26	2,55	3,8	2,5	23,5	12	889		
	0,26	2,55	3,8	2,5	23,5	12	889		
	0,37	1,8	2,69	1,76	23,5	12	1910		
	0,37	1,8	2,69	1,76	23,5	12	1910		

На	uptabm [m		jen	Lagertype	Tr	agzahle [kN]	n	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]
Во	undary o [m		ons	Designation	Lo	ad rating [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]
d	D	В	r ₁ , r ₂ min		C _r dyn.	C ₀r stat.	C _u	$n_{ hetar}$	n _G
750	1000	185	6	239/750-K-MB-W33	5370	13460	856	320	560
	1000	185	6	239/750-MB-W33	5370	13460	856	320	560
	1000	250	6	249/750-MB-W33	6690	18064	1149	280	480
	1090	250	7,5	230/750-K-MB-W33	8612	19032	1193	300	530
	1090	250	7,5	230/750-MB-W33	8612	19032	1193	300	530
	1090	335	7,5	240/750-K30-MB-W33	10351	25386	1591	210	430
	1090	335	7,5	240/750-MB-W33	10351	25386	1591	210	430
800	980	180	5	248/800-MB-W33	4129	12908	817	300	560
	1060	195	6	239/800-K-MB-W33	5644	14479	904	300	530
	1060	195	6	239/800-MB-W33	5644	14479	904	300	530
	1150	258	7,5	230/800-K-MB-W33	9051	20897	1287	280	480
	1150	258	7,5	230/800-MB-W33	9051	20897	1287	280	480
	1150	345	7,5	240/800-K30-MB-W33	11348	28680	1766	190	400
	1150	345	7,5	240/800-MB-W33	11348	28680	1766	190	400
900	1180	206	6	239/900-K-MB-W33	6803	18104	1094	250	450
	1180	206	6	239/900-MB-W33	6803	18104	1094	250	450
	1280	280	7,5	230/900-MB-W33	10280	23948	1426	250	400
	1280	280	7,5	230/900-K-MB-W33	10280	23948	1426	250	400
	1280	375	7,5	240/900-MB-W33	13685	34955	2082	160	340
	1280	375	7,5	240/900-K30-MB-W33	13685	34955	2082	160	340
	1090	190	5	248/900-MB-W33	4660	15157	928	130	480
950	1250	224	7,5	239/950-MB-W33	7480	19100	562	310	430


Anschlussmaße siehe Seite 717

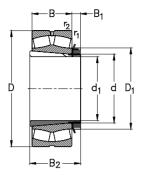

Abutment and fillet dimensions see on page 717

	Berechnungsfaktoren Calculation factors									
d	е	F _a /F _r ≤ e Y₁	$F_a/F_r > e$ Y_2	Y_0	B _s	B _K	m			
750	0,16	4,28	6,37	4,19	23,5	12	437			
	0,16	4,28	6,37	4,19	23,5	12	437			
	0,21	3,2	4,77	3,13	23,5	12	560			
	0,21	3,2	4,77	3,13	23,5	12	806			
	0,21	3,2	4,77	3,13	23,5	12	806			
	0,26	2,55	3,8	2,5	23,5	12	1065			
	0,26	2,55	3,8	2,5	23,5	12	1065			
800	0,16	4,28	6,37	4,19	23,5	12	300			
	0,16	4,28	6,37	4,19	23,5	12	506			
	0,16	4,28	6,37	4,19	23,5	12	506			
	0,21	3,2	4,77	3,13	23,5	12	906			
	0,21	3,2	4,77	3,13	23,5	12	906			
	0,26	2,55	3,8	2,5	23,5	12	1200			
	0,26	2,55	3,8	2,5	23,5	12	1200			
900	0,16	4,28	6,37	4,19	23,5	12	605			
	0,16	4,28	6,37	4,19	23,5	12	605			
	0,21	3,2	4,77	3,13	23,5	12	1210			
	0,21	3,2	4,77	3,13	23,5	12	1210			
	0,26	2,55	3,8	2,5	23,5	12	1600			
	0,26	2,55	3,8	2,5	23,5	12	1600			
	0,13	5,14	7,66	5,03	23,5	12	370			
950	0,16	4,28	6,37	4,19	23,5	12	776			

Pendelrollenlager Spherical Roller Bearings

На	uptabm [m	_	en	Lagertype	Tr	Tragzahlen [kN]		Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]
Во	Boundary dimensions [mm]		ons	Designation	Load ratings [kN]		,		Limited speed ratings [rpm]
d	D	В	r ₁ , r ₂ min		C _r dyn.	C ₀r stat.	C _u	$n_{ hetar}$	n _G
950	1250	224	7,5	239/950-K-MB-W33	7480	19100	562	310	430
	1250	300	7,5	249/950-MB-W33	9312	26419	1569	200	340
	1360	412	7,5	240/950-MB-W33	15118	392117	2296	200	300
	1360	412	7,5	240/950-K30-MB-W33	15118	39217	2296	150	300
1000	1420	412	7,5	240/1000-MB-W33	15729	41406	2390	140	280
	1420	412	7,5	240/1000-K30-MB-W33	15729	41406	2390	140	280
	1320	315	7,5	249/1000-MB-W33	10395	29500	1725	120	280

Anschlussmaße siehe Seite 717

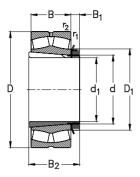

Abutment and fillet dimensions see on page 717

			ngsfaktoren on factors				Gewicht [kg] Weight [kg]
d	е	F _a /F _r ≤ e Y ₁	$F_a/F_r > e$ Y_2	Y_0	B _s	B _K	m
950	0,16	4,28	6,37	4,19	23,5	12	776
	0,21	3,24	4,82	3,16	23,5	12	1015
	0,26	2,55	3,8	2,5	23,5	12	2010
	0,26	2,55	3,8	2,5	23,5	12	2010
1000	0,26	2,55	3,8	2,5	23,5	12	2150
	0,26	2,55	3,8	2,5	23,5	12	2150
	0,21	3,24	4,82	3,16	23,5	12	1200

Pendelrollenlager auf Spannhülse

Spherical Roller Bearings with Adapter Sleeve

Shaft Boundary dimensions Designation Load ratings [kN] Thermal spee ratings [rpm] Ød₁ [mm] Lager Spannhülse C₂ C₀₂ C₀₂ C₂ n₀₃₂ [mm] d D B Bearing Adapter sleeve dyn. stat. 20 25 52 18 22205-E-K-W33 H305 46 46 6 10100 25 30 62 20 22206-E-K-W33 H306 61 65 8 8500 30 35 72 23 22207-E-K-W33 H307 81 92 11 7500 35 40 80 23 22208-E-K-W33 H308 93 105 13 6500 40 90 33 22308-E-K-W33 H309 97 113 14 5900 40 45 85 23 22209-E-K-W33 H309 97 113 14 5900	
[mm] d D B Bearing Adapter sleeve dyn. stat. 20 25 52 18 22205-E-K-W33 H305 46 46 6 10100 25 30 62 20 22206-E-K-W33 H306 61 65 8 8500 30 35 72 23 22207-E-K-W33 H307 81 92 11 7500 35 40 80 23 22208-E-K-W33 H308 93 105 13 6500 40 90 33 22308-E-K-W33 H2308 140 160 20 5900 40 45 85 23 22209-E-K-W33 H309 97 113 14 5900	17000 10000
20 25 52 18 22205-E-K-W33 H305 46 46 6 10100 25 30 62 20 22206-E-K-W33 H306 61 65 8 8500 30 35 72 23 22207-E-K-W33 H307 81 92 11 7500 35 40 80 23 22208-E-K-W33 H308 93 105 13 6500 40 90 33 22308-E-K-W33 H2308 140 160 20 5900 40 45 85 23 22209-E-K-W33 H309 97 113 14 5900	10000
25 30 62 20 22206-E-K-W33 H306 61 65 8 8500 30 35 72 23 22207-E-K-W33 H307 81 92 11 7500 35 40 80 23 22208-E-K-W33 H308 93 105 13 6500 40 90 33 22308-E-K-W33 H2308 140 160 20 5900 40 45 85 23 22209-E-K-W33 H309 97 113 14 5900	10000
30 35 72 23 22207-E-K-W33 H307 81 92 11 7500 35 40 80 23 22208-E-K-W33 H308 93 105 13 6500 40 90 33 22308-E-K-W33 H2308 140 160 20 5900 40 45 85 23 22209-E-K-W33 H309 97 113 14 5900	
35 40 80 23 22208-E-K-W33 H308 93 105 13 6500 40 90 33 22308-E-K-W33 H2308 140 160 20 5900 40 45 85 23 22209-E-K-W33 H309 97 113 14 5900	9000
40 90 33 22308-E-K-W33 H2308 140 160 20 5900 40 45 85 23 22209-E-K-W33 H309 97 113 14 5900	
40 45 85 23 22209-E-K-W33 H309 97 113 14 5900	8000
	6000
45 400 00 00000 F.K.W00 H0000 407 404 04 5400	7500
45 100 36 22309-E-K-W33 H2309 167 194 24 5400	5300
45 50 90 23 22210-E-K-W33 H310 105 124 15 5400	7000
50 110 40 22310-EK-W33 H2310 200 238 29 5000	4800
50 55 100 25 22211-E-K-W33 H311 125 147 18 5000	6300
55 120 43 22311-E-K-W33 H2311 230 279 34 4600	4300
55 60 110 28 22212-E-K-W33 H312 152 183 22 4700	5600
60 130 46 22312-E-K-W33 H2312 273 315 38 4400	4000
60 65 120 31 22213-E-K-W33 H313 182 224 27 4400	5000
65 140 48 22313-E-K-W33 H2313 304 351 42 4100	3800
70 125 31 22214-E-K-W33 H314 189 239 29 4300	5000
70 150 51 22314-E-K-W33 H2314 344 402 48 3900	3400
65 75 130 31 22215-E-K-W33 H315 196 255 31 4000	4800
75 160 55 22315-E-K-W33 H2315 396 489 57 3700	3200
70 80 140 33 22216-E-K-W33 H316 224 295 35 3800	6000
80 170 58 22316-E-K-W33 H2316 443 551 63 3500	4000
75 85 150 36 22217-E-K-W33 H317 260 337 39 3600	

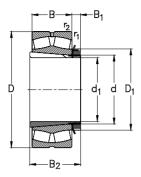


Welle	Ab	messung	jen	В	erechnun	gsfaktore	en		Gewicht [kg]		
Shaft	E	Dimension	s		Calculation	on factors			١	Neight [kg]	
$\emptyset d_1$					$F_a/F_r \le e$	$F_a/F_r > e$		r ₁ , r ₂	Lager	Spannhülse	
[mm]	B ₁	B_2	D₁	е	Y ₁	Y ₂	Y_0	min	Bearing	Adapter sleeve	
20	9	29	38	0,34	1	3	2	1	0,18	0,071	
25	9	31	45	0,31	2,1	3,2	2,1	1	0,38	0,095	
30	10	35	52	0,31	2,2	3,3	2,1	1,1	0,41	0,14	
35	11	36	58	0,27	2,5	3,7	2,4	1,1	0,49	0,17	
	11	46	58	0,36	1,5	2,6	1,8	1,5	1,1	0,22	
40	12	39	65	0,26	2,6	3,9	2,6	1,1	0,54	0,23	
	12	50	65	0,36	1,9	2,8	1,9	1,5	1,36	0,27	
45	13	42	70	0,24	2,8	4,2	2,8	1,1	0,61	0,27	
	13	55	70	0,36	1,9	2,7	1,8	2	1,82	0,34	
50	14	45	75	0,23	2,9	4,4	2,9	1,5	0,8	0,32	
	14	59	75	0,35	1,9	2,8	1,9	2	2,31	0,39	
55	14	47	80	0,24	2,8	4,2	2,8	1,5	1,06	0,36	
	14	62	80	0,35	1,9	2,9	1,9	2,1	2,93	0,45	
60	15	50	85	0,24	2,9	4,2	2,8	1,5	1,44	0,42	
	15	65	85	0,34	2	3	2	2,1	3,54	0,52	
	15	52	92	0,23	2,9	4,2	2,8	1,5	1,52	0,67	
	15	68	92	0,34	2	3	2	2,1	4,19	0,88	
65	16	55	98	0,22	3,1	4,5	2,9	1,5	1,61	0,78	
	16	73	98	0,33	2	3	2	2,1	5,21	1,1	
70	18	59	105	0,22	3,1	4,5	3	2	1,97	0,95	
	18	78	105	0,33	2	3	2	2,1	6,2	1,2	
75	19	63	110	0,22	3	4,4	2,9	2	2,47	1,1	

Pendelrollenlager auf Spannhülse

Spherical Roller Bearings with Adapter Sleeve

Welle	Haup	tabmess	ungen	Bezeich	inung	Tr	agzahle	n	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]
Shaft	Bound	dary dime	ensions	Design	ation	Lo	ad rating [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]
Ød₁		[mm]		Lager	Spannhülse	\mathbf{C}_{r}	C_{or}	C_{u}	$\mathbf{n}_{\theta r}$	$n_{\scriptscriptstyle G}$
[mm]	d	D	В	Bearing	Adapter sleeve	dyn.	stat.			
75	85	180	60	22317-E-K-W33	H2317	482	603	68	3300	3800
80	90	160	40	22218-E-K-W33	H318	308	406	46	3500	5300
	90	160	52,4	23218-CK-W33	H2318	370	522	60	2800	3800
	90	190	64	22318-E-K-W33	H2318	536	673	74	3100	3600
85	95	170	43	22219-E-K-W33	H319	346	464	52	3400	4800
	95	200	67	22319-E-K-W33	H2319	587	744	81	2900	3400
90	100	165	52	23120-K-MB-W33	H3120	327	502	56	3000	4000
	100	180	46	22220-E-K-W33	H320	379	510	56	3300	4500
	100	180	60,3	23220-K-MB-W33	H2320	390	532	59	2800	3400
	100	215	73	22320-E-K-W33	H2320	682	842	90	2700	3000
100	110	170	45	23022-K-MB-W33	H322	274	447	49,2	3300	4300
	110	180	56	23122-K-MB-W33	H3122	354	541	59	2900	3600
	110	200	53	22222-E-K-W33	H322	488	653	70	3100	4000
	110	200	69,8	23222-K-MB-W33	H2322	662	801	83	2300	3200
	110	240	80	22322-E-K-W33	H2322	805	1000	103	2400	2800
110	120	180	46	23024-K-MB-W33	H3024	287	467	50	3100	4000
	120	200	62	23124-K-MB-W33	H3124	430	648	69	2600	3400
	120	215	58	22224-E-K-W33	H3124	553	775	81	2800	3800
	120	215	76	23224-K-MB-W33	H2324	564	803	84	2200	2800
	120	260	86	22324-E-K-W33	H2324	938	1180	119	2100	1300
115	130	200	52	23026-K-MB-W33	H3026	367	579	61	2900	3600
	130	210	64	23126-K-MB-W33	H3126	474	752	78	2400	3200

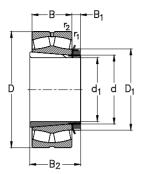


Welle	Ab	messung	jen	В	erechnun	gsfaktore	en		Gewicht [kg]		
Shaft	Е	Dimension	ıs		Calculation	on factors			l	Veight [kg]	
Ød₁					$F_a/F_r \le e$	$F_a/F_r > e$		r ₁ , r ₂	Lager	Spannhülse	
[mm]	B ₁	B_2	D ₁	е	Y ₁	Y ₂	Y_0	min	Bearing	Adapter sleeve	
75	19	82	110	0,32	2,1	3,1	2	3	7,1	1,35	
80	19	65	120	0,23	2,9	4,2	2,8	2	3,18	1,3	
	19	86	120	0,31	2,2	3,3	2,2	2	4,6	1,6	
	19	86	120	0,33	2,1	3,1	2	3	8,44	1,6	
85	20	68	125	0,23	2,9	4,2	2,7	2,1	3,86	1,4	
	20	90	125	0,33	2,1	3,1	2	3	9,77	1,8	
90	21	76	130	0,23	2,9	4,2	2,8	2	4,5	1,8	
	21	71	130	0,24	2,9	4,1	2,7	2,1	4,69	1,6	
	21	97	130	0,34	2	2,8	1,9	2,1	7,34	2	
	21	97	130	0,33	2	3	2	3	12,6	2	
100	21	77	145	0,26	2,55	3,8	2,5	2	3,54	2,05	
	21	81	145	0,31	2,2	3,1	2,1	2	5,5	2,1	
	21	77	145	0,25	2,7	4	2,6	2,1	6,7	2,05	
	21	105	145	0,36	1,8	2,6	1,7	2,1	10,8	2,75	
	21	105	145	0,33	2,1	3,1	2	3	17,5	2,75	
110	22	72	145	0,24	2,7	4,2	2,6	2	3,86	1,8	
	22	88	155	0,31	2,1	3,1	2	2	7,6	2,5	
	22	88	155	0,25	2,7	3,9	2,5	2,1	8,44	2,5	
	22	112	155	0,36	1,9	2,7	1,8	2,1	13,1	3	
	22	112	155	0,33	2,1	3,1	2	3	21,9	3	
115	23	80	155	0,26	2,6	3,8	2,5	2	5,61	2,8	
	23	92	165	0,3	2,2	3,2	2,1	2	8,5	3,45	

Pendelrollenlager auf Spannhülse

Spherical Roller Bearings with Adapter Sleeve

Welle	Haupt	abmess	ungen	Bezeich	nung	Tr	agzahle	n	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]
Shaft	Bound	lary dime	ensions	Design	ation	Lo	ad rating [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]
Ød₁		[mm]		Lager	Spannhülse	\mathbf{C}_{r}	C_{or}	\mathbf{C}_{u}	$\mathbf{n}_{\theta r}$	\mathbf{n}_{G}
[mm]	d	D	В	Bearing	Adapter sleeve	dyn.	stat.			
115	130	230	64	22226-E-K-W33	H3126	641	948	97	2600	3600
	130	230	80	23226-K-MB-W33	H2326	636	948	97	2000	2600
-	130	280	93	22326-E-K-W33	H2326	1090	1380	136	1900	2400
125	140	210	53	23028-K-MB-W33	H3028	380	633	65	2700	3400
	140	225	68	23128-K-MB-W33	H3128	540	865	88	2200	2800
	140	250	68	22228-E-K-W33	H3128	747	1080	108	2400	3200
	140	250	88	23228-K-MB-W33	H2328	815	1320	132	1700	2400
	140	300	102	22328-K-MB-W33	H2328	993	1270	122	2000	2200
135	150	225	56	23030-K-MB-W33	H3030	419	697	70	2500	3200
	150	250	80	23130-K-MB-W33	H3130	711	1130	112	1900	2600
	150	270	73	22230-E-K-W33	H3130	863	1260	123	2200	3000
	150	270	96	23230-K-MB-W33	H2330	874	1300	127	1600	2200
	150	320	108	22330-K-MB-W33	H2330	1190	1610	152	1700	2000
140	160	240	60	23032-K-MB-W33	H3032	521	903	89	2300	3000
	160	270	86	23132-K-MB-W33	H3132	817	1310	127	1800	2400
	160	290	80	22232-E-K-W33	H3132	978	1440	138	2000	2800
	160	290	104	23232-K-MB-W33	H2332	1130	1830	175	1400	2200
	160	340	114	22332-K-MB-W33	H2332	1250	1680	156	1600	1900
150	170	260	67	23034-K-MB-W33	H3034	618	1050	102	2100	2800
	170	280	88	23134-K-MB-W33	H3134	826	1350	129	1700	2400
	170	310	86	22234-K-MB-W33	H3134	921	1310	123	2000	2600
	170	310	110	23234-K-MB-W33	H2334	1280	1880	176	1300	2000

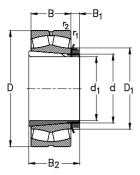


Welle	Ab	messung	jen	В	erechnun	gsfaktore	en		Gewicht [kg]		
Shaft	Е	Dimension	s		Calculation	on factors			1	Neight [kg]	
$\emptyset d_1$					F _a /F _r ≤ e	$F_a/F_r > e$		r ₁ , r ₂	Lager	Spannhülse	
[mm]	B ₁	B_2	D ₁	е	Y ₁	Y ₂	Y_0	min	Bearing	Adapter sleeve	
115	23	92	165	0,26	2,6	3,8	2,5	3	10,5	3,45	
	23	121	165	0,35	1,9	2,7	1,8	3	15,8	4,45	
	23	121	165	0,33	2,1	3,1	2	4	27,1	4,45	
125	24	82	165	0,24	2,7	4,2	2,6	2	6,04	3,05	
	24	97	180	0,3	2,2	3,2	2,1	2,1	10,5	4,1	
	24	97	180	0,25	2,7	3,9	2,5	3	13,4	4,1	
	24	131	180	0,33	2	3	2	3	20,8	5,4	
	24	131	180	0,38	1,8	2,5	1,7	4	34,1	5,4	
135	26	87	180	0,24	2,7	4,2	2,6	2,1	7,33	3,75	
	26	111	195	0,32	2,1	3	2	2,1	16,3	5,25	
	26	111	195	0,25	2,7	3,9	2,5	3	16,9	5,25	
	26	139	195	0,38	1,8	2,7	1,8	3	24,5	6,4	
	26	139	195	0,37	1,8	2,7	1,8	4	40,9	6,4	
140	28	93	190	0,24	2,8	4	2,6	2,1	8,9	5,1	
	28	119	210	0,32	2,1	3	2	2,1	20,5	7,25	
	28	119	210	0,26	2,6	3,8	2,5	3	21,7	7,25	
	28	147	210	0,36	1,9	2,8	1,8	3	31,7	8,8	
	28	147	210	0,37	1,8	2,6	1,7	4	51,1	8,8	
150	29	101	200	0,25	2,7	3,9	2,6	2,1	12,1	5,8	
	29	122	220	0,31	2,1	3,1	2	2,1	22	8,1	
	29	122	220	0,29	2,3	3,3	2,1	4	26,2	8,1	
	29	154	220	0,36	1,9	2,8	1,8	4	35,7	9,9	

Pendelrollenlager auf Spannhülse

Spherical Roller Bearings with Adapter Sleeve

Welle	Haupt	tabmessı	ungen	Bezeich	nung	Tr	agzahle	n	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]
Shaft	Bound	dary dime	nsions	Designa	ation	Lo	ad rating [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]
Ød₁		[mm]		Lager	Spannhülse	\mathbf{C}_{r}	C_{or}	\mathbf{C}_{u}	$\mathbf{n}_{ heta r}$	\mathbf{n}_{G}
[mm]	d	D	В	Bearing	Adapter sleeve	dyn.	stat.			
150	170	360	120	22334-K-MB-W33	H2334	1400	1970	179	1500	1800
160	180	280	74	23036-K-MB-W33	H3036	725	1230	117	2000	2600
	180	300	96	23136-K-MB-W33	H3136	957	1540	144	1600	2200
	180	320	86	22236-K-MB-W33	H3136	943	1380	128	1900	2600
	180	320	112	23236-K-MB-W33	H2336	1360	2110	195	1200	1900
	180	380	126	22336-K-MB-W33	H2336	1540	2130	191	1400	1700
170	190	290	75	23038-K-MB-W33	H3038	759	1310	123	1800	2400
	190	320	104	23138-K-MB-W33	H3138	1130	1840	169	1400	2000
	190	340	92	22238-K-MB-W33	H3138	1040	1550	141	1800	2400
	190	340	120	23238-K-MB-W33	H2338	1550	2400	220	1100	1800
	190	400	132	22338-K-MB-W33	H2338	1920	2710	239	1200	1600
180	200	310	82	23040-K-MB-W33	H3040	880	1550	143	1700	2200
	200	340	112	23140-K-MB-W33	H3140	1240	2010	182	1400	1900
	200	360	98	22240-K-MB-W33	H3140	1160	1760	158	1600	2200
	200	360	128	23240-K-MB-W33	H2340	1710	2760	247	1000	1700
	200	420	138	22340-K-MB-W33	H2340	1820	2650	230	1200	1500
200	220	340	90	23044-K-MB-W33	OH3044-H	1020	1850	166	1500	2000
	220	370	120	23144-K-MB-W33	OH3144-H	1480	2470	218	1200	1700
	220	400	108	22244-K-MB-W33	OH3144-H	1380	2080	181	1500	2000
	220	400	144	23244-K-MB-W33	OH2344-H	2040	3290	286	910	1500
	220	460	145	22344-K-MB-W33	OH2344-H	2110	3130	750	1000	1400
220	240	360	92	23048-K-MB-W33	OH3048-H	1080	2010	750	1400	1900

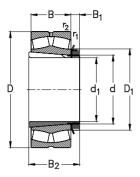


Welle	Ab	messung	jen	В	erechnun	gsfaktore	en		Gewicht [kg]		
Shaft	Е	Dimension	s		Calculation	on factors			Weight [kg]		
$\emptyset d_1$					$F_a/F_r \le e$	$F_a/F_r > e$		r ₁ , r ₂	Lager	Spannhülse	
[mm]	B ₁	B_2	\mathbf{D}_1	е	Y ₁	Y ₂	Y_0	min	Bearing	Adapter sleeve	
150	29	154	220	0,37	1,8	2,6	1,7	4	59,7	9,9	
160	30	109	210	0,26	2,6	3,7	2,5	2,1	15,8	6,7	
	30	131	230	0,32	2,1	3	2	3	28,4	9,15	
	30	131	230	0,28	2,4	3,4	2,3	4	27,5	9,15	
	30	161	230	0,36	1,9	2,8	1,9	4	40,8	11	
	30	161	230	0,37	1,8	2,6	1,7	4	69,4	11	
170	31	112	220	0,25	2,7	3,8	2,5	2,1	16,08	7,25	
	31	141	240	0,32	2,1	3	2	3	35,6	10,5	
	31	141	240	0,29	2,3	3,4	2,2	4	37,2	10,5	
	31	169	240	0,36	1,9	2,8	1,8	4	52,4	12	
	31	169	240	0,36	1,9	2,8	1,9	5	81,2	12	
180	32	120	240	0,25	2,7	4	2,7	2,1	21,5	8,9	
	32	150	250	0,33	2	2,9	1,9	3	43,5	12	
	32	150	250	0,29	2,3	3,3	2,2	4	44,4	12	
	32	176	250	0,36	1,9	2,8	1,8	4	58,4	13,5	
	32	176	250	0,36	1,9	2,7	1,8	5	91,8	13,5	
200	30	126	260	0,25	2,7	4	2,7	3	31	9,9	
	35	161	280	0,32	2	3	2	4	52	15	
	35	161	280	0,28	2,4	3,4	2,2	4	61,4	15	
	35	186	280	0,36	1,9	2,8	1,8	4	79,5	17	
	35	186	280	0,35	1,9	2,8	1,8	5	120	17	
220	34	133	290	0,24	2,8	4,2	2,8	3	33,9	12	

Pendelrollenlager auf Spannhülse

Spherical Roller Bearings with Adapter Sleeve

Welle	Haupt	abmessı	ungen	Bezeich	nung	Tr	agzahle	n	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]
Shaft	Bound	ary dime	nsions	Design	ation	Lo	ad rating [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]
Ød₁		[mm]		Lager	Spannhülse	\mathbf{C}_{r}	C_{or}	\mathbf{C}_{u}	$\mathbf{n}_{\mathrm{ hetar}}$	$n_{\scriptscriptstyle G}$
[mm]	d	D	В	Bearing	Adapter sleeve	dyn.	stat.			
220	240	400	128	23148-K-MB-W33	OH3148-H	1690	1860	246	1200	1600
	240	440	120	22248-K-MB-W33	OH3148-H	1660	2560	216	1300	1800
	240	440	160	23248-K-MB-W33	OH2348-H	2440	3920	331	810	1300
	240	500	155	22348-K-MB-W33	OH2348-H	2440	3690	304	910	1300
240	260	400	104	23052-K-MB-W33	OH3052-H	1460	2360	201	1300	1700
	260	440	144	23152-K-MB-W33	OH3152	2240	3720	312	910	1400
	260	480	130	22252-K-MB-W33	OH3152-H	1940	3030	250	1200	1600
	260	540	165	22352-K-MB-W33	OH2352-H	2760	4220	340	820	1100
260	280	420	106	23056-K-MB-W33	OH3056-H	1440	2690	225	1200	1600
	280	460	146	23156-K-MB-W33	OH3156-H	2180	3900	321	850	1300
	280	500	130	22256-K-MB-W33	OH3156-H	2010	3200	259	1100	1500
	280	500	176	23256-K-MB-W33	OH2356-H	2850	4770	387	680	1100
	280	580	175	22356-K-MB-W33	OH2356-H	3300	4940	389	730	1100
280	300	460	118	23060-K-MB-W33	OH3060-H	1780	3240	265	1000	1500
	300	500	160	23160-K-MB-W33	ОН3160-Н	2560	4490	361	780	1200
	300	540	140	22260-K-MB-W33	OH3160-H	2350	3810	302	1000	1400
300	320	480	121	23064-K-MB-W33	OH3064-H	1890	3510	282	1000	1000
	320	540	176	23164-K-MB-W33	OH3164-H	3020	5390	424	700	1100
	320	580	150	22264-K-MB-W33	OH3164-H	2700	4430	344	880	1300
	320	580	208	23264-K-MB-W33	OH3264-H	3880	6520	506	550	950
320	340	520	133	23068-K-MB-W33	OH3068-H	2320	4330	341	880	1300
	340	580	190	23168-K-MB-W33	OH3168-H	3510	6230	481	640	1000

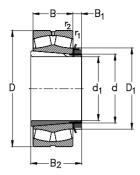


		messung	JC11		erecnnun	gsfaktore		Gewicht [kg]		
Shaft	E	Dimension	s		Calculation	on factors			l	<i>N</i> eight [kg]
$\emptyset d_1$					F _a /F _r ≤ e	$F_a/F_r > e$		r ₁ , r ₂	Lager	Spannhülse
[mm]	B ₁	B_2	D_1	е	Y ₁	Y ₂	Y_0	min	Bearing	Adapter sleeve
220	37	172	300	0,32	2,1	3	2	4	66	16
	37	172	300	0,29	2,3	3,3	2,2	4	83,2	16
	37	199	300	0,35	1,9	2,9	1,8	4	109	19
	37	199	300	0,34	2	2,9	1,9	5	151	19
240	34	145	310	0,25	2,7	4	2,7	4	49	13,5
	38	190	330	0,32	2	3,1	2	4	92,5	21
	38	190	330	0,29	2,3	3,4	2,2	5	107	21
	38	211	330	0,34	2	2,9	1,9	6	187	21
260	38	152	330	0,24	2,7	4	2,6	4	52,5	16
	39	195	350	0,31	2,1	3	2	5	98,5	23
	39	195	350	0,28	2,4	3,5	2,3	5	113	23
	39	224	350	0,36	1,9	2,7	1,8	5	153	27
	39	224	350	0,31	2,2	3,2	2,1	6	235	27
280	42	168	360	0,25	2,7	3,8	2,5	4	73,6	20,5
	40	208	380	0,32	2,1	3	2	5	129	29
	40	208	380	0,27	2,5	3,6	2,4	5	142	29
300	42	171	380	0,24	2,7	3,9	2,6	4	79,5	22
	42	226	400	0,32	2	3	2	5	172	32
	42	226	400	0,27	2,5	3,6	2,3	5	180	32
	42	258	400	0,37	1,8	2,6	1,7	5	247	35
320	45	187	400	0,25	2,7	3,9	2,6	5	105	27
	55	254	440	0,33	2	2,9	1,9	5	212	50

Pendelrollenlager auf Spannhülse

Spherical Roller Bearings with Adapter Sleeve

Welle	Haupt	tabmess	ungen	Bezeich	nung	Tr	agzahle	n	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]
Shaft	Bound	lary dime	nsions	Design	ation	Lo	ad rating [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]
Ød₁		[mm]		Lager	Spannhülse	\mathbf{C}_{r}	C_{or}	\mathbf{C}_{u}	$\mathbf{n}_{\theta r}$	\mathbf{n}_{G}
[mm]	d	D	В	Bearing	Adapter sleeve	dyn.	stat.			
320	340	620	224	23268-K-MB-W33	OH3268-H	4430	7560	576	500	800
340	360	540	134	23072-K-MB-W33	ОН3072-Н	2360	4460	346	830	1200
	360	600	192	23172-K-MB-W33	OH3172-H	3630	6550	499	600	1000
	360	650	232	23272-K-MB-W33	OH3272-H	4780	8550	641	450	750
360	380	560	135	23076-K-MB-W33	ОН3076-Н	2410	4700	360	780	1200
	380	620	194	23176-K-MB-W33	ОН3176-Н	3740	6970	524	570	1000
	380	680	240	23276-K-MB-W33	OH3276-H	5160	8920	660	430	750
380	400	600	148	23080-K-MB-W33	ОН3080-Н	2860	5500	414	720	1100
	400	650	200	23180-K-MB-W33	OH3180-H	4040	7580	562	530	950
	400	720	256	23280-K-MB-W33	ОН3280-Н	5800	10120	736	400	670
400	420	620	150	23084-K-MB-W33	OH3084-H	2950	5850	435	680	1100
	420	700	224	23184-K-MB-W33	OH3184-H	5030	9740	708	460	900
	420	760	272	23284-K-MB-W33	OH3284-H	6400	11300	809	370	630
410	440	650	157	23088-K-MB-W33	OH3088-H	3210	6410	470	650	1000
	440	720	226	23188-K-MB-W33	OH3188-H	4480	9350	673	470	850
	440	790	280	23288-K-MB-W33	OH3288-H	6820	12030	851	350	600
430	460	680	163	23092-K-MB-W33	OH3092-H	3480	7000	506	610	950
	460	760	240	23192-K-MB-W33	OH3192-H	5760	10950	776	420	800
	460	830	296	23292-K-MB-W33	OH3292-H	7601	14003	976	310	560
450	480	700	165	23096-K-MB-W33	OH3096-H	3660	7490	536	580	950
	480	790	248	23196-K-MB-W33	OH3196-H	6150	12000	840	390	750
	480	870	310	23296-K-MB-W33	ОН3296-Н	8261	15278	1051	290	530

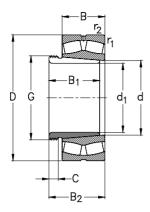


	Weight [kg] Spannhülse Adapter sleeve 51,5
[mm] B ₁ B ₂ D ₁ e Y ₁ Y ₂ Y ₀ min Bearing 320 55 288 440 0,37 1,8 2,6 1,7 6 309 340 45 188 420 0,24 2,8 4 2,6 5 111 58 259 460 0,32 2 3 2 5 220 58 299 460 0,35 1,9 2,9 1,8 6 344 360 48 193 450 0,23 2,9 4,2 2,7 5 117 60 264 490 0,31 2,2 3,1 2,1 5 240 60 310 490 0,36 1,9 2,7 1,8 6 375 380 52 210 470 0,24 2,8 4 2,7 5 152 62 272 520 0	Adapter sleeve 51,5
320 55 288 440 0,37 1,8 2,6 1,7 6 309 340 45 188 420 0,24 2,8 4 2,6 5 111 58 259 460 0,32 2 3 2 5 220 58 299 460 0,35 1,9 2,9 1,8 6 344 360 48 193 450 0,23 2,9 4,2 2,7 5 117 60 264 490 0,31 2,2 3,1 2,1 5 240 60 310 490 0,36 1,9 2,7 1,8 6 375 380 52 210 470 0,24 2,8 4 2,7 5 152 62 272 520 0,3 2,2 3,2 3,1 6 265	51,5
340 45 188 420 0,24 2,8 4 2,6 5 111 58 259 460 0,32 2 3 2 5 220 58 299 460 0,35 1,9 2,9 1,8 6 344 360 48 193 450 0,23 2,9 4,2 2,7 5 117 60 264 490 0,31 2,2 3,1 2,1 5 240 60 310 490 0,36 1,9 2,7 1,8 6 375 380 52 210 470 0,24 2,8 4 2,7 5 152 62 272 520 0,3 2,2 3,2 2,1 6 265	
58 259 460 0,32 2 3 2 5 220 58 299 460 0,35 1,9 2,9 1,8 6 344 360 48 193 450 0,23 2,9 4,2 2,7 5 117 60 264 490 0,31 2,2 3,1 2,1 5 240 60 310 490 0,36 1,9 2,7 1,8 6 375 380 52 210 470 0,24 2,8 4 2,7 5 152 62 272 520 0,3 2,2 3,2 2,1 6 265	29
58 299 460 0,35 1,9 2,9 1,8 6 344 360 48 193 450 0,23 2,9 4,2 2,7 5 117 60 264 490 0,31 2,2 3,1 2,1 5 240 60 310 490 0,36 1,9 2,7 1,8 6 375 380 52 210 470 0,24 2,8 4 2,7 5 152 62 272 520 0,3 2,2 3,2 2,1 6 265	20
360 48 193 450 0,23 2,9 4,2 2,7 5 117 60 264 490 0,31 2,2 3,1 2,1 5 240 60 310 490 0,36 1,9 2,7 1,8 6 375 380 52 210 470 0,24 2,8 4 2,7 5 152 62 272 520 0,3 2,2 3,2 2,1 6 265	56
60 264 490 0,31 2,2 3,1 2,1 5 240 60 310 490 0,36 1,9 2,7 1,8 6 375 380 52 210 470 0,24 2,8 4 2,7 5 152 62 272 520 0,3 2,2 3,2 2,1 6 265	60,5
60 310 490 0,36 1,9 2,7 1,8 6 375 380 52 210 470 0,24 2,8 4 2,7 5 152 62 272 520 0,3 2,2 3,2 2,1 6 265	35,5
380 52 210 470 0,24 2,8 4 2,7 5 152 62 272 520 0,3 2,2 3,2 2,1 6 265	61,5
62 272 520 0,3 2,2 3,2 2,1 6 265	69,5
	40
	73
62 328 520 0,36 1,8 2,7 1,8 6 450	87
400 52 212 490 0,23 2,9 4,1 2,7 5 160	47
70 304 540 0,32 2,1 3,2 2 6 363	80
70 352 540 0,36 1,7 2,7 1,8 7,5 540	96
410 60 228 520 0,23 2,9 4,1 2,7 6 184	65
70 307 560 0,32 2,1 3 2 6 380	95
70 361 560 0,36 2,9 4,2 2,8 7,5 595	117
430 60 234 540 0,23 2,1 4,2 2,8 6 210	71
75 326 580 0,31 2,1 3,1 2 7,5 441	119
75 382 580 0,37 1,8 2,69 1,76 7,5 715	134
450 60 237 560 0,23 2,9 4,4 2,9 6 220	75
75 335 620 0,31 2,2 3,1 2,1 7,5 485	
75 397 620 0,4 1,68 2,5 1,64 7,5 835	135

Pendelrollenlager auf Spannhülse

Spherical Roller Bearings with Adapter Sleeve

Welle	Haupt	abmessı	ungen	Bezeichr	nung	Tra	agzahle	en	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]
Shaft	Bound	ary dime	nsions	Designa	tion	Lo	ad rating [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]
$\emptyset d_1$		[mm]		Lager	Spannhülse	\mathbf{C}_{r}	C_{or}	\mathbf{C}_{u}	n _{er}	$n_{\scriptscriptstyle G}$
[mm]	d	D	В	Bearing	Adapter sleeve	dyn.	stat.			
470	500	670	128	239/500-K-MB-W33	H39/500	2537	5984	430	560	950
	500	720	167	230/500-K-MB-W33	ОН30/500-Н	3830	7970	565	550	900
	500	830	264	231/500-K-MB-W33	OH31/500-H	3660	7490	901	500	700
	500	920	336	232/500-K-MB-W33	OH32/500-H	9506	17818	1207	270	500
500	530	710	136	239/530-K-MB-W33	H39/530	2801	6583	464	530	900
	530	780	185	230/530-K-MB-W33	ОН30/530-Н	4470	9310	646	510	800
530	560	750	140	239/560-K-MB-W33	OH39/560-H	3029	7228	502	490	850
	560	820	195	230/560-K-MB-W33	OH30/560-H	3660	7490	730	540	750
560	600	800	150	239/600-K-MB-W33	OH39/600-H	3420	9314	566	430	750
	600	870	200	230/600-K-MB-W33	OH30/600-H	5500	11420	766	430	700
600	630	850	165	239/630-K-MB-W33	OH39/630-H	4055	9794	655	410	700
	630	920	212	230/630-K-MB-W33	ОН30/630-Н	6270	13360	881	390	670
630	670	900	170	239/670-K-MB-W33	ОН39/670-Н	3660	7490	710	440	670
	670	980	230	230/670-K-MB-W33	ОН30/670-Н	6820	14690	951	370	600
670	710	950	180	239/710-K-MB-W33	ОН39/710-Н	4874	12104	782	360	600
	710	1030	236	230/710-K-MB-W33	OH30/710-H	7402	16453	1049	340	560
710	750	1000	185	239/750-K-MB-W33	OH39/750-H	5370	13460	856	330	560
750	800	1060	195	239/800-K-MB-W33	OH39/800-H	3660	7490	904	390	530
	800	1150	258	230/800-K-MB-W33	ОН30/800-Н	8620	19650	1210	300	500

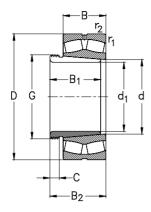


Welle	Ab	messung	jen	В	erechnun	gsfaktor		Gewicht [kg]			
Shaft	E	Dimension	s		Calculation	on factors			Weight [kg]		
$\emptyset d_1$					F _a /F _r ≤ e	$F_a/F_r > e$		r ₁ , r ₂	Lager	Spannhülse	
[mm]	B ₁	B_2	D₁	е	Y ₁	Y ₂	\mathbf{Y}_{0}	min	Bearing	Adapter sleeve	
470	68	208	580	0,16	4,28	6,37	4,19	5	130	74,3	
	68	247	580	0,22	3	4,3	2,9	6	229	82	
	80	356	630	0,31	2,1	3	2	7,5	580	145	
	80	428	630	0,35	1,95	2,9	1,91	7,5	1010	170	
500	68	216	630	0,18	3,66	5,46	3,58	5	150	87,9	
	68	265	630	0,22	3	4,3	2,9	6	310	105	
530	75	227	650	0,16	4,28	6,37	4,19	5	183	95	
	75	282	650	0,22	3,1	4,6	3	6	358	112	
560	75	239	700	0,16	4,28	6,37	4,19	5	221	127	
	75	289	700	0,22	2,9	4,2	2,8	6	406	147	
600	75	254	730	0,16	4,28	6,37	4,19	6	280	124	
	75	301	730	0,21	3,1	4,5	2,9	7,5	520	138	
630	80	264	780	0,16	4,28	6,37	4,19	6	326	162	
	80	324	780	0,23	3	4,4	2,9	7,5	602	190	
670	90	286	830	0,16	4,28	6,37	4,19	6	386	183	
	90	342	830	0,21	3,2	4,77	3,13	7,5	638	228	
710	90	291	870	0,16	4,28	6,37	4,19	6	437	211	
750	90	303	920	0,16	4,28	6,37	4,19	6	506	259	
	90	366	920	0,21	3,1	4,5	3	7,5	906	302	

Pendelrollenlager auf Abziehhülse

Spherical Roller Bearings with Withdrawal Sleeve

Welle [mm]	Hauptabmessungen [mm] Boundary dimensions				Bezeich	inung	Tra	gzahle	en	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]
Shaft [mm]	Вои	ındary d [m		ions	Design	ation	Loa	d ratin [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]
Ød₁ [mm]	d	D	В	r ₁ , r ₂ min	Lager Bearing	Abziehhülse Withdrawal sleeve	C _r dyn.	C ₀r stat.	Cu	n _{er}	n_{G}
35	40	80	23	1,1	22208-E-K-W33	AH308	93	105	13	6500	11000
	40	90	33	1,5	22308-E-K-W33	AH2308	140	160	20	5900	8000
40	45	85	23	1,1	22209-E-K-W33	AH309	97	113	14	5900	10000
	45	100	36	1,5	22309-E-K-W33	AH2309	167	194	24	5400	7000
45	50	90	23	1,1	22210-E-K-W33	AHX310	105	124	15	5400	9500
	50	110	40	2	22310-E-K-W33	AHX2310	200	238	29	5000	6300
50	55	100	25	1,5	22211-E-K-W33	AHX311	125	147	18	5000	8500
	55	120	43	2	22311-E-K-W33	AHX2311	230	279	34	4600	5600
55	60	110	28	1,5	22212-E-K-W33	AHX312	152	183	22	4700	7500
	60	130	46	2,1	22312-E-K-W33	AHX2312	273	315	38	4400	5300
60	65	120	31	1,5	22213-E-K-W33	AH313	182	224	27	4400	7000
	65	140	48	2,1	22313-E-K-W33	AH2313	304	351	42	4100	5000
65	70	125	31	1,5	22214-E-K-W33	AH314	189	239	29	4200	6700
	70	150	51	2,1	22314-E-K-W33	AHX2314	344	402	48	3800	4500
70	75	130	31	1,5	22215-E-K-W33	AH315	196	255	31	3900	6300
	75	160	55	2,1	22315-E-K-W33	AHX2315	396	489	57	3600	6300
75	80	140	33	2	22216-E-K-W33	AH316	224	295	35	3700	6000
	80	170	58	2,1	22316-E-K-W33	AHX2316	443	551	63	3400	4000
80	85	150	36	2	22217-E-K-W33	AHX317	260	337	39	3600	5600
	85	180	60	3	22317-E-K-W33	AHX2317	482	603	68	3200	3800
85	90	160	40	2	22218-E-K-W33	AHX318	308	406	46	3500	5300
	90	160	52,4	2	23218-K-MB-W33	AHX2318	303	412	47	2900	3800

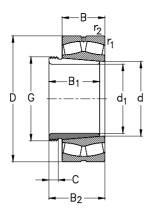


Welle [mm]		Abm	essung [mm]	jen	Ве	rechnung	sfaktorer	1	Gewicht [kg]		
Shaft [mm]		Dir	mension [mm]	S	(Calculation	factors			Weight [kg]	
$\emptyset d_1$						$F_a/F_r \le e$	$F_a/F_r > e$		Lager	Abziehhülse	
[mm]	B ₁	B_2	С	G	е	\mathbf{Y}_{1}	Y ₂	Y_0	Bearing	Withdrawal sleeve	
35	29	32	6	M 45x1,5	0,27	2,5	3,7	2,4	0,58	0,09	
	40	43	7	M 45x1,5	0,36	1,8	2,6	1,8	1,1	0,13	
40	31	34	6	M 50x1,5	0,26	2,6	3,9	2,6	0,65	0,12	
	44	47	7	M 50x1,5	0,36	1,9	2,8	1,9	1,4	0,13	
45	35	38	7	M 55x2	0,24	2,8	4,2	2,8	0,72	0,13	
	50	53	9	M 55x2	0,36	1,9	2,7	1,8	1,96	0,19	
50	37	40	7	M 60x2	0,23	2,9	4,4	2,9	0,96	0,16	
	54	57	10	M 60x2	0,35	1,9	2,8	1,9	2,47	0,26	
55	40	43	8	M 65x2	0,24	2,8	4,2	2,8	1,25	0,19	
	58	61	11	M 65x2	0,35	1,9	2,9	1,9	3,09	0,3	
60	42	45	8	M 75x2	0,24	2,9	4,2	2,8	1,69	0,25	
	61	64	12	M 75x2	0,34	2	3	2	3,8	0,39	
65	43	47	8	M 80x2	0,23	2,9	4,2	2,8	1,8	0,28	
	64	68	12	M 80x2	0,34	2	3	2	4,53	0,46	
70	45	49	8	M 85x2	0,22	3,1	4,5	3	1,92	0,31	
	68	72	12	M 85x2	0,33	2	3	2	5,52	0,53	
75	48	52	8	M 90x2	0,22	3,1	4,5	3,1	2,34	0,37	
	71	75	12	M 90x2	0,33	2	3	2	6,53	0,6	
80	52	56	9	M 95x2	0,22	3	4,4	2,9	2,9	0,43	
	74	78	13	M 95x2	0,32	2,1	3,1	2	7,48	0,65	
85	53	57	9	M 100x2	0,23	2,9	4,2	2,8	3,64	0,46	
	63	67	10	M 100x2	0,33	2	3	1,9	4,85	0,57	

Pendelrollenlager auf Abziehhülse

Spherical Roller Bearings with Withdrawal Sleeve

Welle [mm]	Hau	ıptabm [m		gen	Bezeichi	nung	Tragzahlen Load ratings			Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]
Shaft [mm]	Bou	ndary o [m		ions	Designa	ation	Loa	d ratin [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]
$\emptyset d_1$				r ₁ , r ₂	Lager	Abziehhülse	\mathbf{C}_{r}	\mathbf{C}_{0r}	\mathbf{C}_{u}	$\mathbf{n}_{\theta r}$	$n_{\rm G}$
[mm]	d	D	В	min	Bearing	Withdrawal sleeve	dyn.	stat.			
85	90	190	64	3	22318-E-K-W33	AH2318	536	673	74	3000	3600
90	95	170	43	2,1	22219-E-K-W33	AHX319	346	464	52	3300	4800
	95	200	67	3	22319-E-K-W33	AHX2319	587	744	81	2800	3400
95	100	165	52	2	23120-K-MB-W33	AHX3120	327	502	56	3000	4000
	100	180	46	2,1	22220-E-K-W33	AHX320	379	510	56	3300	4500
	100	180	60,3	2,1	23220-K-MB-W33	AHX2320-X	390	532	59	2700	3400
	100	215	73	3	22320-E-K-W33	AHX2320	682	842	90	2600	3000
105	110	180	56	2	23122-K-MB-W33	AHX3122	354	541	59	2800	3600
	110	180	69	2	24122-CE-K30-W33	AH24122	458	752	82	2000	3000
	110	200	53	2,1	22222-E-K-W33	AHX3122	488	653	70	3100	4000
	110	200	69,8	2,1	23222-K-MB-W33	AHX3222	502	706	75	2400	3200
	110	240	80	3	22322-E-K-W33	AHX2322	805	1000	103	2300	2800
115	120	180	46	2	23024-K-MB-W33	AHX3024	287	467	50	3000	4000
	120	180	60	2	24024-CE-K30-W33	AH24024	382	671	73	2500	3400
	120	200	62	2	23124-K-MB-W33	AHX3124	430	648	69	2500	3400
	120	200	80	2	24124-CE-K30-W33	AH24124	581	958	102	1800	2600
	120	215	58	2,1	22224-E-K-W33	AHX3124	553	775	81	2800	3800
	120	215	76	2,1	23224-K-MB-W33	AHX3224	564	803	84	2200	2800
	120	260	86	3	22324-E-K-W33	AHX2324	938	1180	119	2100	2600
125	130	200	52	2	23026-K-MB-W33	AHX3026	367	579	61	2800	3600
	130	200	69	2	24026-CE-K30-W33	AH24026	476	823	86	2200	3000
	130	210	64	2	23126-K-MB-W33	AHX3126	474	752	78	2300	3200

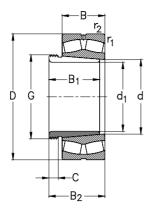


Welle [mm]		Abm	essung [mm]	en	Ве	erechnung	sfaktorer	1	Gewicht [kg]		
Shaft [mm]		Dir	mension [mm]	s		Calculation	factors		Weight [kg]		
$\emptyset d_1$						F _a /F _r ≤ e	$F_a/F_r > e$		Lager	Abziehhülse	
[mm]	B₁	B_2	С	G	е	Y ₁	Y ₂	Y_0	Bearing	Withdrawal sleeve	
85	79	83	14	M 100x2	0,33	2,1	3,1	2	8,83	0,76	
90	57	61	10	M 105x2	0,23	2,9	4,2	2,7	4,39	0,54	
	85	89	16	M 105x2	0,33	2,1	3,1	2	10,2	0,9	
95	64	68	11	M 110x2	0,26	2,55	3,8	2,5	4,87	0,66	
	59	63	10	M 110x2	0,24	2,9	4,1	2,7	5,27	0,58	
	73	77	11	M 110x2	0,34	2	2,8	1,9	7,06	0,76	
	90	94	16	M 110x2	0,33	2	3	2	13	1	
105	68	72	11	M 120x2	0,31	2,2	3,1	2,1	6,07	0,76	
	82	91	13	M 115x2	0,37	1,8	2,69	1,76	7,65	0,73	
	68	72	11	M 120x2	0,25	2,7	4	2,6	7,46	0,76	
	82	86	11	M 120x2	0,36	1,9	2,7	1,8	10,1	0,88	
	98	102	16	M 125x2	0,33	2,1	3,1	2	18,4	1,35	
115	60	64	13	M 130x2	0,24	2,7	4,2	2,6	4,61	0,75	
	73	82	13	M 125x2	0,32	2,12	3,15	2,07	5,85	0,65	
	75	79	12	M 130x2	0,31	2,1	3,1	2	8,33	0,94	
	93	102	13	M 130x2	0,37	1,8	2,69	1,76	11	1	
	75	79	12	M 125x2	0,25	2,7	3,9	2,5	9,39	0,94	
	90	94	13	M 135x2	0,36	1,9	2,7	1,8	12,5	1,11	
	105	109	17	M 135x2	0,33	2,1	3,1	2	22,6	1,65	
125	67	71	14	M 140x2	0,26	2,6	3,8	2,5	6,54	0,93	
	83	93	14	M 135x2	0,32	2,12	3,15	2,07	8,56	0,84	
	78	82	12	M 140x2	0,3	2,2	3,2	2,1	9,19	1,1	

Pendelrollenlager auf Abziehhülse

Spherical Roller Bearings with Withdrawal Sleeve

Welle [mm]	Hau	ıptabmı [mr		gen	Bezeichi	Tra	gzahle	n	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	
Shaft [mm]	Bou	ndary d [mi		ions	Designa	tion	Loa	d ratin [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]
$\emptyset d_1$		_		r ₁ , r ₂	Lager	Abziehhülse	C _r	Cor	\mathbf{C}_{u}	$\mathbf{n}_{ heta r}$	n_{G}
[mm]	d	D	В	min	Bearing	Withdrawal sleeve	dyn.	stat.	405	1000	0.400
125	130	210	80	2	24126-CE-K30-W33	AH24126	597	1012	105	1600	2400
	130	230	64	3	22226-EK-W33	AHX3126	641	948	97	2600	3600
	130	230	80	3	23226-K-MB-W33	AHX3226	636	948	97	1900	2600
	130	280	93	4	22326-E-K-W33	AHX2326	1090	1380	136	1900	2400
135	140	210	53	2	23028-K-MB-W33	AHX3028	380	633	65	2600	3400
	140	210	69	2	24028-CE-K30-W33	AH24028	503	900	93	2000	2800
	140	225	68	2,1	23128-K-MB-W33	AHX3128	540	865	88	2100	2800
	140	225	85	2,1	24128-CE-K30-W33	AH24128	677	1156	118	1500	2400
	140	250	68	3	22228-E-K-W33	AHX3128	747	1080	108	2300	3200
	140	250	88	3	23228-K-MB-W33	AHX3228	815	1320	132	1600	2400
	140	300	102	4	22328-K-MB-W33	AHX2328	993	1270	122	1900	2200
145	150	225	56	2,1	23030-K-MB-W33	AHX3030	419	697	70	2400	3200
	150	225	75	2,1	24030-CE-K30-W33	AH24030	572	1044	105	1900	2600
	150	250	80	2,1	23130-K-MB-W33	AHX3130	711	1130	112	1900	2600
	150	250	100	2,1	24130-CE-K30-W33	AH24130	899	1544	153	1300	2200
	150	270	73	3	22230-E-K-W33	AHX3130	863	1260	123	2100	3000
	150	270	96	3	23230-K-MB-W33	AHX3230	874	1300	127	1600	2200
	150	320	108	4	22330-K-MB-W33	AHX2330	1190	1610	152	1700	2000
150	160	240	60	2,1	23032-K-MB-W33	AH3032	521	903	89	2200	3000
	160	240	80	2,1	24032-CE-K30-W33	AH24032	659	1211	120	1700	2400
	160	270	86	2,1	23132-K-MB-W33	AH3132	817	1310	127	1700	2400
	160	270	109	2,1	24132-CE-K30-W33	AH24132	1038	1758	170	1200	1900

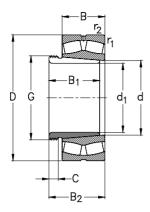


Welle [mm] Shaft [mm]			essung [mm] nension [mm]		В	erechnung Calculatior	Gewicht [kg] Weight [kg]			
Ød₁ [mm]	B₁	B ₂	С	G	е	F _a /F _r ≤ e Y₁	$F_a/F_r > e$ Y_2	Y ₀	Lager Bearing	Abziehhülse Withdrawal sleeve
125	94	104	14	M 140x2	0,37	1,8	2,69	1,76	11,7	1,11
	78	82	12	M 140x2	0,26	2,6	3,8	2,5	11,6	1,1
	98	102	15	M 145x2	0,35	1,9	2,7	1,8	15	1,55
	115	119	19	M 145x2	0,33	2,1	3,1	2	28	2
135	68	73	14	M 150x2	0,24	2,7	4,2	2,6	7,05	1
	83	93	14	M 145x2	0,29	2,32	3,45	2,26	9,06	0,95
	83	88	14	M 150x2	0,3	2,2	3,2	2,1	11,1	1,3
	99	109	14	M 150x2	0,35	1,95	2,9	1,91	14,1	1,3
	83	88	14	M 150x2	0,25	2,7	3,9	2,5	14,7	1,3
	104	109	15	M 155x3	0,33	2	3	2	19,5	1,85
	125	130	20	M 155x3	0,38	1,8	2,5	1,7	35,1	2,35
145	72	77	15	M 160x3	0,24	2,7	4,2	2,6	8,48	1,15
	90	101	15	M 155x3	0,32	2,12	3,15	2,07	11,2	1,05
	96	101	15	M 165x3	0,32	2,1	3	2	16,8	1,8
	115	126	15	M 160x3	0,37	1,8	2,69	1,76	21,5	1,55
	96	101	15	M 165x3	0,25	2,7	3,9	2,5	18,7	1,8
	114	119	17	M 165x3	0,36	1,8	2,7	1,8	25	2,2
	135	140	24	M 165x3	0,37	1,8	2,7	1,8	42,1	2,8
150	77	82	16	M 170x3	0,24	2,8	4	2,6	11	2,05
	95	106	15	M 170x3	0,29	2,32	3,45	2,26	14,6	2,3
	103	108	16	M 180x3	0,32	2,1	3	2	22	2,87
	124	135	15	M 170x3	0,4	1,68	2,5	1,64	28,4	3,05

Pendelrollenlager auf Abziehhülse

Spherical Roller Bearings with Withdrawal Sleeve

Welle [mm]	Hau	ıptabmı [mı		gen	Bezeichi	nung	Tra	gzahle	n	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]
Shaft [mm]	Bou	ndary o [mi		ions	Designa	ition	Loa	d ratin [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]
Ød₁		_	_	r ₁ , r ₂	Lager	Abziehhülse	C,	Cor	Cu	$\mathbf{n}_{ heta r}$	n_{G}
[mm] 150	d 160	D 290	B	min 3	Bearing 22232-E-K-W33	Withdrawal sleeve AH3132	dyn. 978	stat. 1440	138	2000	2800
150	160	290	104	3	23232-E-R-W33	AH3232	1130	1830	175	1400	2200
400	160	340	114	4	22332-K-MB-W33	AH2332	1250	1680	156	1600	1900
160	170	260	67	2,1	23034-K-MB-W33	AH3034	618	1050	102	2100	2800
	170	260	90	2,1	24034-K30-MB-W33	AH24034	808	1486	144	1600	2400
	170	280	88	2,1	23134-K-MB-W33	AH3134	826	1350	129	1700	2400
	170	280	109	2,1	24134-K30-MB-W33	AH24134	1150	2090	200	1000	1900
	170	310	86	4	22234-K-MB-W33	AH334-X	921	1310	123	2000	2600
	170	310	110	4	23234-K-MB-W33	AH2334-X	1280	1880	176	1300	2000
	170	360	120	4	22334-K-MB-W33	AH2334	1400	1970	179	1400	1800
170	180	280	74	2,1	23036-K-MB-W33	AH3036	725	1230	117	1900	2600
	180	280	100	2,1	24036-K30-MB-W33	AH24036	953	1740	165	1500	2200
	180	300	96	3	23136-K-MB-W33	AH3136	957	1540	144	1500	2200
	180	300	118	3	24136-K30-MB-W33	AH24136	1233	2162	203	1000	1700
	180	320	86	4	22236-K-MB-W33	AH2236	943	1380	128	1800	2600
	180	320	112	4	23236-K-MB-W33	AH3236	1360	2110	195	1200	1900
	180	380	126	4	22336-K-MB-W33	AH2336	1540	2130	191	1400	1700
180	190	290	75	2,1	23038-K-MB-W33	AH3038	759	1310	123	1800	2400
	190	290	100	2,1	24038-K30-MB-W33	AH24038	976	1822	171	1400	2000
	190	320	104	3	23138-K-MB-W33	AH3138	1130	1840	169	1400	2000
	190	320	128	3	24138-K30-MB-W33	AH24138	1412	2506	231	920	1600
	190	340	92	4	22238-K-MB-W33	AH2238	1040	1550	141	1700	2400

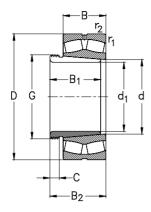


Welle [mm]			essung [mm]			erechnung		1	Gewicht [kg]		
Shaft [mm]		Dir	mension [mm]	s		Calculation	factors			Weight [kg]	
$\emptyset d_1$						F _a /F _r ≤ e	$F_a/F_r > e$		Lager	Abziehhülse	
[mm]	B ₁	B_2	С	G	е	Y ₁	Y ₂	Y_0	Bearing	Withdrawal sleeve	
150	103	108	16	M 180x3	0,26	2,6	3,8	2,5	24,6	2,87	
	124	130	20	M 180x3	0,36	1,9	2,8	1,8	33,9	4	
	140	146	24	M 180x3	0,37	1,8	2,6	1,7	55,8	4,72	
160	85	90	17	M 180x3	0,25	2,7	3,9	2,6	14,5	2,4	
	106	117	16	M 180x3	0,32	2,12	3,15	2,07	20,6	2,7	
	104	109	16	M 190x3	0,31	2,1	3,1	2	23,6	3,04	
	125	136	16	M 180x3	0,36	1,9	2,8	1,8	29,6	3,25	
	104	109	16	M 190x3	0,29	2,3	3,3	2,1	29,2	3,04	
	134	140	24	M 190x3	0,36	1,9	2,8	1,8	39,7	4,8	
	146	152	24	M 190x3	0,37	1,8	2,6	1,7	65	5,25	
170	92	98	17	M 190x3	0,26	2,6	3,7	2,5	18,6	2,8	
	116	127	16	M 190x3	0,32	2,12	3,15	2,07	26,5	3,2	
	116	122	19	M 200x3	0,32	2,1	3	2	29,7	3,76	
	134	145	16	M 190x3	0,37	1,8	2,69	1,76	37,5	3,68	
	105	110	17	M 200x3	0,28	2,4	3,4	2,3	37,5	5,25	
	140	146	25	M 200x3	0,36	1,9	2,8	1,9	42,6	5,32	
	154	160	26	M 200x3	0,37	1,8	2,6	1,7	75,2	5,83	
180	96	102	18	Tr 205x4	0,25	2,7	3,8	2,5	20,1	3,32	
	118	131	18	M 200x3	0,32	2,12	3,15	2,7	28	3,55	
	125	131	20	Tr 210x4	0,32	2,1	3	2	37,5	4,9	
	146	159	18	M 200x3	0,37	1,8	2,69	1,76	46,2	4,28	
	112	117	18	Tr 210x4	0,29	2,3	3,4	2,2	35,5	4,25	

Pendelrollenlager auf Abziehhülse

Spherical Roller Bearings with Withdrawal Sleeve

Welle [mm]	Hauptabmessungen [mm] Boundary dimensions				Bezeichi	nung	Tra	gzahle	en	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]
Shaft [mm]	Bou	ndary o [mi		ions	Designa	ition	Loa	d ratin [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]
$\emptyset d_1$				r ₁ , r ₂	Lager	Abziehhülse	\mathbf{C}_{r}	\mathbf{C}_{or}	\mathbf{C}_{u}	$\mathbf{n}_{\theta r}$	n _G
[mm]	d	D	В	min	Bearing	Withdrawal sleeve	dyn.	stat.			
180	190	340	120	4	23238-K-MB-W33	AH3238	1550	2420	220	1100	1800
	190	400	132	5	22338-K-MB-W33	AH2338	1920	2710	239	1200	1600
190	200	310	82	2,1	23040-K-MB-W33	AH3040	880	1550	143	1700	2200
	200	310	109	2,1	24040-K30-MB-W33	AH24040	1129	2122	195	1300	1900
	200	340	112	3	23140-K-MB-W33	AH3140	1240	2010	182	1300	1900
	200	340	140	3	24140-K30-MB-W33	AH24140	1579	2773	251	870	1500
	200	360	98	4	22240-K-MB-W33	AH2240	1160	1760	158	1600	2200
	200	360	128	4	23240-K-MB-W33	AH3240	1710	2760	247	1000	1700
	200	420	138	5	22340-K-MB-W33	AH2340	1820	2650	230	1200	1500
200	220	340	90	3	23044-K-MB-W33	AH3044	1020	1850	166	1500	2000
	220	340	118	3	24044-K30-MB-W33	AH24044	1361	2585	232	1100	1700
	220	370	150	4	24144-K30-MB-W33	AH24144	1929	3523	311	740	1400
	220	370	120	4	23144-K-MB-W33	AH3144	1480	2470	218	1200	1700
	220	400	108	4	22244-K-MB-W33	AH3144	1380	2080	181	1500	2000
	220	400	144	4	23244-K-MB-W33	AH2344	2040	3290	286	910	1500
	220	460	145	5	22344-K-MB-W33	AH2344	2110	3130	264	1000	1400
220	240	360	92	3	23048-K-MB-W33	AH3048	1080	2010	176	1400	1900
	240	360	118	3	24048-K30-MB-W33	AH24048	1393	2841	238	1000	1600
	240	400	160	4	24148-K30-MB-W33	AH24148	2115	3921	337	670	1600
	240	400	128	4	23148-K-MB-W33	AH3148	1690	2860	246	1100	1600
	240	440	120	4	22248-K-MB-W33	AH3148	1660	2560	216	1300	1800
	240	440	160	4	23248-K-MB-W33	AH2348	2440	3920	331	810	1300

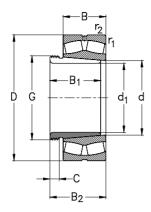


Welle [mm]			essung [mm]			erechnung		1	Gewicht [kg]		
Shaft [mm]		Dir	mension [mm]	s		Calculation	factors			Weight [kg]	
$\emptyset d_1$						F _a /F _r ≤ e	$F_a/F_r > e$		Lager	Abziehhülse	
[mm]	B ₁	B_2	С	G	е	Y ₁	Y ₂	Y_0	Bearing	Withdrawal sleeve	
180	145	152	25	Tr 210x4	0,36	1,9	2,8	1,9	53,9	5,9	
	160	167	26	Tr 210x4	0,36	1,9	2,8	1,9	87,8	6,63	
190	102	108	19	Tr 215x4	0,25	2,7	4	2,7	25,3	3,85	
	127	140	18	Tr 210x4	0,32	2,12	3,15	2,07	35,2	4	
	134	140	21	Tr 220x4	0,33	2	2,9	1,9	48,2	5,49	
	158	171	18	Tr 210x4	0,4	1,68	2,5	1,64	57,6	5,05	
	118	223	19	Tr 220x4	0,29	2,3	3,3	2,2	42,5	4,7	
	153	160	24	Tr 220x4	0,36	1,9	2,8	1,8	64,3	6,6	
	170	177	30	Tr 220x4	0,36	1,9	0,7	1,8	99,3	7,6	
200	111	117	20	Tr 235x4	0,25	2,7	4	2,7	38,4	7,4	
	138	152	20	Tr 230x4	0,32	2,12	3,15	2,07	49	8,2	
	170	184	20	Tr 230x4	0,4	1,68	2,5	1,64	75,5	10	
	145	151	23	Tr 240x4	0,32	2	3	2	64,8	10,4	
	145	151	23	Tr 240x4	0,28	2,4	3,4	2,2	59	9,3	
	181	189	30	Tr 240x4	0,36	1,9	2,8	1,8	95	13,5	
	181	189	30	Tr 240x4	0,35	1,9	2,8	1,8	133	13,5	
220	116	123	21	Tr 260x4	0,24	2,8	4,2	2,8	42,7	8,75	
	138	153	20	Tr 250x4	0,29	2,32	3,45	2,26	52,6	9	
	180	195	20	Tr 260x4	0,4	1,68	2,5	1,64	93,1	12,5	
	154	161	25	Tr 260x4	0,32	2,1	3	2	78,4	12	
	154	161	25	Tr 260x4	0,29	2,3	3,3	2,2	82,5	12	
	189	197	30	Tr 260x4	0,35	1,9	2,9	1,8	125	15,5	

Pendelrollenlager auf Abziehhülse

Spherical Roller Bearings with Withdrawal Sleeve

Welle [mm]	Hau	ptabm [mı		gen	Bezeichr	nung	Tra	gzahle	en	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]
Shaft [mm]	Bou	ndary o [mi		ions	Designa	ition	Loa	d ratin [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]
$\emptyset d_1$				r ₁ , r ₂	Lager	Abziehhülse	\mathbf{C}_{r}	\mathbf{C}_{or}	\mathbf{C}_{u}	$\mathbf{n}_{ heta r}$	$n_{\scriptscriptstyle G}$
[mm]	d	D	В	min	Bearing	Withdrawal sleeve	dyn.	stat.			
220	240	500	155	5	22348-K-MB-W33	AH2348	2440	3690	304	910	1300
240	260	400	104	4	23052-K-MB-W33	AH3052	1460	2360	201	1300	1700
	260	400	140	4	24052-K30-MB-W33	AH24052	1811	3528	301	920	1400
	260	440	180	4	24152-K30-MB-W33	AH24152	2608	2821	404	810	1200
	260	440	144	4	23152-K-MB-W33	AH3152	2240	3720	312	910	1400
	260	480	130	5	22252-K-MB-W33	AH2252	1940	3030	250	1200	1600
	260	540	165	6	22352-K-MB-W33	AH2352	2760	4220	340	820	1200
260	280	420	106	4	23056-K-MB-W33	AH3056	1440	2690	225	1200	700
	280	420	140	4	24056-K30-MB-W33	AH24056	1904	3836	321	840	1400
	280	460	146	5	23156-K-MB-W33	AH3156	2180	3900	321	850	1300
	280	460	180	5	24156-K30-MB-W33	AH24156	2683	5090	419	540	1100
	280	500	176	5	23256-K-MB-W33	AH2356	2850	4770	387	680	1100
	280	580	175	6	22356-K-MB-W33	AH2356	3300	4940	389	730	1100
280	300	460	118	4	23060-K-MB-W33	AH3060	1780	3240	265	1000	1500
	300	460	160	4	24060-K30-MB-W33	AH24060	2432	4920	402	740	1200
	300	500	160	5	23160-K-MB-W33	AH3160	2560	4490	361	780	1200
	300	500	200	5	24160-K30-MB-W33	AH24160	3287	6292	506	470	1000
300	320	480	121	4	23064-K-MB-W33	AH3064	1890	3510	282	1000	1400
	320	480	160	4	24064-K30-MB-W33	AH24064	2486	5138	413	690	1200
	320	540	176	5	23164-K-MB-W33	AH3164	3020	5390	424	700	1100
	320	540	218	5	24164-K30-MB-W33	AH24164	3739	7102	559	430	900
	320	580	208	5	23264-K-MB-W33	AH3264	3880	6520	506	550	950



Welle [mm] Shaft [mm]			essung [mm] mension [mm]		В	erechnung Calculatior	1	Gewicht [kg] Weight [kg]		
$\emptyset d_1$						$F_a/F_r \le e$	$F_a/F_r > e$		Lager	Abziehhülse
[mm]	B ₁	B ₂	С	G	е	Y ₁	Y ₂	Y_0	Bearing	Withdrawal sleeve
220	189	197	30	Tr 260x4	0,34	2	2,9	1,9	169	15,5
240	128	135	23	Tr 280x4	0,25	2,7	4	2,7	59,7	10,7
	162	178	22	Tr 270x4	0,32	2,12	3,15	2,07	77,8	11,8
	202	218	22	Tr 280x4	0,4	1,68	2,5	1,64	129	15,4
	172	179	26	Tr 290x4	0,32	2	3,1	2	109	16
	155	179	26	Tr 290x4	0,29	2,3	3,4	2,2	105	12,5
	205	213	30	Tr 290x4	0,34	2	2,9	1,9	205	19,6
260	131	139	24	Tr 300x4	0,24	2,7	4	2,6	64,5	12
	162	179	22	Tr 290x4	0,32	2,12	3,15	20,7	83,1	12,8
	175	183	28	Tr 310x5	0,31	2,1	3	2	117	17,5
	202	219	22	Tr 300x4	0,4	1,68	2,5	1,64	134	16,3
	212	220	30	Tr 310x5	0,36	1,9	2,7	1,8	174	21,6
	212	220	30	Tr 310x5	0,31	2,2	3,2	2,1	254	21,6
280	145	153	26	Tr 320x5	0,25	2,7	3,8	2,5	88	14,4
	184	202	24	Tr 310x5	0,32	2,12	3,15	2,07	116	15,5
	192	200	30	Tr 330x5	0,32	2,1	3	2	151	20,8
	224	242	24	Tr 320x5	0,4	1,68	2,5	1,64	179	19,5
300	149	157	27	Tr 345x5	0,24	2,7	3,9	2,6	96	16
	184	202	24	Tr 330x5	0,32	2,12	3,15	2,07	123	16,6
	209	217	31	Tr 350x5	0,32	2	3	2	196	24,5
	242	260	24	Tr 340x5	0,4	1,68	2,5	1,64	225	21,4
	246	254	36	Tr 350x5	0,37	1,8	2,6	1,7	278	30,6

Pendelrollenlager auf Abziehhülse

Spherical Roller Bearings with Withdrawal Sleeve

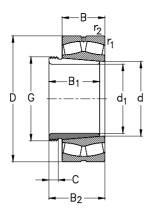
Welle [mm]	Hau	ptabm [mı		gen	Bezeichi	nung	Tra	gzahle	en	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]
Shaft [mm]	Bou	ndary d [mi		ions	Designa	ition	Loa	d rating [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]
$\emptyset d_1$				r ₁ , r ₂	Lager	Abziehhülse	C _r	C_{or}	\mathbf{C}_{u}	$\mathbf{n}_{ heta r}$	$n_{\scriptscriptstyle G}$
[mm]	d	D	В	min	Bearing	Withdrawal sleeve	dyn.	stat.			
320	340	520	133	5	23068-K-MB-W33	AH3068	2320	4330	341	880	1300
	340	520	180	5	24068-K30-MB-W33	AH24068	3007	6196	488	630	1100
	340	580	190	5	23168-K-MB-W33	AH3168	3510	6230	481	640	1000
	340	580	243	5	24168-K30-MB-W33	AH24168	4683	8726	673	380	850
	340	620	224	6	23268-K-MB-W33	AH23268	4430	7560	576	500	800
340	360	540	134	5	23072-K-MB-W33	AH3072	2360	4460	346	830	1200
	360	540	180	5	24072-K30-MB-W33	AH24072	3079	6466	502	590	1000
	360	600	192	5	23172-K-MB-W33	AH3172	3630	6550	499	600	1000
	360	600	243	5	24172-K30-MB-W33	AH24172	4888	9340	712	350	800
	360	650	232	6	23272-K-MB-W33	AH3272	4780	8550	641	450	750
360	380	560	135	5	23076-K-MB-W33	AH3076	2410	4700	360	780	1200
	380	560	180	5	24076-K30-MB-W33	AH24076	3151	6758	518	560	950
	380	620	194	5	23176-K-MB-W33	AH3176	3740	6970	524	570	1000
	380	620	243	5	24176-K30-MB-W33	AH24176	5067	9903	745	330	850
	380	680	240	6	23276-K-MB-W33	AH3276	5160	8920	660	430	750
380	400	600	148	5	23080-K-MB-W33	AH3080	2860	5500	414	720	1100
	400	600	200	5	24080-K30-MB-W33	AH24080	3767	8049	609	510	900
	400	650	200	6	23180-K-MB-W33	AH3180	4040	7580	562	530	950
	400	650	250	6	24180-K30-MB-W33	AH24180	5407	10582	785	310	800
	400	720	256	6	23280-K-MB-W33	AH3280	5800	10120	736	400	670
400	420	620	150	5	23084-K-MB-W33	AH3084	2950	5850	435	680	1100
	420	620	200	5	24084-K30-MB-W33	AH24084	3845	8382	623	480	900

Welle [mm]			essung [mm]			erechnung		1	Gewicht [kg]		
Shaft [mm]		Dir	mension [mm]	S		Calculation	n factors			Weight [kg]	
$\emptyset d_1$						$F_a/F_r \le e$	$F_a/F_r > e$		Lager	Abziehhülse	
[mm]	B ₁	B_2	С	G	е	Y ₁	Y ₂	Y_0	Bearing	Withdrawal sleeve	
320	162	171	28	Tr 365x5	0,25	2,7	3,9	2,6	125	19,5	
	206	225	26	Tr 360x5	0,32	2,12	3,15	2,07	165	21,7	
	225	234	33	Tr 370x5	0,33	2	2,9	1,9	245	29	
	269	288	26	Tr 360x5	0,4	1,68	2,5	1,64	293	27,1	
	264	273	38	Tr 370x5	0,37	1,8	2,6	1,7	291	32	
340	167	176	30	Tr 385x5	0,24	2,8	4	2,6	132	21	
	206	226	26	Tr 380x5	0,32	2,12	3,15	2,07	140	20	
	229	238	35	Tr 400x5	0,32	2	3	2	261	33	
	269	289	26	Tr 380x5	0,4	1,68	2,5	1,64	308	29,6	
	274	283	40	Tr 400x5	0,35	1,9	2,9	1,8	389	41,5	
360	170	180	31	Tr 410x5	0,23	2,9	4,2	2,7	140	23,5	
	208	228	28	Tr 400x5	0,29	2,32	3,45	2,26	145	23,5	
	232	242	36	Tr 420x5	0,31	2,2	3,1	2,1	278	36	
	271	291	28	Tr 400x5	0,37	1,8	2,69	1,76	321	31	
	284	294	42	Tr 420x5	0,36	1,9	2,7	1,8	436	45,5	
380	183	193	33	Tr 430x5	0,24	2,8	4	2,7	179	27	
	228	248	28	Tr 420x5	0,29	1,8	2,69	2,26	200	27	
	240	250	38	Tr 440x5	0,3	2,2	3,2	2,1	310	39	
	278	298	28	Tr 420x5	0,37	1,8	2,69	1,76	360	35	
	302	312	44	Tr 440x5	0,36	1,8	2,7	1,8	517	51,5	
400	186	196	34	Tr 450x5	0,23	2,9	4,1	2,7	189	29	
	230	252	30	Tr 440x5	0,29	2,32	3,45	2,26	205	29	

Pendelrollenlager auf Abziehhülse

Spherical Roller Bearings with Withdrawal Sleeve

Welle [mm]	Hau	ptabm [m		ngen	Bezeichn	ung	Tra	agzahl	en	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]
Shaft [mm]	Boui	ndary d [m		sions	Designat	tion	Lo	ad ratir [kN]	ngs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]
Ød₁				r ₁ , r ₂	Lager	Abziehhülse	C _r	\mathbf{C}_{0r}	\mathbf{C}_{u}	$n_{\theta r}$	$n_{\scriptscriptstyle G}$
[mm]	d	D	В	min	Bearing	Withdrawal sleeve	dyn.				
400	420	700	224	6	23184-K-MB-W33	AH3184	4030	9740	708	460	900
	420	700	280	6	24184-K30-MB-W33	AH24184	6504	12611	917	280	700
	420	760	272	7,5	23284-K-MB-W33	AH3284	6400	11300	809	370	630
420	440	650	157	6	23088-K-MB-W33	AHX3088	3210	6410	470	640	1000
	440	650	212	6	24088-K30-MB-W33	AHX24088	4221	9095	684	460	850
	440	720	226	6	23188-K-MB-W33	AHX3188	4480	9350	473	460	850
	440	720	280	6	24188-K30-MB-W33	AHX24188	6933	13939	1003	250	700
	440	790	280	7,5	23288-K-MB-W33	AHX3288	6820	12030	851	350	600
440	460	680	163	6	23092-K-MB-W33	AHX3092	3480	7000	506	610	950
	460	760	240	7,5	23192-K-MB-W33	AHX3192	5760	10950	776	420	800
	460	760	300	7,5	24192-K30-MB-W33	AH24192	7378	14889	1056	240	670
	460	830	296	7,5	23292-K-MB-W33	AHX3292	7601	14003	976	310	560
460	480	700	165	6	23096-K-MB-W33	AHX3096	3660	7490	536	570	950
	480	790	248	7,5	23196-K-MB-W33	AHX3196	6150	12000	840	390	750
	480	790	308	7,5	24196-K30-MB-W33	AH24196	7891	15938	1116	230	630
	480	870	310	7,5	23296-K-MB-W33	AHX3296	8261	15278	1051	290	530
480	500	670	128	5	239/500-K-MB-W33	AH39/500	2537	5984	430	560	670
	500	720	167	6	230/500-K-MB-W33	AHX30/500	3830	7970	565	540	900
	500	830	264	7,5	231/500-K-MB-W33	AHX31/500	6800	13040	901	370	700
	500	830	325	7,5	241/500-K30-MB-W33	AH241/500	8705	17263	1193	210	600
	500	920	336	7,5	232/500-K-MB-W33	AHX32/500	9506	17819	1207	270	500
500	530	710	136	5	239/530-K-MB-W33	AH39/530	2801	6583	464	530	630



Welle [mm]		Abm	essung [mm]	jen	Ве	erechnung	sfaktorer	1	Gewicht [kg]		
Shaft [mm]		Dir	mension [mm]	S		Calculation	n factors			Weight [kg]	
$\emptyset d_1$						F _a /F _r ≤ e	$F_a/F_r > e$		Lager	Abziehhülse	
[mm]	B ₁	B_2	С	G	е	Y ₁	Y ₂	Y_0	Bearing	Withdrawal sleeve	
400	266	276	40	Tr 460x5	0,32	2,1	3,2	2	409	46	
	310	332	30	Tr 440x5	0,37	1,8	2,69	1,76	483	40,3	
	321	331	46	Tr 460x5	0,36	1,7	2,7	1,8	612	58,9	
420	194	205	35	Tr 470x5	0,23	2,9	4,1	2,7	216	32	
	242	264	30	Tr 460x5	0,29	2,32	3,45	2,26	240	32	
	270	281	42	Tr 480x5	0,32	2,1	3	2	429	49,8	
	310	332	30	Tr 460x5	0,37	1,8	2,69	1,76	496	42,5	
	330	341	48	Tr 480x5	0,36	1,8	2,7	1,8	671	63,8	
440	202	213	37	Tr 490x5	0,23	2,9	4,2	2,8	245	35,2	
	285	296	43	Tr 510x6	0,31	2,1	3,1	2	510	57,9	
	332	355	32	Tr 480x5	0,37	1,8	2,69	1,76	550	50	
	349	360	50	Tr 510x6	0,35	1,95	2,9	1,91	795	74,5	
460	205	217	38	Tr 520x6	0,23	2,9	4,4	2,9	259	39,2	
	295	307	45	Tr 530x6	0,31	2,2	3,1	2,1	567	63,1	
	340	363	32	Tr 500x5	0,37	1,8	2,69	1,76	595	51,5	
	364	376	52	Tr 530x6	0,4	1,68	2,5	1,64	914	82,1	
480	162	172	32	Tr 520x6	0,16	4,28	6,37	4,19	161	28	
	209	221	40	Tr 540x6	0,22	3	4,3	2,9	272	42,5	
	313	325	47	Tr 550x6	0,31	2,1	3	2	670	70,9	
	360	383	35	Tr 530x6	0,37	1,8	2,69	1,76	735	57	
	393	405	54	Tr 550x6	0,35	1,95	2,9	1,91	1105	94,6	
500	175	185	37	Tr 550x6	0,18	3,66	5,46	3,58	202	43,4	

Pendelrollenlager auf Abziehhülse

Spherical Roller Bearings with Withdrawal Sleeve

Welle [mm]	Hau	ptabm [m		ngen	Bezeichn	ung	Tra	ıgzahle	en	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]
Shaft [mm]	Boul	ndary d [m		sions	Designat	tion	Loa	ad ratin [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]
$\emptyset d_1$				r ₁ , r ₂	Lager	Abziehhülse	C _r	C_{or}	\mathbf{C}_{u}	$\mathbf{n}_{\theta r}$	$n_{\rm G}$
[mm]	d	D	В	min	Bearing	Withdrawal sleeve	dyn.	stat.			
500	530	780	185	6	230/530-K-MB-W33	AH30/530	4470	9310	646	510	800
	530	870	335	7,5	241/530-K30-MB-W33	AH241/530	9372	19198	1302	190	560
530	560	750	140	5	239/560-K-MB-W33	AH39/560	3029	7228	502	490	600
	560	820	195	6	230/560-K-MB-W33	AH30/560	5110	10690	730	460	750
	560	920	355	7,5	241/560-K30-MB-W33	AH241/560	10512	21598	1445	180	500
560	600	800	150	5	239/600-K-MB-W33	AH39/600	3420	8314	566	450	560
	600	870	200	6	230/600-K-MB-W33	AH30/600	5500	11420	766	430	700
	600	980	375	7,5	241/600-K30-MB-W33	AH241/600	11631	24141	1584	160	480
600	630	850	165	6	239/630-K-MB-W33	AH39/630	4055	9794	655	410	530
	630	920	212	7,5	230/630-K-MB-W33	AH30/630	6270	13360	881	390	670
	630	1030	400	7,5	241/630-K30-MB-W33	AH241/630	12920	27231	1760	150	450
630	670	900	170	6	239/670-K-MB-W33	AH39/670	4388	10796	710	380	500
	670	980	230	7,5	230/670-K-MB-W33	AH30/670	6820	14690	951	370	600
670	710	950	180	6	239/710-K-MB-W33	AH39/710	4874	12104	782	360	480
	710	1030	236	7,5	230/710-K-MB-W33	AH30/710	7402	16453	1049	340	560
710	750	1000	185	6	239/750-K-MB-W33	AH39/750	5370	13460	856	330	480
750	800	1060	195	6	239/800-K-MB-W33	AH39/800	5644	14479	904	310	450
	800	1150	258	7,5	230/800-K-MB-W33	AH30/800	8620	19650	1210	300	480
850	900	1180	206	6	239/900-K-MB-W33	AH39/900	6803	18104	1094	260	400
	900	1280	280	7,5	230/900-K-MB-W33	AH30/900	10280	23948	1426	250	400
900	950	1250	224	7,5	239/950-K-MB-W33	AH39/950	4238	9459	562	320	360

Welle [mm] Shaft			essung [mm] mension			erechnung Calculation		1	Gewicht [kg] Weight		
[mm]			[mm]							[kg]	
Ød₁						F _a /F _r ≤ e	$F_a/F_r > e$		Lager	Abziehhülse	
[mm]	B ₁	B_2	С	G	е	Y ₁	Y_2	Y_0	Bearing	Withdrawal sleeve	
500	230	242	45	Tr 560x6	0,22	3	4,3	2,9	372	61,9	
	370	394	35	Tr 550x6	0,37	1,8	2,69	1,7	820	86	
530	180	190	37	Tr 580x6	0,16	4,28	6,37	4,19	230	47,4	
	240	252	45	Tr 590x6	0,22	3,1	4,6	3	427	68,6	
	393	417	38	Tr 580x6	0,37	1,8	2,69	1,76	970	97	
560	192	202	38	Tr 625x6	0,16	4,28	6,37	4,19	277	56,1	
	245	259	45	Tr 630x6	0,22	2,9	4,2	2,8	481	75,4	
	413	439	38	Tr 630x6	0,37	1,8	2,69	1,76	1180	120	
600	210	232	40	Tr 655x6	0,16	4,28	6,37	4,19	344	62,8	
	258	272	46	Tr 670x6	0,21	3,1	4,5	2,9	576	87,7	
	440	466	40	Tr 650x6	0,37	1,8	2,69	1,76	138-0	130	
630	216	228	41	Tr 695x6	0,16	4,28	6,37	4,19	412	85,5	
	280	294	50	Tr 710x7	0,23	3	4,4	2,9	726	124	
670	228	240	43	Tr 740x7	0,16	4,28	6,37	4,19	488	102	
	286	302	50	Tr 750x7	0,21	3,2	4,77	3,13	803	135	
710	234	246	44	Tr 780x7	0,16	4,28	6,37	4,19	548	111	
750	245	257	45	Tr 830x7	0,16	4,28	6,37	4,19	653	147	
	308	326	50	Tr 850x7	0,21	3,1	4,5	3	1106	200	
850	265	277	51	Tr 930x8	0,16	4,28	6,37	4,19	605	182	
	335	355	55	Tr 950x8	0,21	3,24	4,82	3,16	1210	248	
900	282	297	50	Tr 980x8	0,16	4,28	6,37	4,19	776	206	
			•	5555	0,.0	.,_0	٥,٥.	.,		200	

Axial-Rillenkugellager *Thrust Ball Bearings*

Axial-Rillenkugellager, einseitig wirkend *Thrust Ball Bearings, Single Direction*

Axial-Rillenkugellager, zweiseitig wirkend *Thrust Ball Bearings, Double Direction*

Axial-Rillenkugellager

Thrust Ball Bearings

DIN 711

Axial-Rillenkugellager

Normen, Hauptabmessungen

Maßpläne DIN 616
Axial-Rillenkugellager,
einseitig wirkend DIN 711
Axial-Rillenkugellager,

DIN 715

zweiseitig wirkend

Unterlagscheiben DIN 711

Allgemeines

Axial-Rillenkugellager sind zerlegbare Axiallager, die in ein- und zweiseitig wirkender Ausführung gefertigt werden.

Die Möglichkeit, bei Axial-Rillenkugellagern Laufscheiben und Kugelkränze getrennt montieren zu können, stellt eine wesentliche Erleichterung beim Ein- und Ausbau dar.

Axial-Rillenkugellager eignen sich zur Aufnahme hoher Axiallasten, nehmen jedoch keine radial wirkenden Kräfte auf.

Aufgrund ihrer kinematischen Besonderheiten eignen sich Axial-Rillenkugellager für eher geringe bis mittlere Drehzahlen. Zur Sicherstellung einer optimalen Funktion ist darüber hinaus eine Mindest-Axialbelastung erforderlich.

Da Axial-Rillenkugellager keinerlei Schiefstellung vertragen, sind Axial-Rillenkugellager auch mit kugeligen Gehäusescheiben bzw. mit kugeligen Gehäusescheiben und Unterlagscheiben zum Ausgleich von Schiefstellungen und Fluchtungsfehlern erhältlich.

Thrust Ball Bearings

Standards, Boundary Dimensions

Standard plans DIN 616
Thrust ball bearings,
single direction DIN 711

Thrust ball bearings,
double direction DIN 715

General

Seating washers

Thrust ball bearings are separable axial bearings that are produced in both single and double direction acting design.

To assist in simple effective mounting or dismounting the bearing washers, seatings, and cage and ball assemblies, may be individually mounted in their arrangement location.

Thrust ball bearings may accommodate comparatively high axial loads but they must not be exposed to any radial forces.

Due to their specific kinematic behaviour, thrust ball bearings are only suitable for low to medium operating speeds.

Furthermore, they require minimum axial loads for their optimum function.

Since thrust ball bearings do not compensate any misalignment, they are also frequently used in conjunction with sphered housing washers or with both sphered housing washers and seating washers.

Bauformen

Axial-Rillenkugellager werden in **ein-** und **zweiseitig** wirkender Ausführung gefertigt. Die wichtigsten Bauformen sind in der Zeichnung auf nebenstehender Seite dargestellt.

Einseitig wirkende Axial-Rillenkugellager (siehe Abb. a, b und c) bestehen aus einer Wellenscheibe, einer Gehäusescheibe und dem dazwischen laufenden Kugelkranz.

Diese Lager können Axialkräfte nur in einer Richtung aufnehmen.

Einseitig wirkende Axial-Rillenkugellager der Reihen 511, 512, 513 und 514 haben ebene Gehäusescheiben, siehe Abb. a.

Für Anwendungsfälle, in denen mit Schiefstellungen zu rechnen ist, sind auch einseitig wirkende Axial-Rillenkugellager der Reihen **532**, **533** und **534** mit kugeligen Gehäusescheiben (Abb. b) lieferbar.

Diese können entweder in einen entsprechend kugelig geformten Gehäusesitz eingebaut werden oder, wie in Abb. c dargestellt, zusammen mit **Unterlagscheiben** der Reihen **U2**, **U3** bzw. **U4** verwendet werden.

Im Gegensatz zu den einseitig wirkenden Lagern führen zweiseitig wirkende Axial-Rillenkugellager (Abb. d, e und f) die Welle in beiden Richtungen.

Dazu bestehen diese Lager aus je zwei Gehäusescheiben, zwei Kugelkränzen und einer zentral dazwischen angeordneten Wellenscheibe.

Auch die zweiseitig wirkenden Axial-Rillenkugellager sind sowohl mit ebenen Gehäusescheiben (Reihen 522, 523 und 524, Abb. d) als auch mit kugeligen Gehäusescheiben (Reihen 542, 543 und 544, siehe Abb. e) verfügbar.

Zum Ausgleich möglicher Schiefstellungen können auch die zweiseitig wirkenden Axial-Kugellager, wie in Abb. f dargestellt, gemeinsam mit **Unterlagscheiben** der Reihen **U2**, **U3** bzw. **U4** verwendet werden.

Design Variants

Thrust ball bearings are produced in both, single direction and double direction design. The most important design variants are shown on the opposite page.

Single direction thrust ball bearings consist of a shaft washer, a housing washer and a ball and cage thrust assembly, (see fig. a, b and c).

These bearings are able to accommodate axial loads in one direction only.

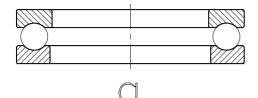
Single direction thrust ball bearings of series 511, 512, 513 and 514 have plain housing washers, (see fig. a).

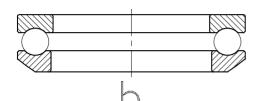
For applications where some misalignment may occur, single direction thrust ball bearings of the series **532**, **533** and **534** are also available with sphered housing washers, (see fig. b).

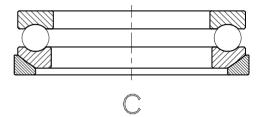
These bearings may be applied either direct to sphered shaped bearing seats or, they may be used together with **seating washers** of series **U2**, **U3** or **U4** (see fig. c).

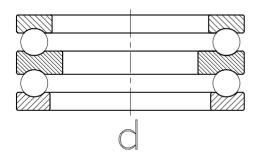
Unlike single direction thrust ball bearing types, double direction thrust ball bearings are suitable to guide the shaft in both directions (see fig. d, e and f).

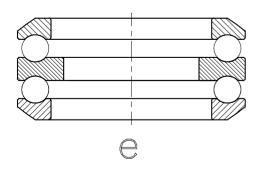
These bearings consist of **two housing washers**, **two ball and cage thrust assemblies** with one common **shaft washer** located centrally in between.

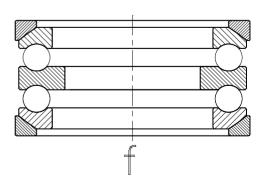

Double direction thrust ball bearings are also available in both designs, with **flat housing washers** (series **522**, **523** and **524**, see fig. d) and with **sphered housing washers** (series **542**, **543** and **544**, see fig. e).


For compensation of possible aligning errors the double direction thrust ball bearings may be used in conjunction with **Seating Washers** (series **U2**, **U3** and **U4**, see fig. f).


Axial-Rillenkugellager


Thrust Ball Bearings





Schiefstellung

Axial-Rillenkugellager mit ebenen Gehäusescheiben vertragen grundsätzlich keine Schiefstellungen.

Die Anlageflächen von Wellen- und Gehäusescheiben müssen daher parallel sein.

Winkelfehler können nur mit Axial-Rillenkugellagern mit **kugeligen Gehäusescheiben** ausgeglichen werden.

Käfige

NKE Axial-Rillenkugellager werden standardmäßig mit Stahlblechkäfigen gefertigt. Ausgenommen davon sind größere Axial-Rillenkugellager, die mit Massivkäfigen aus Messing (Nachsetzzeichen **MP**) oder Stahl (Nachsetzzeichen **FP**) ausgestattet sind.

Toleranzen

Axial-Rillenkugellager werden standardmäßig in Normaltoleranz (**PN**) gefertigt. Auf Anfrage können diese auch mit eingeengten Toleranzen in den Toleranzklassen **P6** und **P5** gefertigt werden.

Detaillierte Werte für die einzelnen Toleranzklassen entnehmen Sie bitte den Tabellen im Abschnitt "Lagerdaten / Toleranzen", Seite 52.

Misalignment

All thrust ball bearing types with flat housing washers do not allow any misalignment.

The contacting surfaces of both shaft and housing seats must be parallel.

Misalignments can only be accommodated by using thrust ball bearings with **sphered housing washers**.

Cages

NKE thrust ball bearings are normally fitted with pressed steel cages as standard.

For larger thrust ball bearings solid brass cages, (suffix **MP**), or solid steel cages, (suffix **FP**), are fitted as standard.

Tolerances

Thrust ball bearings are produced to normal tolerance class (**PN**) as standard.

On request these bearings are also produced to closer tolerances, such as tolerance classes **P6** and **P5**.

Detailed tolerance values are listed in the tables shown in the chapter "Bearing data / Tolerances" page 237.

Axial-Rillenkugellager

Thrust Ball Bearings

Mindestbelastung:

Zum kinematisch korrekten Betrieb benötigen Wälzlager in allen Betriebszuständen eine Mindestbelastung.

Für NKE Axial-Rillenkugellager muss die Mindestaxialbelastung 4% der dynamischen Tragzahl betragen.

Äquivalente dynamische Lagerbelastung

Axial-Rillenkugellager sind reine Axiallager und können keine Radialkräfte aufnehmen.

daher gilt:

 $P = F_{\circ}$

Äquivalente statische Lagerbelastung

Für Axial-Rillenkugellager gilt:

 $P_0 = F_a$

Anschlussmaße für Axial-Rillenkugellager

Die Radien der Kantenverrundung der Laufscheiben dürfen nicht an den Hohlkehlen von Wellenbund oder Gehäuse anliegen.

Daher muss der größte Hohlkehlradius an den Anschlussteilen (\mathbf{r}_g) kleiner sein als der kleinste Radius für die Kantenverrundung $(\mathbf{r}_1, \mathbf{r}_2)$ der Lagerscheiben (siehe Zeichnung bei Tabelle auf der Folgeseite).

Minimum Load:

Bearings require a minimum load under all operating conditions to ensure kinematically correct rolling element function.

For NKE thrust ball bearings the minimum axial load must be 4% of the dynamic load rating.

Equivalent Dynamic Bearing Load

Thrust ball bearings are pure axial bearings; they are not able to accommodate any radial loads, therefore:

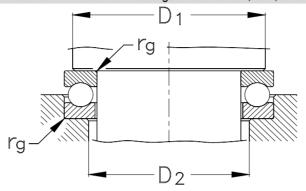
 $P = F_{a}$

Equivalent Static Bearing Load

For thrust ball bearings:

 $P_0 = F_a$

Abutment and Fillet Dimensions for Thrust Ball Bearings


The bearing washer must contact adjacent parts with their face sides only. The radii of bearing corners must not touch the shoulder fillet radii of the shaft or housing shoulders.

Therefore, the largest fillet radius (r_g) must be smaller than the minimum fillet dimension of the bearing rings (r_1, r_2) as listed in the bearing tables.

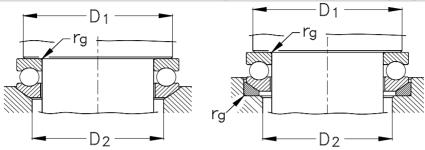
Anschlussmaße für Axial-Rillenkugellager der Reihen 511, 512, 513 und 514 [mm]

Abutment and Fillet Dimensions for Thrust Ball Bearings of Series 511, 512, 513 and 514 [mm]

Welle	Bohrungs-					Lagerre	eihe /	Bearing	series				
Shaft	kennzahl		511			512			513			514	
Ød	Bore reference	D ₁	D_2	\mathbf{r}_{g}	D₁	D_2	\mathbf{r}_{g}	D₁	D_2	\mathbf{r}_{g}	D₁	D_2	\mathbf{r}_{g}
[mm]	number	min	max	max	min	max	max	min	max	max	min	max	max
10	00	18	16	0,3	20	16	0,6						
12	01	20	18	0,3	22	18	0,6						
15	02	23	20	0,3	25	22	0,6						
17	03	25	22	0,3	28	24	0,6						
20	04	29	26	0,3	32	28	0,6						
25	05	35	32	0,6	38	34	0,6	41	36	1	46	39	1
30	06	40	37	0,6	43	39	0,6	48	42	1	54	46	1
35	07	45	42	0,6	51	46	1	55	48	1	62	53	1
40	80	52	48	0,6	57	51	1	63	55	1	70	60	1
45	09	57	53	0,6	62	56	1	69	61	1	78	67	1
50	10	62	58	0,6	67	61	1	77	68	1	86	74	1,5
55	11	69	64	0,6	76	69	1	85	75	1	94	81	1,5
60	12	75	70	1	81	74	1	90	80	1	102	88	1,5
65	13	80	75	1	86	79	1	95	85	1	110	95	2
70	14	85	80	1	91	84	1	103	92	1	118	102	2
75	15	90	85	1	96	89	1	111	99	1,5	126	109	2
80	16	95	90	1	101	94	1	116	104	1,5	134	116	2,1
85	17	100	95	1	109	101	1	124	111	1,5	142	123	2,1
90	18	108	102	1	117	108	1	129	116	1,5	150	130	2,1
100	20	121	114	1	130	120	1	142	128	1,5	166	144	2,5
110	22	131	124	1	140	130	1	158	142	2	182	158	2,5
120	24	141	134	1	150	140	1	174	156	2,1	198	172	3
130	26	154	146	1	166	154	1,5	187	168	2,1	214	186	3
140	28	164	156	1	176	164	1,5	200	180	2,1	224	196	3
150	30	174	166	1	189	176	1,5	210	190	2,1	240	210	3

Axial-Rillenkugellager *Thrust Ball Bearings*

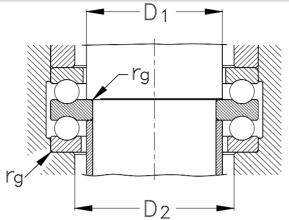
Anschlussmaße für Axial-Rillenkugellager der Reihen 511, 512 und 513 [mm]


Abutment and Fillet Dimensions for Thrust Ball Bearings of Series 511, 512 and 513 [mm]

Welle	Bohrungs-				Lagerreil	ne I Bear	ring series	3		
Shaft	kennzahl		511			512			513	
Ød	Bore reference	D_1	D_2	\mathbf{r}_{g}	D₁	D_2	\mathbf{r}_{g}	D ₁	D_2	r _g
[mm]	number	min	max	max	min	max	max	min	max	max
160	32	184	176	1	199	186	1,5	226	204	2,5
170	34	197	188	1	212	198	1,5	236	214	2,5
180	36	207	198	1	222	208	1,5	252	228	2,5
190	38	220	210	1	238	222	2	268	242	3
200	40	230	220	1	248	232	2	284	256	3
220	44	250	240	1	268	252	2			
240	48	276	264	1,5	300	280	2,1			
260	52	296	284	1,5	320	300	2,1			
280	56	322	308	1,5	340	320	2,1			
300	60	348	332	2	372	348	2,5			
320	64	368	352	2	392	368	2,5			
340	68	388	372	2	412	388	2,5			
360	72	408	392	2	444	416	3			
380	76	428	412	2						
400	80	448	432	2						
420	84	468	452	2						
440	88	500	480	2,1						
460	92	520	500	2,1						
480	96	540	520	2,1						
500	/500	560	540	2,1			-			
530	/530	596	574	2,5						
560	/560	626	604	2,5						

Anschlussmaße für Axial-Rillenkugellager der Reihen 532, 533 und 534 [mm]

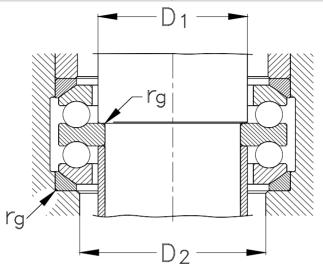
Abutment and Fillet Dimensions for Thrust Ball Bearings of Series 532, 533 and 534 [mm]



Welle	Bohrungs-				Lagerreil	ne I Bear	ring series			
Shaft	kennzahl		532			533			534	
Ød	Bore reference	D₁	D_2	\mathbf{r}_{g}	D₁	D_2	\mathbf{r}_{g}	D₁	D_2	\mathbf{r}_{g}
[mm]	number	min	max	max	min	max	max	min	max	max
10	00	20	18	0,6						
12	01	22	20	0,6						
15	02	25	24	0,6						
17	03	28	26	0,6						
20	04	32	30	0,6						
25	05	38	36	0,6	41	38	1	46	42	1
30	06	43	42	0,6	48	45	1	54	50	1
35	07	51	48	1	55	52	1	62	58	1
40	80	57	55	1	63	60	1	70	65	1
45	09	62	60	1	69	65	1	78	72	1
50	10	67	62	1	77	72	1	86	80	1,5
55	11	76	72	1	85	80	1	94	88	1,5
60	12	81	78	1	90	85	1	102	95	1,5
65	13	86	82	1	95	90	1	110	100	2
70	14	91	88	1	103	98	1	118	110	2
75	15	96	92	1	111	105	1,5	126	115	2
80	16	101	98	1	116	110	1,5	134	125	2,1
85	17	109	105	1	124	115	1,5	142	130	2,1
90	18	117	110	1	129	120	1,5	150	140	2,1
100	20	130	125	1	142	135	1,5	166	155	2,5
110	22	140	135	1	158	150	2	182	170	2,5
120	24	150	145	1	174	165	2	198	185	3
130	26	166	160	1,5	187	177	2,1	214	200	3
140	28	176	170	1,5	200	190	2,1			
150	30	189	180	1,5	210	200	2,1			
160	32	199	190	1,5						
170	34	212	200	1,5						
180	36	222	210	1,5						
190	38	238	230	2						

Anschlussmaße für Axial-Rillenkugellager der Reihen 522, 523 und 524 [mm]

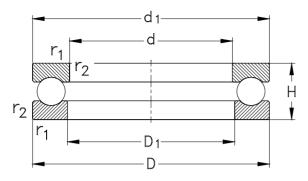
Abutment and Fillet Dimensions for Thrust Ball Bearings of Series 522, 523 and 524 [mm]



Welle	Bohrungs-					Lage	erreihe	I Bea	ring sei	ries				
Shaft	kennzahl		5	22			52	23				524		
Ød	Bore reference	D_1	D_2	\mathbf{r}_{g}	\mathbf{r}_{g1}	D ₁	D_2	\mathbf{r}_{g}	\mathbf{r}_{g1}	Welle	D_1	D_2	\mathbf{r}_{g}	r _{g1}
[mm]	number	min	max	max	max	min	max	max	max	Shaft	min	max	max	max
10	02	15	22	0,6	0,3									
15	04	20	28	0,6	0,3	-					-			
20	05	25	34	0,6	0,3	25	36	1	0,3	15	25	39	1	0,6
25	06	30	39	0,6	0,3	30	42	1	0,3	20	30	46	1	0,6
30	07	35	46	1	0,3	35	48	1	0,3	25	35	53	1	0,6
30	08	40	51	1	0,6	40	55	1	0,6	30	40	60	1	0,6
35	09	45	56	1	0,6	45	61	1	0,6	35	45	67	1	0,6
40	10	50	61	1	0,6	50	68	1	0,6	40	50	74	1,5	0,6
45	11	55	69	1	0,6	55	75	1	0,6	45	55	81	1,5	0,6
50	12	60	74	1	0,6	60	80	1	0,6	50	60	88	1,5	0,6
55	13	65	79	1	0,6	65	85	1	0,6	50	65	95	2	1
55	14	70	84	1	1	70	92	1	1	55	70	102	2	1
60	15	75	89	1	1	75	99	1,5	1	60	75	109	2	1
65	16	80	94	1	1	80	104	1,5	1	65	80	116	2,1	1
70	17	85	101	1	1	85	111	1,5	1	65	85	123	2,1	1
75	18	90	108	1	1	90	116	1,5	1	70	90	130	2,1	1
85	20	100	120	1	1	100	128	1,5	1	80	100	144	2,5	1
95	22	110	130	1	1	110	142	2	1					
100	24	120	140	1	1	120	156	2,1	1					
110	26	130	154	1,5	1	130	168	2,1	1					
120	28	140	164	1,5	1	140	180	2,1	1					
130	30	150	176	1,5	1	150	190	2,1	1					
140	32	160	186	1,5	1									
150	34	170	198	1,5	1									

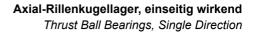
Anschlussmaße für Axial-Rillenkugellager der Reihen 542, 543 und 544 [mm]

Abutment and Fillet Dimensions for Thrust Ball Bearings of Series 542, 543 and 544 [mm]



Welle	Bohrungs-					Lag	erreihe	I Bea	ring sei	ries				
Shaft	kennzahl		5	42			54	1 3				544		
Ød	Bore reference	D ₁	D_2	\mathbf{r}_{g}	\mathbf{r}_{g1}	D ₁	D_2	\mathbf{r}_{g}	\mathbf{r}_{g1}	Welle	D_1	D_2	\mathbf{r}_{g}	r _{g1}
[mm]	number	min	max	max	max	min	max	max	max	Shaft	min	max	max	max
10	02	15	24	0,6	0,3									
15	04	20	30	0,6	0,3									
20	05	25	36	0,6	0,3	25	38	1	0,3	15	25	42	1	0,6
25	06	30	42	0,6	0,3	30	45	1	0,3	20	30	50	1	0,6
30	07	35	48	1	0,3	35	52	1	0,3	25	35	58	1	0,6
30	08	40	55	1	0,6	40	60	1	0,6	30	40	65	1	0,6
35	09	45	60	1	0,6	45	65	1	0,6	35	45	72	1	0,6
40	10	50	62	1	0,6	50	72	1	0,6	40	50	80	1,5	0,6
45	11	55	72	1	0,6	55	80	1	0,6	45	55	88	1,5	0,6
50	12	60	78	1	0,6	60	85	1	0,6	50	60	95	1,5	0,6
55	13	65	82	1	0,6	65	90	1	0,6	50	65	100	2	1
55	14	70	88	1	1	70	98	1	1	55	70	110	2	1
60	15	75	92	1	1	75	105	1,5	1	60	75	115	2	1
65	16	80	98	1	1	80	110	1,5	1	65	80	125	2,1	1
70	17	85	105	1	1	85	115	1,5	1	65	85	130	2,1	1
75	18	90	110	1	1	90	120	1,5	1	70	90	140	2,1	1
85	20	100	125	1	1	100	135	1,5	1	80	100	155	2,5	1
95	22	110	135	1	1	110	150	2	1					
100	24	120	145	1	1	120	165	2,1	1					
110	26	130	160	1,5	1	-						-		-

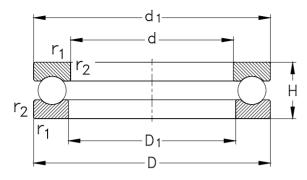
Axial-Rillenkugellager, einseitig wirkend


Thrust Ball Bearings, Single Direction

511/512/513/514

	Hauptabm [m		n	Lagertype		Tragzahlen		Grenzdrehzahlen [min ⁻¹]
	Boundary o		ns	Designation		Load ratings [kN]		Limited speed ratings [rpm]
	D		r ₁ , r ₂		C _a	C _{0a}	C _u	$n_{\rm G}$
10	24	H 9	min 0,3	51100	dyn. 10	stat. 14	0,5	13000
	26	11	0,6	51200	12,7	17	0,6	11000
12	26	9	0,0	51101	10,4	15,3	0,6	13000
12	28	11	0,6	51201	13,2	19	0,0	11000
15	28	9	0,3	51102	10,4	15,3	0,6	12000
	32	12	0,6	51202	16,6	25	0,9	10000
17	30	9	0,3	51103	9,65	15,3	0,6	12000
	35	12	0,6	51203	17,3	27,5	1,0	9500
20	35	10	0,3	51104	12,7	20,8	0,8	10000
	40	14	0,6	51204	22,4	37,5	1,4	8000
25	42	11	0,6	51105	15,6	29	1,1	9000
	47	15	0,6	51205	28	50	1,9	7500
	52	18	1	51305	34,5	55	2,0	6300
	60	24	1	51405	56	90	3,3	5000
30	47	11	0,6	51106	16,6	33,5	1,2	8500
	52	16	0,6	51206	25,5	47,5	1,8	6700
	60	21	1	51306	38	65,5	2,4	5300
	70	28	1	51406	72	125	4,6	4300
35	52	12	0,6	51107	17,6	37,5	1,4	7500
	62	18	1	51207	35,5	67	2,5	5600
	68	24	1	51307	50	88	3,3	4500
	80	32	1,1	51407	86,5	156	5,8	3800

Anschlussmaße siehe Seite 803


Abutment and fillet dimensions see on page 803

	Abmess [m Dimer [m	Gewicht [kg] Weight [kg]	
d	d₁	D ₁	m
10	24	11	0,02
	26	12	0,03
12	26	13	0,02
	28	14	0,03
15	28	16	0,02
	32	17	0,05
17	30	18	0,03
	35	19	0,05
20	35	21	0,04
	40	22	0,08
25	42	26	0,06
	47	27	0,12
	52	27	0,17
	60	27	0,36
30	47	32	0,07
	52	32	0,13
	60	32	0,26
	70	32	0,58
35	52	37	0,09
	62	37	0,22
	68	37	0,38
	80	37	0,96

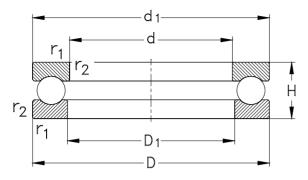
Axial-Rillenkugellager, einseitig wirkend

Thrust Ball Bearings, Single Direction

511/512/513/514

	Hauptabm [m		n	Lagertype		Tragzahlen		Grenzdrehzahlen [min ⁻¹]
	Boundary o		າຣ	Designation		Load ratings [kN]		Limited speed ratings [rpm]
d	D	н	r ₁ , r ₂ min		C _a dyn.	C ₀a stat.	C _u	n _G
40	60	13	0,6	51108	23,2	50	1,9	7000
	68	19	1	51208	46,5	98	3,6	5300
	78	26	1	51308	61	112	4,1	4300
	90	36	1,1	51408	112	204	7,6	3400
45	65	14	0,6	51109	24,5	57	2,1	6300
	73	20	1	51209	39	80	3,0	5000
	85	28	1	51309	75	140	5,2	4000
	100	39	1,1	51409	129	245	9,1	3000
50	70	14	0,6	51110	25,5	63	2,3	6300
	78	22	1	51210	50	106	3,9	4500
	95	31	1,1	51310	88	173	6,4	3600
	110	43	1,5	51410	156	310	11,5	2800
55	78	16	0,6	51111	31	78	2,9	5300
	90	25	1	51211	61	134	5,0	4000
	105	35	1,1	51311	102	208	7,7	3200
	120	48	1,5	51411	180	360	13,3	2400
60	85	17	1	51112	36,5	93	3,4	5000
	95	26	1	51212	62	140	5,2	3800
	110	35	1,1	51312	102	208	7,7	3000
	130	51	1,5	51412	200	400	14,8	2200
65	90	18	1	51113	37,5	98	3,6	4800
	100	27	1	51213	64	150	5,6	3600

Anschlussmaße siehe Seite 803


Abutment and fillet dimensions see on page 803

	Abmes [m Dimer [m	m] nsions	Gewicht [kg] Weight [kg]
d	d₁	D_1	m
40	60	42	0,13
	68	42	0,28
	78	42	0,53
	90	42	1,17
45	65	47	0,15
	73	47	0,3
	85	47	0,61
	100	47	1,6
50	70	52	0,17
	78	52	0,37
	95	52	0,94
	110	52	2,18
55	78	57	0,25
	90	57	0,59
	105	57	1,3
	120	57	2,91
60	85	62	0,33
	95	62	0,65
	110	62	1,37
	130	62	3,7
65	90	67	0,36
	100	67	0,74

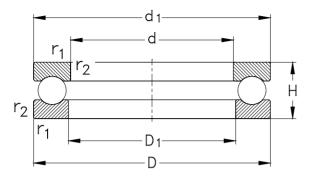
Axial-Rillenkugellager, einseitig wirkend

Thrust Ball Bearings, Single Direction

511/512/513/514

	Hauptabm [m		n	Lagertype		Tragzahlen		Grenzdrehzahlen [min ⁻¹]
	Boundary o		າຣ	Designation		Load ratings [kN]	1	Limited speed ratings [rpm]
d	D	н	r ₁ , r ₂ min		C _a dyn.	C ₀a stat.	C _u	n _G
65	115	36	1,1	51313	106	220	8,1	3000
	140	56	2	51413	216	450	16,7	2200
70	95	18	1	51114	37,5	104	3,9	4500
	105	27	1	51214	65,5	160	5,9	3600
	125	40	1,1	51314	137	300	11,1	2600
	150	60	2	51414	236	500	18,5	2000
75	100	19	1	51115	44	137	5,1	4300
	110	27	1	51215	67	170	6,3	3400
	135	44	1,5	51315	163	360	13,3	2400
	160	65	2	51415	250	560	20,7	1800
80	105	19	1	51116	45	140	5,2	4300
	115	28	1	51216	75	190	7,0	3400
	140	44	1,5	51316	160	360	13,3	2400
	170	68	2,1	51416	270	620	23,0	1700
85	110	19	1	51117	45,5	150	5,6	4300
	125	31	1	51217	98	150	5,6	3000
	150	49	1,5	51317	190	425	15,7	2200
	180	72	2,1	51417	290	680	25,2	1600
90	120	22	1	51118	60	190	7,0	3800
	135	35	1,1	51218	120	300	11,1	2800
	155	50	1,5	51318	196	465	17,2	2200
	190	77	2,1	51418	305	750	27,7	1500

Anschlussmaße siehe Seite 803


Abutment and fillet dimensions see on page 803

	Abmess [m Dimer [m	Gewicht [kg] Weight [kg]	
d	d₁	\mathbf{D}_1	m
65	115	67	1,49
	140	68	4,67
70	95	72	0,39
	105	72	0,78
	125	72	1,91
	150	73	5,72
75	100	77	0,52
	110	77	0,83
	135	77	2,61
	160	78	7,06
80	105	82	0,56
	115	82	0,91
	140	82	2,71
	170	83	8,23
85	110	87	0,6
	125	88	1,22
	150	88	3,53
	177	88	9,79
90	120	92	0,88
	135	93	1,68
	155	93	3,57
	187	93	11,6

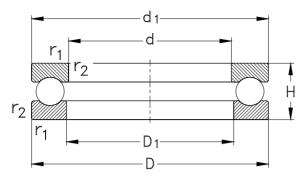
Axial-Rillenkugellager, einseitig wirkend

Thrust Ball Bearings, Single Direction

511/512/513/514

	Hauptabm [m	-	n	Lagertype		Tragzahlen		Grenzdrehzahlen [min ⁻¹]
	Boundary o	dimension m]	ıs	Designation		Load ratings [kN]		Limited speed ratings [rpm]
d	D	н	r ₁ , r ₂ min		C _a dyn.	C ₀a stat.	C _u	n _G
100	135	л 25	1	51120	4911. 85	270	10,0	3200
100	150	38	1,1	51220	122	320	11,9	2400
	170	55	1,5	51320	232	560	20,7	1900
	210	85	3	51420	365	965	35,7	1400
110	145	25		51122	86,5	290	10,7	3200
	160	38	1,1	51222	129	360	13,3	2400
	190	63	2	51322	275	720	26,7	1700
	230	95	3	51422	415	1140	42,2	1300
120	155	25	1	51124	90	310	11,5	3000
	170	39	1,1	51224	140	400	14,8	2200
	210	70	2,1	51324	325	915	33,8	1500
	250	102	4	51424	425	1220	45,2	1100
130	170	30	1	51126	112	390	14,4	2600
	190	45	1,5	51226	183	540	20,0	2000
	225	75	2,1	51326-MP	360	1060	39,3	2400
	270	110	4	51426-MP	520	1600	59,3	1000
140	180	31	1	51128	112	400	14,8	2600
	200	46	1,5	51228	190	570	21,1	1900
	240	80	2,1	51328-MP	400	1220	45,2	1300
150	190	31	1	51130-MP	110	400	14,8	2400
	215	50	1,5	51230-MP	236	735	27,2	1800
	250	80	2,1	51330-MP	405	1290	47,8	1300

Anschlussmaße siehe Seite 803


Abutment and fillet dimensions see on page 803

	Abmes [m Dimer [m	Gewicht [kg] Weight [kg]	
d	d₁	D ₁	m
100	135	102	1,3
	150	103	2,22
	170	103	4,95
	205	103	15,4
110	145	112	1,45
	160	113	2,41
	187	113	7,7
	225	113	20,8
120	155	122	1,59
	170	123	2,67
	205	123	10,7
	245	123	26,5
130	170	132	2,37
	187	133	3,99
	220	134	13
	265	134	32,8
140	178	142	2,59
	197	143	4,33
	235	144	15,7
150	188	152	2,26
	212	153	6,09
	245	154	16,4

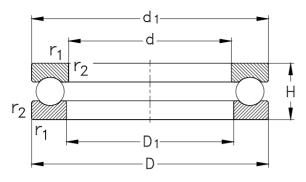
Axial-Rillenkugellager, einseitig wirkend

Thrust Ball Bearings, Single Direction

511/512/513/514

ı	Hauptabm [m	essunge m]	n	Lagertype		Tragzahlen		Grenzdrehzahlen [min ⁻¹]
I	Boundary ([m	dimension m]	s	Designation		Load ratings [kN]		Limited speed ratings [rpm]
	_		r ₁ , r ₂		C _a	C _{0a}	C _u	n _G
d	D	H	min	54400 MD	dyn.	stat.	00.7	950
150	300	120	4	51430-MP	560	1800	66,7	
160	200	31	1	51132-MP	112	430	15,9	2400
	225	51	1,5	51232-MP	245	780	28,9	1700
	270	87	3	51332-MP	455	1500	55,6	1200
170	215	34	1,1	51134-MP	132	500	18,5	2200
	240	55	1,5	51234-MP	285	930	34,4	1800
	280	87	3	51334-MP	465	1630	60,4	1100
180	225	34	1,1	51136-MP	134	530	19,6	2200
	250	56	1,5	51236-MP	290	1000	37,0	1500
	300	95	3	51336-MP	520	1830	67,8	1100
190	240	37	1,1	51138-MP	170	655	24,3	2000
	270	62	2	51238-MP	335	1160	43,0	1400
	320	105	4	51338-MP	600	2200	81,5	950
200	250	37	1,1	51140-MP	170	655	24,3	1900
	280	62	2	51240-MP	340	1220	45,2	1400
	340	110	4	51340-MP	620	2400	88,9	900
220	270	37	1,1	51144-MP	176	735	27,2	1900
	300	63	2	51244-MP	355	1340	49,6	1300
240	300	45	1,5	51148-MP	232	965	35,7	1600
	340	78	2,1	51248-MP	465	1860	68,9	1100
260	320	45	1,5	51152-MP	236	1020	37,8	1500
	360	79	2,1	51252-MP	475	2000	74,1	1100

Anschlussmaße siehe Seite 803


Abutment and fillet dimensions see on page 803

	Abmes [m Dimer [m	Gewicht [kg] Weight [kg]	
d	d ₁	\mathbf{D}_1	m
150	295	154	43,1
160	198	162	2,39
	222	163	6,56
	265	164	21,3
170	213	172	3,08
	237	173	8,12
	275	174	22,5
180	222	183	3,17
	245	183	8,7
	295	184	28,3
190	237	193	4,08
	265	194	11,7
	315	195	35,7
200	245	203	4,26
	275	204	12
	335	205	44,3
220	265	223	4,64
	295	224	13,2
240	297	243	7,69
	335	244	23
260	317	263	8,25
	355	264	25,2

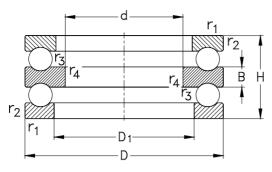
Axial-Rillenkugellager, einseitig wirkend

Thrust Ball Bearings, Single Direction

511/512/513/514

	Hauptabmessungen [mm] Boundary dimensions			Lagertype Designation		Tragzahlen Load ratings		Grenzdrehzahlen [min ⁻¹] <i>Limited speed</i>
	[mm]					[kN]		ratings [rpm]
d	D	н	r ₁, r ₂ min		C _a	C ₀a stat.	C _u	n _G
280	350	53	1,5	51156-MP	dyn. 315	1340	49,6	1300
200	380	80	2,1	51256-MP	490	2160	80,0	1000
300	380	62	2	51160-MP	365	1600	59,3	1200
	420	95	3	51260-MP	610	2750	101,9	850
320	400	63	2	51164-MP	375	1700	63,0	1100
	440	95	3	51264-FP	620	2900	107,4	850
340	420	64	2	51168-MP	380	1800	66,7	1100
	460	96	3	51268-FP	640	3150	116,7	800
360	440	65	2	51172-FP	405	2000	74,1	1100
	500	110	4	51272-FP	765	3900	144,4	750
380	460	65	2	51176-FP	430	2240	83,0	1000
400	480	65	2	51180-FP	440	2320	85,9	1000
420	500	65	2	51184-FP	440	2450	90,7	1000
460	560	80	2,1	51192-FP	530	3100	114,8	800
500	600	80	2,1	511/500-FP	550	3350	124,1	800
530	640	85	3	511/530-FP	620	3900	144,4	750
560	670	85	3	511/560-FP	630	4150	153,7	700
600	710	85	3	511/600-FP	640	3650	135,2	700
630	750	95	3	511/630-FP	720	4250	157,4	630
670	800	105	4	511/670-FP	800	4800	177,8	560
710	850	112	4	511/710-FP	865	5500	203,7	490

Anschlussmaße siehe Seite 803


Abutment and fillet dimensions see on page 803

Abmessungen [mm] Dimensions [mm]						
d	d₁	D ₁	m			
280	347	283	12,5			
	375	284	26,7			
300	376	304	17,7			
	415	304	42,3			
320	396	324	19,1			
	435	325	44,2			
340	416	344	20,5			
	455	345	47			
360	436	364	21,5			
	495	365	69,5			
380	456	384	22,4			
400	476	404	23,5			
420	495	424	24,4			
460	555	464	42			
500	595	505	44,9			
530	635	535	54,8			
560	665	565	58			
600	705	605	63			
630	745	635	81			
670	795	675	104			
710	845	715	128			

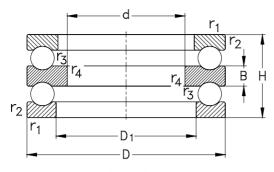
Axial-Rillenkugellager, zweiseitig wirkend

Thrust Ball Bearings, Double Direction

522/523/524

	Hauptabmessungen [mm]			Lagertype Tragzahle			en Grenzdrehzahlen [min ⁻¹]		
	Boundary dimensions [mm]			Designation	Load ratings [kN]		ıs	Limited speed ratings [rpm]	
	_		r ₁ , r ₂	r ₃ , r ₄		C _a	C _{0a}	Cu	n _G
d	D	Н	min	min		dyn.	stat.		10000
10	32	22	0,6	0,3	52202	16,6	25	0,9	10000
15	40	26	0,6	0,3	52204	22,4	37,5	1,4	8000
	60	45	1	0,6	52405	56	90	3,3	6000
20	47	28	0,6	0,3	52205	28	50	1,9	7500
	52	34	1	0,3	52305	34,5	55	2	6300
	70	52	1	0,6	52406	72	125	4,6	5000
25	52	29	0,6	0,3	52206	25,5	47,5	1,8	6700
	60	38	1	0,3	52306	38	65,5	2,4	5300
	80	59	1,1	0,6	52407	86,5	156	5,8	4300
30	62	34	1	0,3	52207	35,5	67	2,5	5600
	68	36	1	0,6	52208	46,5	98	3,6	5300
	68	44	1	0,3	52307	50	88	3,3	4500
	78	49	1	0,6	52308	61	112	4,1	4300
	90	65	1,1	0,6	52408	112	204	7,6	3400
35	73	37	1	0,6	52209	39	80	3	5000
	85	52	1	0,6	52309	75	140	5,2	4000
	100	72	1,1	0,6	52409	129	245	9,1	3000
40	78	39	1	0,6	52210	50	106	3,9	4500
	95	58	1,1	0,6	52310	88	173	6,4	3600
	110	78	1,5	0,6	52410	156	310	11,5	2500
45	90	45	1	0,6	52211	61	134	5	4000
	105	64	1,1	0,6	52311	102	208	7,7	3200

Anschlussmaße siehe Seite 806


Abutment and fillet dimensions see on page 806

		Abmessungen [mm] Dimensions [mm]	Gewicht [kg] Weight [kg]
d	D ₁	В	[m]
10	17	5	0,08
15	22	6	0,15
	27	11	0,59
20	27	7	0,22
	27	8	0,32
	32	12	0,92
25	32	7	0,25
	32	9	0,47
	37	14	1,35
30	37	8	0,41
	42	9	0,55
	37	10	0,68
	42	12	1,01
	42	15	1,92
35	47	9	0,6
	47	12	1,25
	47	17	2,55
40	52	9	0,71
	52	14	1,77
	52	18	3,43
45	57	10	1,1
	57	15	2,38

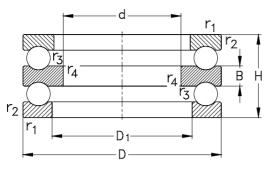
Axial-Rillenkugellager, zweiseitig wirkend

Thrust Ball Bearings, Double Direction

522/523/524

	Hauptabmessungen [mm]			Lagertype Tragzahlen			n	Grenzdrehzahlen [min ⁻¹]	
	Boundary dimensions [mm]				Designation	Load ratings [kN]			Limited speed ratings [rpm]
			r ₁ , r ₂	r ₃ , r ₄		\mathbf{C}_{a}	C_{0a}	\mathbf{C}_{u}	n_{G}
d	D	Н	min	min		dyn.	stat.		
45	120	87	1,5	0,6	52411	180	360	13,3	2400
50	95	46	1	0,6	52212	62	140	5,2	3000
	110	64	1,1	0,6	52312	102	208	7,7	2200
	130	93	1,5	0,6	52412	200	400	14,8	2200
	140	101	2	1	52413	216	450	16,7	2000
55	100	47	1	0,6	52213	64	150	5,6	3600
	105	47	1	1	52214	65,5	160	5,9	3600
	115	65	1,1	0,6	52313	106	220	8,1	3000
	125	72	1,1	1	52314	137	300	11,1	2600
	150	107	2	1	52414	236	500	18,29	2000
60	110	47	1	1	52215	67	170	6,3	3400
	135	79	1,5	1	52315	163	360	13,3	2400
	160	115	2	1	52415	250	560	19,78	1500
65	115	48	1	1	52216	75	190	7	3400
	140	79	1,5	1	52316	160	360	13,17	2400
	170	120	2,1	1	52416-MP	270	620	21,18	1000
	180	128	2,1	1,1	52417-MP	290	680	22,76	1000
70	125	55	1	1	52217	98	250	9,3	3000
	150	87	1,5	1	52317	190	425	15,01	2200
	190	135	2,1	1,1	52418-MP	305	750	24,36	2800
75	135	62	1,1	1	52218	120	300	10,84	2800
	155	88	1,5	1	52318	196	465	16,06	2000

Anschlussmaße siehe Seite 806


Abutment and fillet dimensions see on page 806

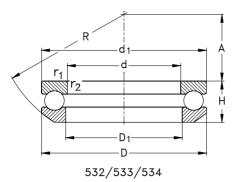
		Abmessungen [mm] Dimensions [mm]	Gewicht [kg] Weight [kg]
d	D ₁	В	[m]
45	57	20	4,52
50	62	10	1,21
	62	15	2,53
	62	21	5,72
	68	23	7,18
55	67	10	1,34
	72	10	1,47
	67	15	2,73
	72	16	3,66
	73	24	8,76
60	77	10	1,57
	77	18	4,8
	78	26	10,8
65	82	10	1,72
	82	18	4,94
	83	27	12,7
	88	29	15,1
70	88	12	2,39
	88	19	6,35
	93	30	17,8
75	93	14	3,22
	93	19	6,8

Axial-Rillenkugellager, zweiseitig wirkend

Thrust Ball Bearings, Double Direction

522/523/524

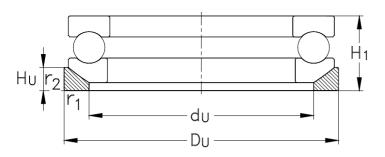
	Haup	tabmessı [mm]	ungen		Lagertype	1	Tragzahle	n	Grenzdrehzahlen [min ⁻¹]
	Bound	dary dime [mm]	nsions		Designation	L	oad rating. [kN]	ys .	Limited speed ratings [rpm]
d	D	н	r₁, r₂ min	r ₃ , r ₄ min		C _a dyn.	C ₀a stat.	C _u	n _G
80	210	150	3	1,1	52420-MP	365	965	29,68	2600
85	150	67	1,1	1	52220	122	320	10,93	2400
-	170	97	1,5	1	52320	232	560	18,37	19000
95	160	67	1,1	1	52222	129	360	11,81	2400
	190	110	2	1	52322-MP	275	720	22,34	1700
100	170	68	1,1	1,1	52224-MP	140	400	12,75	2200
	210	123	2,1	1,1	52324-MP	325	915	27,22	1600
110	190	80	1,5	1,1	52226-MP	183	540	16,33	2000
	225	130	2,1	1,1	52326-MP	360	1060	30,33	1500
120	200	81	1,5	1,1	52228-MP	190	570	16,69	1900
	240	140	2,1	1,1	52328-MP	400	1220	33,68	1400
130	215	89	1,5	1,1	52230-MP	236	735	20,73	1800
140	225	90	1,5	1,1	52232-MP	245	780	21,38	1700
150	240	97	1,5	1,1	52234-MP	285	930	24,67	1600
160	270	109	2	2	52238-MP	335	980	24,75	1500
170	280	109	2	2	52240-MP	340	1020	25,19	1400
190	300	110	2	2	52244-MP	355	1120	26,5	1300


Anschlussmaße siehe Seite 806

Abutment and fillet dimensions see on page 806

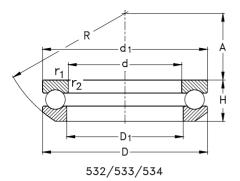
		Abmessungen [mm]	Gewicht [kg]
		Dimensions	Weight
		[mm]	[kg]
d	D ₁	В	[m]
80	103	33	23,8
85	103	15	4,21
	103	21	8,94
95	113	15	4,63
	113	24	13,9
100	123	15	5,23
	123	27	19,4
110	133	18	7,99
	134	30	23,4
120	143	18	8,66
	144	31	28,2
130	153	20	11,4
140	163	20	12,1
150	173	21	14,9
160	194	24	21,7
170	204	24	22,7
190	300	24	24.9

Thrust Ball Bearings, Single Direction, with Sphered Housing Washer



'	Hauptabı [r	messung nm]	gen	Bez	eichnung	Т	ragzahle	Grenzdrehzahlen [min ⁻¹]	
L	Boundary [r	dimensi mm]	ons	De	signation	Lo	oad rating [kN]	gs	Limited speed ratings [rpm]
			r ₁ , r ₂	Lager	Unterlagscheibe	dyn.	stat.		n _G
d	D	Н	min	Bearing	Seating washer	C _a	C_{0a}	C_{u}	
10	26	11,6	0,6	53200	U200	12,7	17	0,6	11500
12	28	11,4	0,6	53201	U201	13,2	19	0,7	11000
15	32	13,3	0,6	53202	U202	16,6	25	0,9	10000
17	35	13,2	0,6	53203	U203	17,3	27,5	1	9500
20	40	14,7	0,6	53204	U204	22,4	37,5	1,4	8000
25	47	16,7	0,6	53205	U205	28	50	1,9	7500
	52	19,8	1	53305	U305	34,5	55	2	5500
	60	26,4	1	53405	U405	56	90	3,3	4500
30	52	17,8	0,6	53206	U206	25,5	47,5	1,8	6700
	60	22,6	1	53306	U306	38	65,5	2,4	5300
	70	30,1	1	53406	U406	72	125	4,6	4000
35	62	19,9	1	53207	U207	35,5	67	2,5	5600
	68	25,6	1	53307	U307	50	88	3,3	4500
	80	34	1,1	53407	U407	86,5	156	5,8	4000
40	68	20,3	1	53208	U208	46,5	98	3,6	5300
	78	28,5	1	53308	U308	61	112	4,1	4300
	90	38,2	1,1	53408	U408	112	204	7,6	3400
45	73	21,3	1	53209	U209	39	80	3	5000
	85	30,1	1	53309	U309	75	140	5,2	4000
	100	42,4	1,1	53409	U409	129	245	9,1	3000
50	78	23,5	1	53210	U210	50	106	3,9	4500
	95	34,3	1,1	53310	U310	88	173	6,4	3600

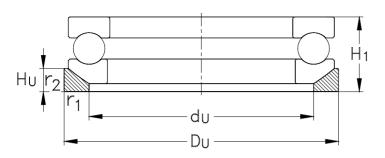
Thrust Ball Bearings, Single Direction, with Sphered Housing Washer


Anschlussmaße siehe Seite 805

Abutment and fillet dimensions see on page 805

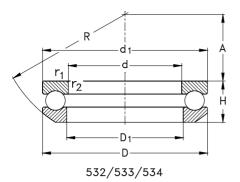
				Gewicht [kg] Weight [kg] Lager Unterlagscheibe						
d	D_1	d₁	R	Α	dυ	Dυ	Hυ	H₁	Bearing	Seating washer
10	12	26	22	8,5	18	28	3,5	13	0,03	0,01
12	14	28	25	11,5	20	30	3,5	13	0,03	0,012
15	17	32	28	12	24	35	4	15	0,05	0,014
17	19	35	32	16	26	38	4	15	0,06	0,015
20	22	40	36	18	30	42	5	17	0,08	0,02
25	27	47	40	19	36	50	5,5	19	0,12	0,032
	27	52	45	21	38	55	6	22	0,18	0,044
	27	60	50	19	42	62	8	29	0,41	0,072
30	32	52	45	22	42	55	5,5	20	0,16	0,038
	32	60	50	22	45	62	7	25	0,27	0,056
	32	70	56	20	50	75	9	33	0,63	0,13
35	37	62	50	24	48	65	7	22	0,22	0,057
	37	68	56	24	52	72	7,5	28	0,38	0,084
	37	80	64	23	58	85	10	37	0,92	0,17
40	42	68	56	28,5	55	72	7	23	0,27	0,07
	42	78	64	28	60	82	8,5	31	0,55	0,12
	42	90	72	26	65	95	12	42	1,3	0,25
45	47	73	56	26	60	78	7,5	24	0,3	0,087
	47	85	64	25	65	90	10	33	0,66	0,17
	47	100	80	29	72	105	12,5	46	1,77	0,32
50	52	78	64	32,5	62	82	7,5	26	0,37	0,098
	52	95	72	28	72	100	11	37	0,97	0,23

Thrust Ball Bearings, Single Direction, with Sphered Housing Washer



H	lauptabr [n	messunq nm]	gen	Bez	eichnung	Т	ragzahle	n	Grenzdrehzahlen [min ⁻¹]
E	Boundary [r	dimensi nm]	ons	De:	signation	Load ratings [kN]			Limited speed ratings [rpm]
			r ₁ , r ₂	Lager	Unterlagscheibe	dyn.	stat.		$n_{\scriptscriptstyle G}$
d	D	Н	min	Bearing	Seating washer	C _a	C_{0a}	$C_{\rm u}$	
50	110	45,6	1,5	53410	U410	156	310	11,5	2800
55	90	27,3	1	53211	U211	61	134	5	4000
	105	39,3	1,1	53311	U311	102	208	7,7	3200
	120	50,5	1,5	53411	U411	180	360	13,3	2400
60	95	28	1	53212	U212	62	140	5,2	3800
	110	38,3	1,1	53312	U312	102	208	7,7	3000
	130	54	1,5	53412- MP	U412	200	400	14,8	2200
65	100	28,7	1	53213	U213	64	150	5,6	3600
	115	39,4	1,1	53313	U313	106	220	8,1	3000
	140	60,2	2	53413-MP	U413	216	450	16,46	2000
70	105	28,8	1	53214	U214	65,5	160	5,9	3600
	125	44,2	1,1	53314	U314	137	300	11,1	2600
	150	63,6	2	53414-MP	U414	236	500	17,66	2000
75	110	28,3	1	53215	U215	67	170	6,3	3400
	135	48,1	1,5	53315	U315	163	360	13,01	2400
	160	69	2	53415- MP	U415	250	560	19,13	1800
80	115	29,5	1	53216	U216	75	190	7	3400
	140	47,6	1,5	53316	U316	160	360	12,71	2400
	170	72,2	2,1	53416-MP	U416	270	620	20,54	1700
85	125	33,1	1	53217	U217	98	250	9,04	3000
	150	53,1	1,5	53317	U317	190	425	14,52	2200
	180	77	2,1	53417	U417	290	680	21,88	1600

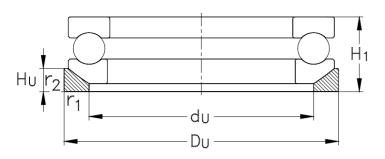
Thrust Ball Bearings, Single Direction, with Sphered Housing Washer


Anschlussmaße siehe Seite 805

Abutment and fillet dimensions see on page 805

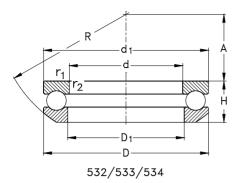
			Abmes [m Dime [m				Gewicht [kg] <i>Weight</i> [kg] Lager Unterlagscheibe			
d	D_1	d ₁	R	Α	dυ	Du	Η _υ	H₁	Bearing	Seating washer
50	52	110	90	35	80	115	14	50	2,33	0,41
55	57	90	72	35	72	95	9	30	0,6	0,152
	57	105	80	30	80	110	11,5	42	1,38	0,28
	57	120	90	28	88	125	15,5	55	3,08	0,53
60	62	95	72	32,5	78	100	9	31	0,66	0,16
	62	110	90	41	85	115	11,5	42	1,41	0,31
	62	130	100	34	95	135	16	58	3,94	0,71
65	67	100	80	40	82	105	9	32	0,73	0,18
	67	115	90	38,5	90	120	12,5	43	1,53	0,34
	68	140	112	40	100	145	17,5	65	5,05	0,81
70	72	105	80	38	88	110	9	32	0,78	0,185
	72	125	100	43	98	130	13	48	2,1	0,41
	73	150	112	34	110	155	19,5	69	6,09	0,99
75	77	110	90	49	92	115	9,5	32	0,81	0,21
	77	135	100	37	105	140	15	52	2,67	0,55
	78	160	125	42	115	165	21	75	7,54	1,23
80	82	115	90	46	98	120	10	33	0,9	0,22
	82	140	112	50	110	145	15	52	2,77	0,57
	83	170	125	36	125	175	22	78	8,93	1,38
85	88	125	100	52	105	130	11	37	1,22	0,29
	88	150	112	43	115	155	17,5	58	3,53	0,81
	88	177	140	47	130	185	23	83	10,6	1,64

Thrust Ball Bearings, Single Direction, with Sphered Housing Washer



Ha	Hauptabmessungen [mm] Boundary dimensions			Bez	eichnung	Tı	ragzahle	n	Grenzdrehzahlen [min ⁻¹]
В	•	dimensionm]	ons	De	signation	Lo	oad rating [kN]	gs	Limited speed ratings [rpm]
			r ₁ , r ₂	Lager	Unterlagscheibe	dyn.	•		$n_{\scriptscriptstyle G}$
d	D	Н	min	Bearing	Seating washer	C _a	C_{0a}	Cu	
90	135	38,5	1,1	53218	U218	120	300	10,48	2800
	155	54,6	1,5	53318	U318	196	465	15,56	2200
	190	81,2	2,1	53418-MP	U418	305	750	23,48	1500
100	150	40,9	1,1	53220	U220	122	320	10,6	2400
	170	59,2	1,5	53320	U320	232	560	17,85	1900
	210	90	3	53420-MP	U420	365	965	28,71	1400
110	160	40,2	1,1	53222	U222	129	360	11,48	2400
	190	67,2	2	53322-MP	U322	275	720	21,77	1700
	230	99,7	3	53422-MP	U422	415	1140	32,38	1300
120	170	40,8	1,1	53224	U224	140	400	12,3	2200
	210	74,1	2,1	53324-MP	U324	325	915	26,38	1500
	250	107,3	4	53424-MP	U424	425	1220	33,22	1200
130	190	47,9	1,5	53226	U226	183	540	15,81	2000
	225	80,3	2,1	53326-MP	U326	360	1060	29,47	1300
	270	115,2	4	53426-MP	U426	520	1600	41,9	1100
140	200	48,6	1,5	53228	U228	190	570	16,19	1900
	240	84,9	2,1	53328	U328	400	1220	32,78	1200
150	215	53,3	1,5	53230	U230	236	735	20,15	1800
	250	83,7	2,1	53330	U330	405	1290	33,78	1100
160	225	54,7	1,5	53232	U232	245	780	20,82	1600
170	240	58,7	1,5	53234	U234	285	930	24,06	1400
180	250	58,2	1,5	53236	U236	290	1000	25,26	1200

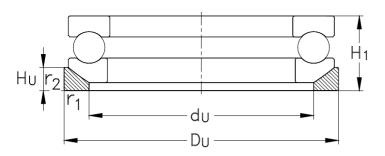
Thrust Ball Bearings, Single Direction, with Sphered Housing Washer


Anschlussmaße siehe Seite 805

Abutment and fillet dimensions see on page 805

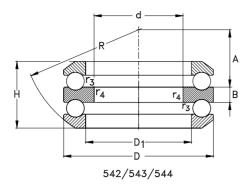
				Gewicht [kg] Weight [kg] Lager Unterlagscheibe						
d	D ₁	d₁	R	Α	dυ	\mathbf{D}_{U}	Hυ	H₁	Bearing	Seating washer
90	93	135	100	45	110	140	13,5	42	1,7	0,42
	93	155	112	40	120	160	18	59	3,83	0,84
	93	187	140	40	140	195	25,5	88	12,3	1,9
100	103	150	112	52	125	155	14	45	2,22	0,5
	103	170	125	46	135	175	18	64	4,98	0,95
	103	205	160	50	155	220	27	98	16,4	2,9
110	113	160	125	65	135	165	14	45	2,37	0,56
	113	187	140	51	150	195	20,5	72	7,83	1,28
	113	225	180	59	170	240	29	109	22	3,7
120	123	170	125	61	145	175	15	46	2,57	0,65
	123	205	160	63	165	220	22	80	10,6	2
	123	245	200	70	185	260	32	118	28,1	4,7
130	133	187	140	67	160	195	17	53	3,93	0,9
	134	220	160	53	177	235	26	86	12,9	2,5
	134	265	200	58	200	280	38	128	34,6	6,4
140	143	197	160	87	170	210	17	55	4,27	1,22
	144	235	180	68	190	250	26	92	15,6	2,9
150	153	212	160	79	180	225	20,5	60	5,81	1,69
	154	245	200	89,5	200	260	26	92	16,1	3,1
160	163	222	160	74	190	235	21	61	6,44	1,81
170	173	237	180	91	200	250	21,5	65	7,91	2,14
180	183	245	200	112	210	260	21,5	66	8,19	1,06

Thrust Ball Bearings, Single Direction, with Sphered Housing Washer



ŀ	lauptabı [r	messung nm]	gen	Bez	zeichnung	Т	ragzahle	n	Grenzdrehzahlen [min ⁻¹]
E	Boundary [r	dimensi mm]	ons	De	Lo	oad rating [kN]	gs	Limited speed ratings [rpm]	
			r ₁ , r ₂	Lager	Unterlagscheibe	dyn.	stat.		n _G
d	D	Н	min	Bearing	C_a	C_{0a}	Cu		
190	270	65,7	2	53238	335	1160	28,33	1000	

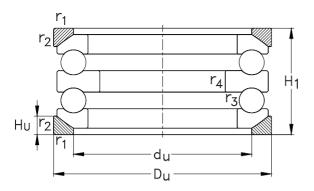
Thrust Ball Bearings, Single Direction, with Sphered Housing Washer


Anschlussmaße siehe Seite 805

Abutment and fillet dimensions see on page 805

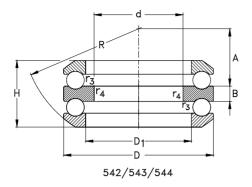
	Abmessungen [mm]									Gewicht [kg]	
	Dimensions [mm]								Weight [kg]		
									Lager	Unterlagscheibe	
d	D₁	d₁	R	Α	d_{υ}	D_{U}	Hυ	H₁	Bearing	Seating washer	
190	195	265	200	98	230	280	23	73	11,5	2,6	

Thrust Ball Bearings, Double Direction, with Sphered Housing Washers



	Haupt	abmess [mm]	ungen		Bez	eichnung	Tı	agzahle	en	Grenzdrehzahlen [min ⁻¹]
	Bound	ary dime [mm]	ensions		De	signation	Load ratings [kN]		gs	Limited speed ratings [rpm]
d	D	н	r ₁ , r ₂ min	r ₃ , r ₄ min	Lager Bearing	Unterlagscheibe Seating washer	C _a dyn.	C ₀a stat.	C _u	n _G
10	32	24,6	0,6	0,3	54202	U202	16,6	25	0,9	9000
15	40	27,4	0,6	0,3	54204	U204	22,4	37,5	1,4	7500
	60	49,7	1	0,6	54405	U405	56	90	3,3	7000
20	47	31,4	0,6	0,3	54205	U205	28	50	1,9	6700
	52	37,6	1	0,3	54305	U305	34,5	55	2	5300
	70	56,2	1	0,6	54406	U406	72	125	4,6	5000
25	52	32,6	0,6	0,3	54206	U206	25,5	47,5	1,8	6300
	60	41,3	1	0,3	54306	U306	38	65,5	2,4	5300
	80	63,1	1,1	0,6	54407	U407	86,5	156	5,8	4500
30	62	37,8	1	0,3	54207	U207	35,5	67	2,5	5600
	68	38,6	1	0,6	54208	U208	46,5	98	3,6	5300
	68	47,2	1	0,3	54307	U307	50	88	3,3	4500
	78	54,1	1	0,6	54308	U308	61	112	4,1	4300
	90	69,5	1,1	0,6	54408	U408	112	204	7,6	4000
35	73	39,6	1	0,6	54209	U209	39	80	3	5000
	85	56,3	1	0,6	54309	U309	75	140	5,2	4000
	100	78,9	1,1	0,6	54409	U409	129	245	9,1	3000
40	78	42	1	0,6	54210	U210	50	106	3,9	4300
	95	64,7	1,1	0,6	54310	U310	88	173	6,4	3600
	110	83,2	1,5	0,6	54410	U410	156	310	11,5	2800
45	90	49,6	1	0,6	54211	U211	61	134	5	4000
	105	72,6	1,1	0,6	54311	U311	102	208	7,7	3500

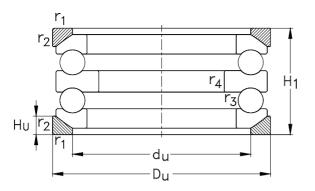
Thrust Ball Bearings, Double Direction, with Sphered Housing Washers


Anschlussmaße siehe Seite 807

Abutment and fillet dimensions see on page 807

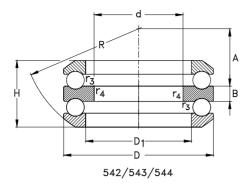
				Abmess [mi	m] nsions					Gewicht [kg] Weight [kg]
d	D₁	В	R	Α	d _u	Du	Hu	Н₁	Lager Bearing	Unterlagscheibe Seating washer
10	17	5	28	10,5	24	35	4	28	0,09	0,01
15	22	6	36	16	30	42	5	32	0,15	0,02
	27	11	50	15	42	62	8	55	0,5	0,07
20	27	7	40	16,5	36	50	5,5	36	0,23	0,03
	27	8	45	18	38	55	6	42	0,32	0,04
	32	12	56	16	50	75	9	62	0,73	0,13
25	32	7	45	20	42	55	5,5	37	0,27	0,04
	32	9	50	19,5	45	62	7	46	0,47	0,06
	37	14	64	18,5	58	85	10	69	1,08	0,17
30	37	8	50	21	48	65	7	42	0,42	0,06
	42	9	56	25	55	72	7	44	0,56	0,07
	37	10	56	21	52	72	7,5	52	0,68	0,08
	42	12	64	23,5	60	82	8,5	59	1,06	0,12
	42	15	72	22	65	95	12	77	1,51	0,25
35	47	9	56	23	60	78	7,5	45	0,6	0,09
	47	12	64	21	65	90	10	62	1,24	0,17
	47	17	80	23,5	72	105	12,5	86	2,08	0,32
40	52	9	64	30,5	62	82	7,5	47	0,7	0,1
	52	14	72	23	72	100	11	70	1,83	0,23
	52	18	90	30	80	115	14	92	2,68	0,41
45	57	10	72	32,5	72	95	9	55	1,13	0,15
	57	15	80	25,5	80	110	11,5	78	2,54	0,28

Thrust Ball Bearings, Double Direction, with Sphered Housing Washers



	Haupt	abmess [mm]	ungen		Bez	eichnung	Tı	agzahl	en	Grenzdrehzahlen [min ⁻¹]
	Bound	lary dime [mm]	ensions		De	signation	Lo	ad ratin [kN]	ngs	Limited speed ratings [rpm]
			r ₁ , r ₂	r ₃ , r ₄	Lager	Unterlagscheibe	C _a	\mathbf{C}_{0a}	$C_{\rm u}$	$n_{\scriptscriptstyle G}$
d	D	Н	min	min	Bearing	Seating washer	dyn.	stat.		
45	120	92	1,5	0,6	54411	U411	180	360	13,3	3200
50	95	50	1	0,6	54212	U212	62	140	5,2	3800
	110	70,7	1,1	0,6	54312-MP	U312	102	208	7,7	3200
	130	99	1,5	0,6	54412-MP	U412	200	400	14,8	3000
	140	109,4	2	1	54413-MP	U413	216	450	16,7	3000
55	100	50,4	1	0,6	54213-MP	U213	64	150	5,6	3000
	105	50,6	1	1	54214-MP	U214	65,5	160	5,9	3200
	115	71,9	1,1	0,6	54313-MP	U313	106	220	8,1	3000
	125	80,3	1,1	1	54314-MP	U314	137	300	11,1	2800
	150	114,1	2	1	54414-MP	U414	236	500	18,29	2800
60	110	49,6	1	1	54215-MP	U215	67	170	6,3	3400
	135	87,2	1,5	1	54315-MP	U315	163	360	13,3	2400
	160	123	2	1	54415-MP	U415	250	560	19,78	2400
65	115	51	1	1	54216-MP	U216	75	190	7	3400
	140	86,1	1,5	1	54316-MP	U316	160	360	13,17	2400
	170	128,5	2,1	1	54416-MP	U416	270	620	21,18	2400
	180	138	2,1	1,1	54417-MP	U417	290	680	22,76	2400
70	125	59,2	1	1	54217-MP	U217	98	250	9,3	2200
	150	95,2	1,5	1	54317-MP	U317	190	425	15,01	2200
	190	143,5	2,1	1,1	54418-MP	U418	305	750	24,36	2000
75	135	69	1,1	1	54218-MP	U218	120	300	10,84	2800
	155	97,1	1,5	1	54318-MP	U318	196	465	16,06	2000

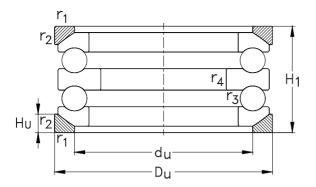
Thrust Ball Bearings, Double Direction, with Sphered Housing Washers


Anschlussmaße siehe Seite 807

Abutment and fillet dimensions see on page 807

				Abmess [m Dimer	m]					Gewicht [kg] Weight [kg]
d	D₁	В	R	Α	dυ	D _{II}	Hu	H₁	Lager Bearing	Unterlagscheibe Seating washer
45	57	20	90	22,5	88	125	15,5	101	3,49	0,53
50	62	10	72	30,5	78	100	9	56	1,22	0,16
	62	15	90	36,5	85	115	11,5	78	2,62	0,31
	62	21	100	28	95	135	16	107	4,41	0,71
	68	23	112	34	100	145	17,5	119	5,67	0,81
55	67	10	80	38,5	82	105	9	57	1,33	0,18
	72	10	80	36,5	88	110	9	57	1,47	0,19
	67	15	90	34,5	90	120	12,5	79	2,82	0,34
	72	16	100	39	98	130	13	88	3,87	0,41
	73	24	112	28,5	110	155	19,5	125	6,77	0,99
60	77	10	90	47,5	92	115	9,5	57	1,54	0,21
	77	18	100	32,5	105	140	15	95	4,92	0,55
	78	26	125	36,5	115	165	21	135	8,33	1,23
65	82	10	90	45	98	120	10	58	1,7	0,22
	82	18	112	45,5	110	145	15	95	5,05	0,57
	83	27	125	30,5	125	175	22	140	9,76	1,38
	88	29	140	40,5	130	185	23	150	8,64	1,64
70	88	12	100	49,5	105	130	11	67	2,39	0,29
	88	19	112	39	115	155	17,5	105	6,36	0,81
	93	30	140	34,5	140	195	25,2	157	13,6	1,9
75	93	14	100	42	110	140	13,5	76	3,27	0,42
	93	19	112	36,5	120	160	18	106	6,86	0,84

Thrust Ball Bearings, Double Direction, with Sphered Housing Washers



	Haupt	abmess [mm]	ungen		Bez	eichnung	ichnung Tragzahlen			Grenzdrehzahlen [min ⁻¹]
	Bound	lary dime [mm]	nsions		De	Load ratings [kN]			Limited speed ratings [rpm]	
			r ₁ , r ₂	r ₃ , r ₄	Lager	\mathbf{C}_{a}	C_{0a}	\mathbf{C}_{u}	$n_{\rm G}$	
d	D	Н	min	min	Bearing	Seating washer	dyn.	stat.		
80	210	159,9	3	1,1	54420-MP	U420	365	965	29,68	1900
85	150	72,8	1,1	1	54220-MP	U220	122	320	10,93	2600
	170	105,4	1,5	1	54320-MP	U320	232	560	18,37	1900
95	160	71,4	1,1	1	54222-MP	U222	129	360	11,81	1700
	190	118,4	2	1	54322-MP	U322	275	720	22,34	1700
100	170	71,6	1,1	1,1	54224-MP	U224	140	400	12,75	1600
	210	131,2	2,1	1,1	54324-MP	U324	325	915	27,22	1600
110	190	85,8	1,5	1,1	54226-MP	U226	183	540	16,33	1500

Thrust Ball Bearings, Double Direction, with Sphered Housing Washers

Anschlussmaße siehe Seite 807

Abutment and fillet dimensions see on page 807

				(Gewicht [kg] Weight [kg]					
									Lager	Unterlagscheibe
d	D₁	В	R	Α	\mathbf{d}_{U}	\mathbf{D}_{U}	H_{υ}	H₁	Bearing	Seating washer
80	103	33	160	43,5	155	220	27	176	18,2	2,9
85	103	15	112	49	125	155	14	81	4,23	0,5
	103	21	125	42	135	175	18	115	8,99	0,95
95	113	15	125	62	135	165	14	81	4,57	0,56
	113	24	140	55	150	195	20,5	128	12,1	1,28
100	123	15	125	58,5	145	175	15	82	5,05	0,65
	123	27	160	58	165	220	22	143	19,1	2
110	133	18	140	63	160	195	17	96	7,78	0,9

Axial-ZylinderrollenlagerCylindrical Roller Thrust Bearings

Axial-Zylinderrollenlager

Cylindrical Roller Thrust Bearings

Axial-Zylinderrollenlager

Normen, Hauptabmessungen

Maßpläne DIN 616 Axial-Zylinderrollenlager DIN 722

Allgemeines

Axial-Zylinderrollenlager der Reihen 811 und 812 sind einseitig wirkende, zerlegbare Axiallager.

Axial-Zylinderrollenlager sind stoßunempfindlich und haben eine wesentlich höhere Tragfähigkeit als Axial-Rillenkugellager. Sie nehmen sehr hohe axiale Kräfte, aber keine Radiallasten auf. Daher ergeben sie sehr starre, axial hochbelastbare Lagerungen bei geringer Baubreite.

Axial-Zylinderrollenlager (siehe Abbildung auf der nächsten Seite) bestehen aus zwei ebenen, bordlosen Scheiben, einer Wellenscheibe (WS) und einer Gehäusescheibe (GS) und einem dazwischen laufenden Rollenkranz (K).

Bei allen Axial-Zylinderrollenlagern tritt im Betrieb an den Enden der Zylinderrollen verstärkt Gleitreibung auf.

Daher werden die NKE Axial-Zylinderrollenlager mit größerer Querschnittsbreite mit mehreren kurzen Zylinderrollen je Käfigtasche anstatt einer längeren ausgeführt.

Aufgrund dieser kinematischen Besonderheiten eignen sich Axial-Zylinderrollenlager für eher geringe Drehzahlen.

Zur Sicherstellung einer optimalen Funktion ist eine Mindest-Axialbelastung erforderlich.

Cylindrical Roller Thrust Bearings

Standards, Boundary Dimensions

Standard plans DIN 616 Cylindrical roller thrust bearings DIN 722

General

Cylindrical roller thrust bearings series 811 and 812 are single direction acting, separable axial bearings.

Cylindrical roller thrust bearings are insensitive to shock loading and feature much higher load carrying capacity compared to thrust ball bearings. They accommodate very high axial loads but no radial forces. They provide a very rigid bearing assembly for high thrust loading with less space requirement.

Cylindrical roller thrust bearings are of simple design, they consist of a shaft washer (WS), a housing washer (GS), and a cylindrical roller and cage thrust assembly (K), see Fig. 1.

With all cylindrical roller thrust bearings, increased sliding friction can occur at the end of the cylindrical rollers.

In order to minimise this negative effect, NKE cylindrical roller thrust bearings with wider sectional widths are produced using several short rollers in each cage pocket instead of using individual longer rollers.

Due to their specific kinematic behaviour, cylindrical roller thrust bearings are only suitable for low speed applications only.

Furthermore, they require minimum axial loads for their optimum function.

Bauformen

NKE Axial-Zylinderrollenlager werden standardmäßig nur in einseitig wirkender Ausführung gefertigt, siehe Abb. 1a.

Für zweiseitig wirkende Lagerungen lassen sich die entsprechenden Komponenten einseitig wirkender Axial-Zylinderrollenlager mit Zwischenscheiben ZS kombinieren, siehe Abb. 1b.

Zwischenscheiben gehören zum NKE Bedarfsserienprogramm und sind auf Anfrage lieferbar.

Bei beengten Platzverhältnissen können Rollenkränze von Axial-Zylinderrollenlagern auch ohne Lagerscheiben verwendet werden, sofern die Stirnflächen der Anschlussteile als Laufbahnen ausgeführt, d. h. gehärtet und geschliffen werden.

Da Komponenten von Axial-Zylinderrollenlagern häufig auch separat verwendet werden, beispielsweise für Axial-Nadelkränze, sind die einzelnen Bestandteile auch separat erhältlich.

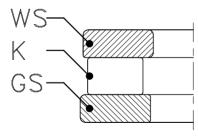
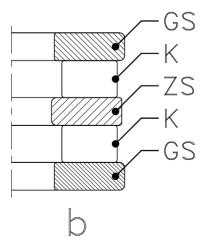


Abb. 1 *Fig. 1*

Design Variants


NKE cylindrical roller thrust bearings are produced in single direction design only as standard (see Fig. 1a).

Double direction acting cylindrical roller thrust bearings are built using a combination of components from single direction acting cylindrical roller thrust bearings together with intermediate washers ZS (see Fig. 1b).

Such intermediate washers are part of NKE supplementary product range and are available on request.

For application designs with space restrictions the cylindrical roller and cage thrust assemblies may be used without washers providing the contact faces of adjacent machine parts are machined as bearing raceways, (e.g. hardened and ground, etc).

The components of cylindrical roller thrust bearings are frequently used either separately or in conjunction with other components in several applications (e.g. to build needle roller thrust assemblies) therefore, they are available as loose parts.

Axial-Zylinderrollenlager

Cylindrical Roller Thrust Bearings

Schiefstellung

Axial-Zylinderrollenlager vertragen grundsätzlich keine Schiefstellungen.

Die Anlageflächen von Wellen- und Gehäusescheiben müssen dazu parallel sein.

Käfige

Kleinere NKE Axial-Zylinderrollenlager werden standardmäßig mit wellengeführten Polyamid-Massivkäfigen gefertigt. Polyamidkäfige eignen sich für Betriebstemperaturen bis +120°C.

Größere Axial-Zylinderrollenlager werden entweder mit Messing-Massivkäfigen (Nachsetzzeichen **MB**) oder auch mit Stahl-Massivkäfigen, Nachsetzzeichen **FB**, produziert.

Toleranzen

Axial-Zylinderrollenlager werden standardmäßig in Normaltoleranz (**PN**) gefertigt. Auf Anfrage können diese auch mit eingeengten Toleranzen in den Toleranzklassen **P6** und **P5** gefertigt werden.

Detaillierte Werte für die einzelnen Toleranzklassen entnehmen Sie bitte den Tabellen im Abschnitt "Lagerdaten / Toleranzen", Seite 64.

Mindestbelastung:

Zum kinematisch korrekten Betrieb benötigen Wälzlager in allen Betriebszuständen eine Mindestbelastung.

Für NKE Axial-Zylinderrollenlager muss die Mindestaxialbelastung 5% der dynamischen Tragzahl betragen.

Misalignment

All cylindrical roller thrust bearing types do not allow any misalignment.

The contacting surfaces of both shaft and housing seats must be parallel.

Cages

Small NKE cylindrical roller thrust bearings are fitted with shaft-centred polyamide cages as standard.

Polyamide cages are suitable for operating temperatures up to +120°C (+248°F).

Large cylindrical roller thrust bearings are produced with either solid brass cages (suffix **MB**), or with solid steel cages (suffix **FB**).

Tolerances

Cylindrical roller thrust bearings are produced to normal tolerance class (**PN**) as standard.

On request these bearings are also produced to closer tolerances, such as tolerance classes **P6** and **P5**

Detailed tolerance values are listed in the tables shown in the chapter "Bearing data /Tolerances" page 249.

Minimum Load:

Bearings require a minimum load under all operating conditions to ensure kinematically correct rolling element function.

For NKE cylindrical roller thrust bearings the minimum axial load must be 5% of the dynamic load rating.

Dynamisch äquivalente Lagerbelastung

Axial-Zylinderrollenlager sind reine Axiallager und können keine Radialkräfte aufnehmen.

daher gilt:

$$P = F_a$$

Äquivalente statische Lagerbelastung

Für Axial-Zylinderrollenlager gilt:

$$P_0 = F_a$$

Gestaltung der Anschlussteile

Bei einer Verwendung von **Axial-Rollenkränzen** ohne Laufscheiben müssen die Anschlussteile der Umgebungskonstruktion in geeigneter Weise ausgeführt, d.h. gehärtet und geschliffen sein.

Entsprechende Informationen dazu finden Sie im Kapitel "Gestaltung der Lagerstelle", ab Seite 97.

Der maximal zulässige **Axialschlag**, der als Laufbahnen ausgeführten Anschlussteile, muss den Werten der Lagerscheiben entsprechen.

Die Bohrungsdurchmesser der NKE Axial-Rollenkränze haben eine Toleranz nach E11, die Toleranz des Außendurchmessers der Rollenkränze liegt im Toleranzfeld a13.

Bei höheren Drehzahlen ist auf eine ausreichende Führung des Rollenkranzes zu achten.

Zur Vermeidung übermäßigen Verschleißes sind die Führungsflächen dabei zu schleifen.

Equivalent Dynamic Bearing Load

Cylindrical roller thrust bearings are pure axial bearings; they are not able to accommodate any radial loads, therefore:

$$P = F_a$$

Equivalent Static Bearing Load

For cylindrical roller thrust bearings:

$$P_0 = F_a$$

Design of Adjacent Machine Parts

When cylindrical roller and cage thrust assemblies are used without washers, adjacent machine parts must be designed and machined as bearing raceways (e.g. hardened and ground etc).

The maximum permissible axial runout of the adjacent surfaces acting as raceway must also meet the requirements of the respective washers.

For detailed information see chapter "Design of bearing location", page 282.

The bore diameters of **NKE cylindrical roller** and cage thrust assemblies have tolerances according to ISO Tolerance field (E11), whilst the tolerance of their outer diameters lies in the tolerance field a13.

Cylindrical roller and cage thrust assemblies require an effective guidance when operating at higher speeds.

To avoid excessive wear at higher speeds, the guiding surfaces must be ground.

Axial-Zylinderrollenlager Cylindrical Roller Thrust Bearings

Lagersitze bei Axial-Zylinderrollenlager

Bei der Gestaltung von Lagersitzen für Axial-Zylinderrollenlager haben sich folgende Passungen bewährt:

Bearing Seats for Cylindrical Roller Thrust Bearings

For the design of cylindrical roller thrust bearing seats the following of tolerance fields have proven to be satisfactory in practice:

	Toleranzfeld / Tolerance field						
bei Zentrierung Centred at	Welle Shaft	Gehäuse Housing					
Axial-Zylinderrollenkranz Cylindrical roller and cage thrust assembly	h8						
Wellenscheibe Shaft washer	h8						
Gehäusescheibe Housing washer		H9					

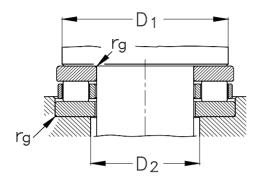
Anschlussmaße für Axial-Zylinderrollenlager

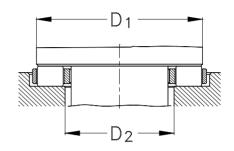
Bei Axial-Zylinderrollenlagern müssen die Anschlussteile so ausgeführt sein, dass die Wellen- und Gehäusescheiben auf der gesamten Laufbahnbreite unterstützt werden.

Dabei dürfen die Radien der Kantenverrundung der Laufscheiben jedoch nicht an den Hohlkehlen von Wellenbund oder Gehäuse anliegen.

Daher muss der größte Hohlkehlradius an den Anschlussteilen $(\mathbf{r_g})$ kleiner sein als der kleinste Radius für die Kantenverrundung $(\mathbf{r_s})$ der Lagerscheiben (siehe Zeichnung bei Tabelle auf der Folgeseite).

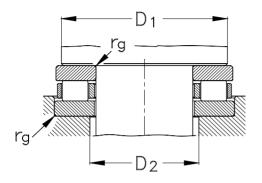
Abutment and Fillet Dimensions for Cylindrical Roller Thrust Bearings

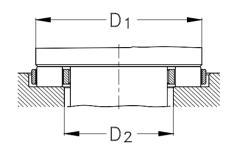

In the case of cylindrical roller thrust bearings, an effective support of the bearing washers over the total width of their raceways by adjacent machine parts is necessary.


The bearing washer must contact adjacent parts with their side face only. The fillet radii of bearing corners must not touch the shoulder fillet radii of the shaft or housing shoulders.

Therefore, the largest fillet radius (\mathbf{r}_g) must be smaller than the minimum fillet dimension of the bearing rings (\mathbf{r}_s) as listed in the following tables.

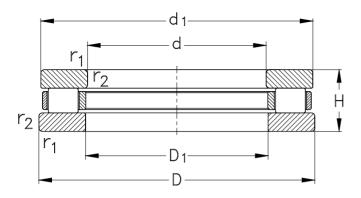
Anschlussmaße für Axial-Zylinderrollenlager, Reihen 811 und 812 [mm] Abutment and Fillet Dimensions for Cylindrical Roller Thrust Bearings, Series 811 and 812 [mm]



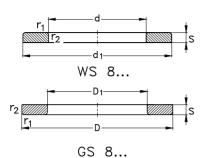


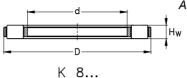
Welle	Bohrungs		L	agerreihe /	Bearing serie	es	
Shaft	kennzahl		811			812	
Ød	Bore reference	D ₁	D_2	r _g	D ₁	D_2	r_{g}
[mm]	number	min	max	max	min	max	max
15	02	25	18	0,3			
17	03	27	20	0,3			
20	04	32	23	0,3			
25	05	39	28	0,6			
30	06	44	33	0,6	49	33	0,6
35	07	49	38	0,6	56	41	1
40	08	56	44	0,6	63	45	1
45	09	61	49	0,6	68	50	1
50	10	66	54	0,6	73	55	1
55	11	73	60	0,6	84	61	1
60	12	80	65	1	89	66	1
65	13	85	70	1	94	71	1
70	14	90	75	1	99	76	1
75	15	95	80	1	104	81	1
80	16	100	85	1	109	86	1
85	17	105	90	1	117	93	1
90	18	114	96	1	127	98	1
100	20	129	106	1	140	110	1
110	22	139	116	1	150	120	1
120	24	149	126	1	160	130	1
130	26	162	138	1	179	141	1,5
140	28	172	148	1	189	151	1,5
150	30	182	158	1	204	161	1,5

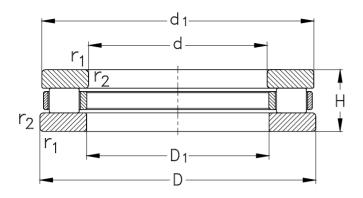
Anschlussmaße für Axial-Zylinderrollenlager, Reihen 811 und 812 [mm] Abutment and Fillet dimensions for Cylindrical Roller Thrust Bearings, Series 811 and 812 [mm]



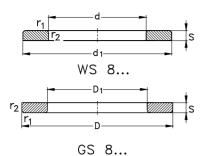
Welle	Bohrungs		L	agerreihe /	Bearing serie	es	
Shaft	kennzahl		811			812	
Ød	Bore reference	D₁	D_2	\mathbf{r}_{g}	D₁	D_2	r _g
[mm]	number	min	max	max	min	max	max
160	32	192	168	1	214	171	1,5
170	34	207	178	1	227	183	1,5
180	36	217	188	1	237	193	1,5
190	38	230	200	1	256	204	2
200	40	240	210	1	266	214	2
220	44	260	230	1	286	234	2
240	48	288	252	1,5	322	258	2,1
260	52	308	272	1,5	342	278	2,1
280	56	337	293	1,5	362	298	2,1
300	60	365	315	2	398	322	2,5
320	64	385	335	2	418	342	2,5
340	68	405	355	2	438	362	2,5
360	72	425	375	2	475	385	3
380	76	445	395	2	495	405	3
400	80	465	415	2	515	425	3
420	84	485	435	2	552	448	4
440	88	522	458	2,1	572	468	4
460	92	542	478	2,1	592	488	4
480	96	562	498	2,1	621	509	4
500	/500	582	518	2,1	641	529	4
530	/530	619	551	2,5	680	560	4
560	/560	649	581	2,5	715	595	4
600	/600	689	621	2,5	764	636	4

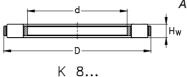


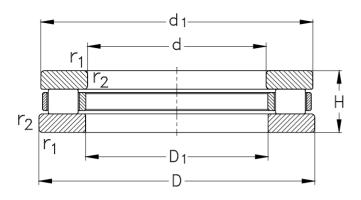

На	uptabm [m	•	jen	Lagertype	Tr	agzahl	en	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]
Во	oundary o [m		ons	Designation	Lo	ad ratin [kN]	igs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]
d	D	Н	r ₁ , r ₂ min		$egin{array}{ccc} egin{array}{ccc} \egin{array}{ccc} egin{array}{ccc} \egin{array}{ccc} arra$		C _u	n _{er}	n _G
30	47	11	0,6	81106-TVPB	26,56	77	8,7	3100	6000
	52	16	0,6	81206-TVPB	47,01	124	16,97	2700	4800
35	52	12	0,6	81107-TVPB	26,6	94	12,59	2600	5600
	62	18	1	81207-TVPB	52	149	19,36	2600	4000
40	60	13	0,6	81108-TVPB	40,42	127	16,37	2300	5000
	68	19	1	81208-TVPB	70	196	24,75	2200	3800
45	65	14	0,6	81109-TVPB	43,31	143	17,9	2100	4500
	73	20	1	81209-TVPB	73	214	26,29	2000	3600
50	70	14	0,6	81110-TVPB	45,87	158	19,37	1900	4300
	78	22	1	81210-TVPB	80	149	29,93	2400	3400
55	78	16	0,6	81111-TVPB	48,15	174	20,66	1900	3800
	90	25	1	81211-TVPB	105	319	36,91	1700	2800
60	85	17	1	81112-TVPB	67	235	27,17	1600	3600
	95	26	1	81212-TVPB	116	373	42,21	1500	2800
65	90	18	1	81113-TVPB	72	260	29,44	1500	3400
	100	27	1	81213-TVPB	120	399	44,39	1400	2600
70	95	18	1	81114-TVPB	73	272	30,26	1400	3200
	105	27	1	81214-TVPB	126	426	46,52	1300	2600
75	100	19	1	81115-TVPB	78	297	32,44	1300	3200
	110	27	1	81215-TVPB	130	453	48,61	1200	2400
80	105	19	1	81116-TVPB	80	322	34,56	1200	3000
	115	28	1	81216-TVPB	133	479	51	1100	2400


Anschlussmaße siehe Seite 847

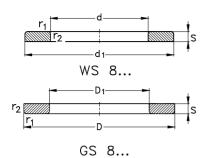
Abutment and fillet dimensions see on page 847

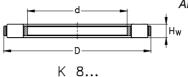

	Å	Abmessunge [mm] Dimensions [mm]	n		chnung der Lage		Gewicht [kg] Weight [kg]
d	d₁	D ₁	S	Rollensatz Cylindrical roller and cage thrust assembly	Wellenscheibe Shaft washer	Gehäusescheibe <i>Housing washer</i>	m
30	47	32	3	K 81106-TVPB	WS 81106	GS 81106	0,06
	52	32	4,25	K 81206-TVPB	WS 81206	GS 81206	0,13
35	52	37	3,5	K 81107-TVPB	WS 81107	GS 81107	0,08
	62	37	5,25	K 81207-TVPB	WS 81207	GS 81207	0,23
40	60	42	3,5	K 81108-TVPB	WS 81108	GS 81108	0,12
	68	42	5	K 81208-TVPB	WS 81208	GS 81208	0,27
45	65	47	4	K 81109-TVPB	WS 81109	GS 81109	0,14
	73	47	5,5	K 81209-TVPB	WS 81209	GS 81209	0,31
50	70	52	4	K 81110-TVPB	WS 81110	GS 81110	0,16
	78	52	6,5	K 81210-TVPB	WS 81210	GS 81210	0,38
55	78	57	5	K 81111-TVPB	WS 81111	GS 81111	0,23
	90	57	7	K 81211-TVPB	WS 81211	GS 81211	0,6
60	85	62	4,75	K 81112-TVPB	WS 81112	GS 81112	0,28
	95	62	7,5	K 81212-TVPB	WS 81212	GS 81212	0,74
65	90	67	5,25	K 81113-TVPB	WS 81113	GS 81113	0,33
	100	67	8	K 81213-TVPB	WS 81213	GS 81213	0,82
70	95	72	5,25	K 81114-TVPB	WS 81114	GS 81114	0,36
	105	72	8	K 81214-TVPB	WS 81214	GS 81214	0,87
75	100	77	5,75	K 81115-TVPB	WS 81115	GS 81115	0,43
	110	77	8	K 81215-TVPB	WS 81215	GS 81215	0,92
80	105	82	5,75	K 81116-TVPB	WS 81116	GS 81116	0,46
	115	82	8,5	K 81216-TVPB	WS 81216	GS 81216	1,02


На	auptabm [m	•	gen	Lagertype	Ti	ragzahle	en	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]
Вс	oundary o [m		ons	Designation	Lo	oad ratin [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]
d	D	Н	r ₁ , r ₂ min		C _a dyn.	C ₀a stat.	C _u	n _{θr}	n _G
85	110	19	1	81117-TVPB	83	334	35,33	1100	3000
	125	31	1	81217-TVPB	150	539	56	1200	2200
90	120	22	1	81118-TVPB	109	428	44,23	1100	2600
	135	35	1,1	81218-TVPB	194	690	70	1000	2000
100	135	25	1	81120-TVPB	148	586	59	1000	2400
	150	38	1,1	81220-TVPB	231	842	83	1000	1800
110	145	25	1	81122-TVPB	158	639	62	890	2200
	160	38	1,1	81222-TVPB	236	891	85	900	1700
120	155	25	1	81124-TVPB	163	692	66	820	2200
	170	39	1,1	81224-TVPB	250	990	93	820	1600
130	170	30	1	81126-TVPB	192	824	77	790	1900
	190	45	1,5	81226-TVPB	358	1350	123	720	1400
140	180	31	1	81128-TVPB	203	888	81	720	1800
	200	46	1,5	81228-MB	360	1400	129	690	1400
150	190	31	1	81130-TVPB	207	950	85	670	1700
	215	50	1,5	81230-MB	465	1900	170	580	1300
160	200	31	1	81132-TVPB	217	1014	89	630	1700
	225	51	1,5	81232-MB	480	2000	176	550	1200
170	215	34	1,1	81134-TVPB	269	1250	108	590	1600
	240	55	1,5	81234-MB	540	2280	200	520	1100
180	225	34	1,1	81136-MB	270	1270	110	560	1500
	250	56	1,5	81236-MB	550	2400	204	490	1100


Anschlussmaße siehe Seite 847

Abutment and fillet dimensions see on page 847


		Abmessungen [mm] Dimensions [mm]			chnung der Lage		Gewicht [kg] Weight [kg]
d	d₁	D ₁	S	Rollensatz Cylindrical roller and cage thrust assembly	Wellenscheibe Shaft washer	Gehäusescheibe Housing washer	m
85	110	87	5,75	K 81117-TVPB	WS 81117	GS 81117	0,48
	125	88	9,5	K 81217-TVPB	WS 81217	GS 81217	1,36
90	120	92	6,5	K 81118-TVPB	WS 81118	GS 81118	0,72
	135	93	10,5	K 81218-TVPB	WS 81218	GS 81218	1,85
100	135	102	7	K 81120-TVPB	WS 81120	GS 81120	1,07
	150	103	11,5	K 81220-TVPB	WS 81220	GS 81220	2,45
110	145	112	7	K 81122-MB	WS 81122	GS 81122	1,12
	160	113	11,5	K 81222-MB	WS 81222	GS 81222	2,7
120	155	122	7	K 81124-MB	WS 81124	GS 81124	1,25
	170	123	12	K 81224-MB	WS 81224	GS 81224	2,98
130	170	132	9	K 81126-MB	WS 81126	GS 81126	1,72
	187	133	13	K 81226-MB	WS 81226	GS 81226	4,37
140	178	142	9,5	K 81128-MB	WS 81128	GS 81128	2,02
	197	143	13,5	K 81228-MB	WS 81228	GS 81228	4,76
150	188	152	9,5	K 81130-MB	WS 81130	GS 81130	2,15
	212	153	14,5	K 81230-MB	WS 81230	GS 81230	6,04
160	198	162	9,5	K 81132-MB	WS 81132	GS 81132	2,28
	222	163	15	K 81232-MB	WS 81232	GS 81232	6,52
170	213	172	10	K 81134-MB	WS 81134	GS 81134	3,01
	237	173	16,5	K 81234-MB	WS 81234	GS 81234	8,12
180	222	183	10	K 81136-MB	WS 81136	GS 81136	3,07
	247	183	17	K 81236-MB	WS 81236	GS 81236	8,69


Hauptabmessungen [mm]				Lagertype	Tragzahlen			Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]	
Boundary dimensions [mm]				Designation	Load ratings [kN]			Thermal speed ratings [rpm]	Limited speed ratings [rpm]	
d	D	Н	r ₁ , r ₂ min		C _a dyn.	C ₀a stat.	C _u	n _{er}	n _G	
190	240	37	1,1	81138-MB	310	1460	125	550	1400	
	270	62	2	81238-MB	695	2900	250	460	1000	
200	250	37	1,1	81140-MB	310	1500	127	530	1400	
	280	62	2	81240-MB	720	3100	255	430	1000	
220	270	37	1,1	81144-MB	335	1700	137	470	1300	
	300	63	2	81244-MB	750	3350	275	390	950	
240	300	45	1,5	81148-MB	475	2450	196	410	1100	
	340	78	2,1	81248-MB	1100	4900	390	330	800	
260	320	45	1,5	81152-MB	490	2600	200	380	1100	
	360	79	2,1	81252-MB	1140	5300	415	300	750	
280	350	53	1,5	81156-MB	680	3550	275	330	950	
	380	80	2,1	81256-MB	1160	5500	425	280	750	
300	380	62	2	81160-MB	850	4400	335	290	850	
	420	95	3	81260-MB	1530	7200	540	250	630	
360	440	65	2	81172-MB	900	4900	355	250	750	
	500	110	4	81272-MB	2160	10400	750	200	500	
380	460	65	2	81176-MB	930	5300	375	230	750	
	520	112	4	81276-MB	2000	9500	471	210	450	

Anschlussmaße siehe Seite 847

Abutment and fillet dimensions see on page 847

	,	Abmessungen [mm] Dimensions [mm]		Beze i Designal	Gewicht [kg] Weight [kg]		
d	d₁	D_1	S	Rollensatz	Wellenscheibe	Gehäusescheibe	
				Cylindrical roller and cage thrust assembly	Shaft washer	Housing washer	m
190	237	193	11	K 81138-MB	WS 81138	GS 81138	3,99
	267	194	18	K 81238-MB	WS 81238	GS 81238	11,7
200	247	203	11	K 81140-MB	WS 81140	GS 81140	4,17
	277	204	18	K 81240-MB	WS 81240	GS 81240	12,2
220	267	223	11	K 81144-MB	WS 81144	GS 81144	4,65
	297	224	18,5	K 81244-MB	WS 81244	GS 81244	13,4
240	297	243	13,5	K 81148-MB	WS 81148	GS 81148	7,43
	335	244	23	K 81248-MB	WS 81248	GS 81248	23,1
260	317	263	13,5	K 81152-MB	WS 81152	GS 81152	7,99
	355	264	23,5	K 81252-MB	WS 81252	GS 81252	25,1
280	347	283	15,5	K 81156-MB	WS 81156	GS 81156	12
	375	284	24	K 81256-MB	WS 81256	GS 81256	27,1
300	376	304	18,5	K 81160-MB	WS 81160	GS 81160	17,2
	415	304	28,5	K 81260-MB	WS 81260	GS 81260	42,5
360	436	364	20	K 81172-MB	WS 81172	GS 81172	21,4
	495	365	32,5	K 81272-MB	WS 81272	GS 81272	68,7
380	456	384	20	K 81176-MB	WS 81176	GS 81176	22,4
	515	385	33,5	K 81276-MB	WS 81276	GS 81276	73,3

Axial-Pendelrollenlager Spherical Roller Thrust Bearings

Axial-Pendelrollenlager

Normen, Hauptabmessungen

Axial-Pendelrollenlager

DIN 728

Allgemeines

Axial-Pendelrollenlager sind einseitig wirkende, zerlegbare Axiallager.

Durch die Tonnenrollen, die in der hohlkugeligen Laufbahn der Gehäusescheibe laufen, sind Axial-Pendelrollenlager winkeleinstellbar. Dadurch sind diese Lager unempfindlich gegen Fluchtungsfehler und gleichen Wellendurchbiegungen sehr gut aus.

Axial-Pendelrollenlager übertragen die wirkenden Kräfte in einem Winkel zur Mittelachse und können daher neben hohen axialen Belastungen auch Radialkräfte aufnehmen, wobei allerdings die wirkende Radialkraftkomponente nicht größer als etwa 55% der Axialbelastung sein darf.

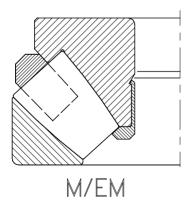
Spherical Roller Thrust Bearings

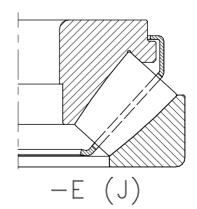
Standards, Boundary Dimensions

Spherical roller thrust bearings

DIN 728

General


Spherical roller thrust bearings are separable single direction acting axial bearings (see sketch below).


Spherical roller thrust bearings are self-aligning as their spherical rollers run on the spheroid raceways of shaft and housing washers.

Therefore they are well able to accommodate errors of misalignment and some shaft bending in an optimum way.

Spherical roller thrust bearings transmit forces via a contact angle towards the centre axis. Thus, they are able to accommodate some radial forces along with high axial loads.

But, it must be considered that the acting radial forces must not exceed approximately **55%** of the applied axial forces.

Toleranzen

NKE Axial-Pendelrollenlager werden standardmäßig in Normaltoleranz (**PN**) gefertigt.

Auf Anfrage kann auch mit eingeengter Toleranz, wie der Toleranzklasse **P6** gefertigt werden. Detaillierte Werte für die einzelnen Toleranzklassen entnehmen Sie bitte den Tabellen im Abschnitt "Lagerdaten / Toleranzen", Seite 52.

Schiefstellung

Axial-Pendelrollenlager sind zum Ausgleich von Schiefstellungen optimal geeignet.

Die Größe der maximal zulässigen Verkippung um die Mittelachse Ψ hängt dabei sowohl von der jeweiligen Lagerreihe als auch von der Belastung des Lagers ab.

Unter **normalen** Betriebsbedingungen (bei rotierender Wellenscheibe und konstanter Schiefstellung) können folgende Richtwerte angenommen werden:

Tolerances

NKE spherical roller thrust bearings are produced to normal tolerance class (**PN**) as standard.

On request these bearings are also produced to closer tolerances, **P6**. Detailed tolerance values are listed in the tables shown in the chapter "**Bearing Data /Tolerances**" page 237.

Misalignment

Spherical roller thrust bearings are optimum to compensate for misalignments.

The permissible amount of misalignment from the centre position (Ψ) , however, is dependant on both the bearing series and the applied loading.

Under **normal** operating conditions, such as a rotating shaft washer and permanent misalignment, the following values may be assumed:

Maximal zulässige Schiefstellung bei NKE Axial-Pendelrollenlagern

Maximum Permissible Misalignment for NKE Spherical Roller Thrust Bearings

Lagerreihe	Maximal zulässige Schiefstellung Ψ Maximum permissible misalignment Ψ					
Bearing series	bei $P(P_0) \le 0.05 C_{0a}$					
292 / 292 E	1,5°					
293 / 293 E	2,5°					
294 / 294 E	3°					

Axial-Pendelrollenlager

Spherical Roller Thrust Bearings

Käfige

Kleinere und mittelgroße NKE Axial-Pendelrollenlager werden sowohl mit Messing-Massivkäfigen (MB), als auch mit Stahlblech-Käfigen (J) gefertigt.

Größere Axial-Pendelrollenlager werden nur mit Messing-Massivkäfigen (Nachsetzzeichen **MB**) produziert. Eine abweichende Käfigausführung ist möglich.

Mindestbelastung:

Zum kinematisch korrekten Betrieb benötigen Wälzlager in allen Betriebszuständen eine Mindestbelastung.

Für NKE Axial-Pendelrollenlager muss die Mindestaxialbelastung **5%** der dynamischen Tragzahl betragen.

Äquivalente dynamische Lagerbelastung

Für dynamisch belastete Axial-Pendelrollenlager gilt, sofern $F_r \le 0.55 * F_a$:

$$P = F_a + 1.2 * F_r$$

Äquivalente statische Lagerbelastung

Für statisch belastete Axial-Pendelrollenlager gilt, sofern $F_r \le 0.55 * F_a$:

$$P_0 = F_a + 2.7 * F_r$$

Cages

Small and medium-size NKE spherical roller thrust bearings are available with either solid brass cages (suffix MB) or pressed steel cages (suffix J).

Large spherical roller thrust bearings are produced with solid brass cages (suffix **MB**) as standard. Other cages variants are possible.

Minimum Load:

Bearings require a minimum load under all operating conditions to ensure kinematically correct rolling element function.

For NKE spherical roller thrust bearings the minimum axial load must be **5%** of the dynamic load rating.

Equivalent Dynamic Bearing Load

For spherical roller thrust bearings, when $F_r \le 0.55 * F_a$:

$$P = F_a + 1.2 * F_r$$

Equivalent static bearing load

For spherical roller thrust bearings, when $F_r \le 0.55 * F_a$:

$$P_0 = F_a + 2.7 * F_r$$

Achtung:

Bei Axial-Pendelrollenlagern muss die statische Tragsicherheit S_0 höher als bei anderen Lagerbauformen sein.

(Die **statische Tragsicherheit S**₀ repräsentiert das Verhältnis von der tatsächlich auf ein Lager wirkender statischer Belastung zu dessen jeweiliger statischer Tragzahl).

$$S_0 = \frac{C_{0a}}{P_0}$$

wobei

 S_0 = statische Tragsicherheit C_{0a} = statische Tragzahl [kN]

P₀ = maximale statische Belastung [kN]

Für Axial-Pendelrollenlager gilt:

 bei Ausführung der Anschlussteile gemäß den Empfehlungen auf der Folgeseite

 bei voller axialer Unterstützung der Wellenund Gehäusescheiben über deren gesamte Breite sowie bei zusätzlicher radialer Unterstützung der Gehäusescheibe :

$$S_{0min} \ge 4$$

Please note:

In the case of spherical roller thrust bearings, the static carrying safety S_0 must be higher than other rolling bearing types for reasons of strength.

(The static carrying safety S_0 indicates the ratio of the actual static load acting on the bearing compared to its static load rating, C_0).

general formula:
$$S_0 = \frac{C_{0a}}{P_0}$$

where

S₀ = static carrying safety
 C_{0a} = static load rating [kN]
 P₀ = maximum static load [kN]

For spherical roller thrust bearings:

 if the adjacent parts are designed according to the recommendations on following pages:

$$S_{0min} \ge 8$$

 if both the housing and shaft washers have full axial support over their total width and the housing washer has satisfactory radial support, then:

Axial-Pendelrollenlager Spherical Roller Thrust Bearings

Schmierung

Axial-Pendelrollenlager sollten vorzugsweise mit Öl geschmiert werden.

Fettschmierung sollte lediglich bei geringen Belastungen und niedrigen Drehzahlen verwendet werden, wobei besonders auf eine ausreichende Versorgung der Berührflächen zwischen Rollen und dem Führungsbord mit Schmierstoff zu achten ist. Auf eine regelmäßige Nachschmierung ist besonders zu achten.

Anschlussmaße

Die Anschlussteile müssen so ausgeführt sein, dass sowohl die Wellen- als auch die Gehäusescheiben der Axialpendelrollenlager ausreichend unterstützt werden.

Dabei dürfen die Radien der Kantenverrundung der Laufscheiben jedoch nicht an den Hohlkehlen von Wellenbund oder Gehäuse anliegen.

Daher muss der größte Hohlkehlradius an den Anschlussteilen (\mathbf{r}_g) kleiner sein als der kleinste Radius für die Kantenverrundung (\mathbf{r}_s) der Lagerscheiben (siehe Zeichnung bei Tabelle auf der Folgeseite).

Damit bei größeren Schiefstellungen ein Berühren der Rollen am Gehäuse vermieden wird, muss die Gehäusebohrung entsprechend den empfohlenen Abmessungen ausgeführt werden.

Lubrication

Oil lubrication is preferred for spherical roller thrust bearings.

Grease lubrication is adequate only for applications where low loads and low speeds occur.

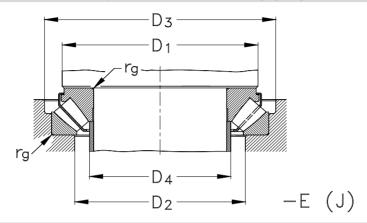
Particular attention must be paid to ensure a sufficient grease supply to the contacting areas between the roller ends and guide flange. Frequent re-lubrication is necessary.

Abutment and Fillet Dimensions

In the case of spherical roller thrust bearings, an effective support of both bearing washers is necessary.

The bearing washer must contact adjacent parts with their face sides only.

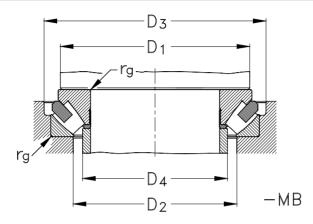
The fillet radii of bearing corners must not touch the shoulder fillet radii of the shaft or the housing shoulders.


Therefore, the largest fillet radius (\mathbf{r}_g) must be smaller than the minimum fillet dimension of the bearing rings (\mathbf{r}_s) as listed in the bearing tables (please see the following pages).

To avoid any contact between rollers and the housing with high misalignments, the housing bore must be designed according to the recommendations listed in the tables on the following pages.

Anschlussmaße für Axial-Pendelrollenlager [mm]

Abutment and Fillet Dimensions for Spherical Roller Thrust Bearings [mm]

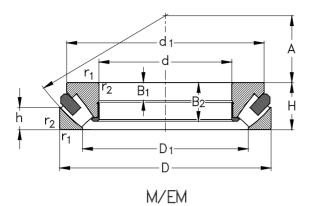


Welle	Bohrungs		Lagerreihe / Bearing series													
Shaft	kennzahl Bore		29	2 / 292	2E			29	3 / 29	3E		294 / 294E				
Ød	reference	D ₁	D_2	D_3	D_4	r _g	D₁	D_2	D_3	D_4	r _g	D₁	D_2	D_3	D_4	r _g
[mm]	number	min	max	min	max	max	min	max	min	max	max	min	max	min	max	max
60	12											90	107	133	70	1,5
65	13											100	115	143	73	2
70	14											105	124	153	80	2
75	15											115	132	163	86	2
80	16											120	141	173	91	2,1
85	17						115	129	153	93	1,5	130	150	183	97	2,1
90	18						118	135	163	99	1,5	135	158	193	103	2,1
100	20						132	148	173	109	1,5	150	175	214	112	2,5
110	22						145	165	193	119	2	165	192	234	125	2,5
120	24						160	182	213	132	2,1	180	210	254	135	3
130	26						170	195	228	141	2,1	195	227	275	151	3
140	28						185	208	244	152	2,1	205	237	285	158	3
150	30						195	220	254	163	2,1	220	253	306	171	3
160	32						210	236	274	174	2,5	230	271	326	181	4
170	34						220	247	284	184	2,5	245	288	346	191	4
180	36						235	263	304	193	2,5	260	305	366	202	4
190	38						250	281	325	206	3	275	322	386	214	4
200	40	235	258	284	211	2	265	298	348	215	3	290	338	406	225	4
220	44	260	277	304	229	2	285	316	368	235	3	310	360	428	243	5
240	48	285	311	344	251	2,1	300	337	390	256	3	330	381	448	265	5
260	52	305	331	365	272	2,1	330	372	430	277	4	360	419	488	291	5
280	56	325	351	385	291	2,1	350	394	450	298	4	390	446	530	310	5

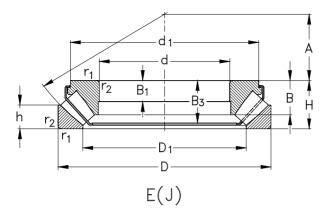


Anschlussmaße für Axial-Pendelrollenlager [mm]

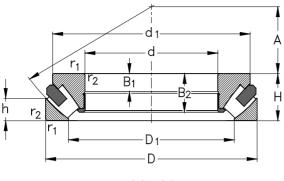
Abutment and Fillet Dimensions for Spherical Roller Thrust Bearings [mm]


Welle	Bohrungs Lagerreihe / Bearing series															
Shaft	kennzahl		29	2 / 292	E			29	3 / 293	BE			29	4 / 294	1E	
Ød	Bore reference	\mathbf{D}_{1}	D_2	D_3	D_4	\mathbf{r}_{g}	D₁	D_2	D_3	D_4	\mathbf{r}_{g}	D ₁	D_2	\mathbf{D}_3	D_4	\mathbf{r}_{g}
[mm]	number	min	max	min	max	max	min	max	min	max	max	min	max	min	max	max
300	60	355	386	426	317	2,5	380	429	490	320	4	410	471	550	326	5
320	64	375	406	450	336	2,5	400	449	510	340	4	435	507	590	354	6
340	68	395	427	470	353	2,5	430	484	550	364	4	465	541	630	373	6
360	72	420	461	510	380	3	450	504	572	384	4	485	560	650	391	6
380	76	440	480	530	395	3	480	538	612	404	5	510	587	682	415	6
400	80	460	500	550	415	3	500	557	634	424	5	540	622	722	441	6
420	84	490	534	590	437	4	525	585	664	447	5	560	643	742	455	6
440	88	510	554	610	458	4	548	614	695	470	5	595	684	794	486	8
460	92	530	575	632	477	4	575	638	726	487	5	615	704	815	502	8
480	96	555	603	662	508	4	593	660	746	507	5	645	744	865	521	8
500	/500	575	622	682	527	4	615	683	768	532	5	670	765	886	542	8
530	/530	611	661	722	560	4	650	724	818	561	6	700	810	937	573	8
560	/560	645	697	762	586	4	691	770	868	595	6	750	860	997	606	10
600	/600	690	744	814	633	4	735	815	920	633	6	800	900	1055	653	10
630	/630	730	789	864	657	5	839	856	970	665	8	840	960	1115	681	10
670	/670	775	836	915	710	5	819	906	1020	706	8	880	1015	1175	729	12
710	/710	820	882	966	743	5	869	962	1082	752	8	925	1073	1250	768	12
750	/750	863	930	1017	798	5	915	1015	1142	795	8					
800	/800	918	987	1078	837	6	970	1070	1202	842	8					
850	/850	973	1043	1138	881	6	1028	1137	1273	896	10					
900	/900	1025	1101	1198	933	6	1090	1203	1343	947	10	-				

Axial-Pendelrollenlager Spherical Roller Thrust Bearings



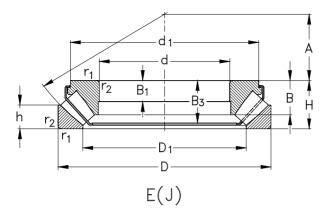
Ha	auptabm [m		gen	Bezeichnung	Ti	agzahle	n	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]
Во	oundary o [m		ons	Designation	Lo	ad rating [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]
d	D	Н	r ₁ , r ₂ min	-M	C _a dyn.	C ₀a stat.	C _u	n _{er}	n _G
60	130	42	1,5	29412-M	287	809	99	2900	5000
	130	42	1,5	29412-EJ	382	1004	122	2700	5000
65	140	45	2	29413-M	340	973	118	2700	4800
	140	45	2	29413-EJ	434	1155	140	2600	4800
70	150	48	2	29414-M	371	1070	127	2600	4300
	150	48	2	29414-EJ	464	1268	150	2500	4300
75	160	51	2	29415-M	429	1250	145	2500	4000
	160	51	2	29415-EJ	524	1465	170	2300	4000
80	170	54	2,1	29416-M	464	1370	156	2400	3800
	170	54	2,1	29416-EJ	570	1430	163	2300	3800
85	180	58	2,1	29417-M	527	1570	176	2200	3600
	180	58	2	29417-EJ	692	1745	218	2100	3600
90	190	60	2,1	29418-M	578	1780	196	2100	3400
100	210	67	3	29420-M	705	2170	232	2000	3000
110	190	48	2	29322-M	442	1420	153	2000	3200
	190	48	2	29322-EJ	570	1760	190	1800	3200
	230	73	3	29422-M	817	2600	270	1800	2800
120	210	54	2,1	29324-M	560	1830	192	1800	2800
	250	78	4	29424-M	934	3000	304	1700	2600
130	225	58	2,1	29326-M	628	2070	213	1700	2600
	225	58	2,1	29326-EJ	765	2950	303	1400	2600
	270	85	4	29426-M	1090	3540	351	1500	2400


Anschlussmaße siehe Seite 863-864

Abutment and fillet dimensions see on page 863-864

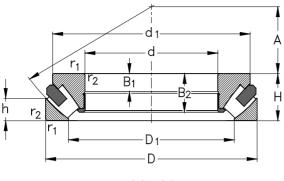
	Abmessungen [mm] Dimensions [mm]										
d	D ₁	d ₁	h	В	B ₁	B ₂	B_3	Α			
60	88	118	20	28	15	39,5	35,5	38	2,60		
	87	118	20	27	27		37	38	2,47		
65	96,5	128	21	30	16	42,5	38	42	3,30		
	93	128	21	29,5	16		39	42	3,26		
70	102	137	23	32	17	45,5	42	44	4,00		
	101	137	23	31	17	-	42,5	44	3,98		
75	109	146	24	34,5	18	48	44,5	47	4,90		
	108	146	24	33,5	18		47	47	4,9		
80	116	155	24	36	19	51	46,5	50	5,80		
	116	155	24	36	19		46,5	50	5,8		
85	125	164	28	38	21	55	49	54	6,90		
	123	164	28	37	21		50	54	6,67		
90	130	174	29		22	57		56	8,1		
100	144,5	193	32		24	64		62	11,8		
110	143	176	23		16	45,5		64	5,5		
	143	176	23		16		42	64	5,4		
	160	212	35		26	69		69	14,5		
120	157,5	194	26		18	51		70	7,6		
	172	229	37		29	74		74	18,1		
130	170	205	28	37	19	55	50,5	76	9,3		
	165,7	201,5	30,1		21		49,6	76	9,08		
	188	247	41	55,5	31	81	72	81	22,5		

Axial-Pendelrollenlager Spherical Roller Thrust Bearings



М	Z	F	М

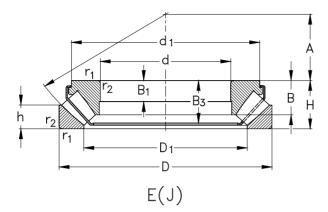
На	Hauptabmessungen [mm]		gen	Bezeichnung	Tragzahlen			Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]
Во	undary o [m		ons	Designation	Lo	ad ratin [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]
d	D	Н	r ₁ , r ₂ min	-M	C _a dyn.	C ₀a stat.	C _u	n _{er}	n _G
130	270	85	4	29426-EJ	1395	4300	426	1400	2400
140	240	60	2,1	29328-M	675	2310	232	1600	2600
	280	85	4	29428-M	1130	3750	366	1500	2400
150	250	60	2,1	29330-M	697	2430	241	1500	2400
	300	90	4	29430-M	1280	4270	408	1400	2200
160	270	67	3	29332-M	807	2810	272	1400	2200
	320	95	5	29432-M	1460	4810	451	1300	2000
170	280	67	3	29334-M	835	2950	282	1300	2200
	340	103	5	29434-M	1620	5380	495	1200	1900
180	300	73	3	29336-M	984	3530	331	1300	2000
	360	109	5	29436-M	1800	6010	544	1200	1800
190	320	78	4	29338-M	1120	4010	369	1300	1900
	380	115	5	29438-M	1960	6610	589	1100	1700
200	340	85	4	29340-M	1300	4740	429	1200	1700
	340	85	4	29340-EJ	1620	5480	496	1000	1700
	400	122	5	29440-M	2210	7510	659	1000	1600
220	360	85	4	29344-M	1340	4970	440	1100	1700
	420	122	6	29444-M	2260	7970	686	1000	1500
240	340	60	2,1	29248-M	770	3450	306	1200	1800
	380	85	4	29348-M	1340	5190	541	1000	1600
	440	122	6	29448-M	2340	8420	711	900	1500
260	360	60	2,1	29252-M	801	3650	317	1100	1700


Anschlussmaße siehe Seite 863-864

Abutment and fillet dimensions see on page 863-864

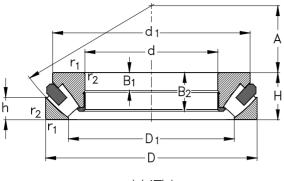
	Abmessungen [mm] Dimensions [mm]										
d	D ₁	d ₁	h	В	B ₁	B ₂	B ₃	Α			
130	188	245	41		31		74	81	21,6		
140	183	219	29		20	57		82	11		
	197,5	257	41		31	81		86	24,2		
150	193	229	29		20	57	-	87	11,5		
	211,5	276	44		32	86		92	29,4		
160	207	248	32		23	64		92	15,2		
	226	306	45		34	91		99	35,5		
170	215	258	32		23	64		96	16		
	240	324	50		37	99		104	43,7		
180	231	277	35		25	69		103	20,3		
	255	342	52		39	105		110	52		
190	246	308	38		27	74		110	24,8		
	270	360	55		41	110		117	60		
200	261	325	41		29	81		116	30,8		
	253,6	302,8	40		29		73	116	28,9		
	284	380	59		43	117		122	69		
220	280	345	41		29	81		125	32,8		
	305	400	58		43	117		132	74		
240	283	330	30		19	57		130	16,7		
	300	365	41		29	81	-	135	35,3		
	321	420	59		43	117		142	79		
260	302	350	30		19	57		139	18,5		

Axial-Pendelrollenlager Spherical Roller Thrust Bearings



М	Z	F	М

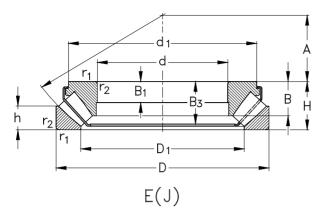
На	uptabm [m	iessung m]	jen	Bezeichnung	Tı	ragzahle	en	Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]
Во	undary ([m	dimensio m]	ons	Designation	Lo	oad rating [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]
d	D	Н	r ₁ , r ₂ min	-M	C _a dyn.	C ₀a stat.	C _u	n _{er}	n_{G}
260	420	95	5	29352-M	1780	6820	576	930	1400
	480	132	6	29452-M	2730	9870	813	840	1300
280	380	60	2,1	29256-M	847	3950	337	1000	1700
	440	95	5	29356-M	1780	7100	590	860	1400
	520	145	6	29456-M	3230	11840	953	750	1200
300	420	73	3	29260-M	1030	4670	338	1000	1400
	480	109	5	29360-M	2180	8500	689	800	1200
	540	145	6	29460-M	3560	13260	1047	730	1200
320	440	73	3	29264-M	1070	4930	403	930	1400
	500	109	5	29364-M	2180	8850	707	760	1200
	580	155	7,5	29464-M	3890	14690	1141	650	1100
340	540	122	5	29368-M	2460	10550	825	710	1100
	620	170	7,5	29468-M	4350	16410	1250	620	1000
360	500	85	4	29272-M	1400	6600	520	830	1200
	560	122	5	29372-M	2650	11030	851	670	1100
380	520	85	4	29276-M	1550	7510	583	760	1100
	670	175	7,5	29476-EM	4700	19100	1416	540	900
400	540	85	4	29280-M	1600	7900	606	720	1100
	620	132	6	29380-M	3290	14120	1056	580	950
420	650	140	6	29384-M	3410	14700	1084	570	900
	730	185	7,5	29484-EM	6850	31020	2238	400	850
440	680	145	6	29388-M	3860	16850	1226	520	850


Anschlussmaße siehe Seite 863-864

Abutment and fillet dimensions see on page 863-864

	Abmessungen [mm] Dimensions [mm]											
d	D ₁	d₁	h	В	B ₁	B ₂	B ₃	Α				
260	325	405	45		32	91		148	48,5			
	346	460	64		48	127	-	154	105			
280	323	370	30		19	57		150	19,5			
	345	423	46		32	91		158	52,5			
	380	495	68		52	140		166	132			
300	355	405	38		21	69		172	30,5			
	375	460	50		37	105		168	74			
	398	515	70		52	140		175	140			
320	375	430	38		21	69		172	32,9			
	395	482	53		37	105		180	77			
	430	555	75		55	149		191	175			
340	424	520	59		41	117		192	103			
	452	590	82		61	164		201	218			
360	420	485	44	-	25	81	-	194	51,8			
	444	540	59		41	117		202	107			
380	440	505	42		27	81	-	202	52,8			
	510	640	85		63	168		222	254			
400	460	526	42	-	27	81		212	55,3			
	494	596	64		44	127		225	150			
420	520	626	68		48	135		235	170			
	546	700	89		67	178		244	323			
440	546	655	70		49	140		245	190			

Axial-Pendelrollenlager Spherical Roller Thrust Bearings



M/EM

На	Hauptabmessungen [mm]		jen	Bezeichnung	Tragzahlen			Referenzdrehzahlen [min ⁻¹]	Grenzdrehzahlen [min ⁻¹]
Во	Boundary dimensions [mm]		ons	Designation	Lo	oad rating [kN]	gs	Thermal speed ratings [rpm]	Limited speed ratings [rpm]
d	D	Н	r ₁ , r ₂	-M	C _a	C_{0a}	\mathbf{C}_{u}	n _{θr}	$n_{\scriptscriptstyle G}$
			min		dyn.	stat.			
440	780	206	9,5	29488-M	6280	24650	1747	480	750
500	670	103	5	292/500-M	2400	12120	870	570	900
	750	150	6	293/500-M	4220	18660	1313	470	800
530	800	160	7,5	293/530-M	5130	22730	1570	430	750
630	850	132	6	292/630-M	4250	22500	1505	420	670
670	900	140	6	292/670-EM	5489	24740	1757	400	630
710	950	145	6	292/710-M	5300	28000	1279	370	600
750	1000	150	6	292/750-EM	6046	31623	2173	340	560
800	1060	155	7,5	292/800-EM	6624	35260	2380	320	530
850	1120	160	7,5	292/850-EM	6875	36799	2441	310	500

Anschlussmaße siehe Seite 863-864

Abutment and fillet dimensions see on page 863-864

	Abmessungen [mm] Dimensions [mm]								Gewicht [kg] Weight [kg]
d	D ₁	d₁	h	В	B ₁	B ₂	B_3	Α	
440	576	745	100		74	199		260	407
500	574	654	55		33	99	-	268	101
	611	725	74		51	144		280	220
530	648	772	76		54	154	-	295	286
630	724	820	67		42	127	-	338	211
670	773	880	74		45	135	-	364	257
710	815	930	75		46	140	-	380	294
750	861	967	81		48	144		406	329
800	915	1035	149		50	149		426	384
850	966	1095	154		51	154		453	434

Laufrollen
Cam Rollers

Laufrollen, zweireihig *Cam Rollers, Double Row*

Laufrollen

Normen, Hauptabmessungen

Maßpläne DIN 616

Allgemeines:

Laufrollen sind nicht zerlegbare Radiallager und stellen Sonderbauformen der Radial-Rillenkugellager bzw. der zweireihigen Schrägkugellager dar

Sie laufen üblicherweise direkt auf einer Führungsschiene oder einer dazu ausgeführten Lauffläche und weisen dazu einen besonders dickwandig ausgeführten Außenring auf.

Durch ihren dickwandigen Außenring können Laufrollen bei einem direkten Abrollen des Außenringes auf einer Gegenfläche hohe radiale Kräfte, aber auch stoßartige Belastungen übertragen.

Da Laufrollen öfters Verkantungen ausgesetzt werden, werden sie bevorzugt auch mit einem balligen Außendurchmesser eingesetzt.

Laufrollen werden zumeist außerhalb einer Maschine verwendet und laufen häufig unter sehr rauhen Betriebsbedingungen, wie etwa unter staubiger Umgebung usw.

Daher sind sie serienmäßig mit berührenden Dichtungen ausgestattet, einige Typen zweireihiger Laufrollen sind aber auch mit Deckscheiben erhältlich

Bauformen

Laufrollen sind in mehreren Ausführungen verfügbar. Die wichtigsten Bauformen sind in den Abbildungen auf den folgenden Seiten dargestellt.

Cam Rollers

Standards, Boundary Dimensions

Standard plans

DIN 616

General:

Cam rollers are non-separable radial bearings. They are special variants of either radial deep groove ball bearings or double row angular contact ball bearings.

Cam rollers run either directly on a guide track or against a surface that has been machined for a guidance.

To achieve this cam rollers feature an extra thickwalled outer ring this enables cam rollers to accept high radial forces, including shock loads.

As cam rollers often run misaligned they are generally used with crowned outer ring surfaces.

Cam rollers normally run outside the machine compartment, under extreme operating conditions, in the presence of heavy contaminations (i.e. dust and dirt, etc.).

For this reason, cam rollers are produced and fitted with contacting seals.

Some types of the double row cam rollers are also available with shields.

Design Variants

Cam rollers are readily available in several design variants. For the most common designs see drawings on following pages.

Einreihige Laufrollen (nur auf Anfrage)

NKE Laufrollen der schmalen Baureihen (Baureihen **3612..** bzw **3612..-R**) basieren hinsichtlich deren Innenaufbauten auf den bewährten abgedichteten einreihigen Rillenkugellagern der Ausführung **-2RSR**.

NKE Laufrollen der Baureihen 3612.. bzw 3612..-R sind serienmäßig mit berührenden Dichtungen der Ausführung -2RSR. ausgestattet, die auch unter rauhen Einsatzbedingungen eine gute Abdichtung der Lager gegen ein Eindringen von Verunreinigungen sicherstellt.

Die schmalen NKE Laufrollen der Baureihen **3612**. werden standardmäßig entweder mit zylindrischem Außendurchmesser (ohne Nachsetzzeichen) sowie mit balligem Außendurchmesser (Nachsetzzeichen **R**) gefertigt.

Der Radius der Balligkeit beträgt für alle Laufrollen der Reihe **3612..-R** einheitlich 400 mm.

Zweireihige Laufrollen

Die Innenkonstruktion der zweireihigen NKE Laufrollen der Baureihen 305.. und 306.. beruhen auf zweireihigen Schrägkugellagern der Reihe 32.. (Baureihe 305) bzw. der Reihe 33.. (Baureihe 306).

Zweireihige NKE Laufrollen haben Polyamidkäfige und einen Druckwinkel von 25°. Die zweireihigen Laufrollen werden standardmäßig mit beidseitiger Blechabdeckung (Nachsetzzeichen -2Z) hergestellt, sind aber auch mit berührender -2RSR-Dichtung verfügbar.

Auch die **zweireihigen NKE Laufrollen** werden standardmäßig mit zylindrischem sowie mit balligem Außendurchmesser gefertigt.

Auch bei den zweireihigen Laufrollen beträgt der Radius der Balligkeit einheitlich R = 400 mm.

Single Row Cam Rollers (Available on Request)

Cam rollers of the narrow series (series 3612.. and 3612..-R, are based on the proven sealed single row deep groove ball bearings, (suffix -2RSR) for their internal design.

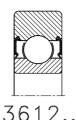
The NKE cam rollers series **3612**.. and **3612**.. **R** are produced with **-2RSR**-type contacting seals as standard. These seals provide a very effective and efficient sealing of the bearing compartment against penetration by foreign particles even under unfavourable operating conditions.

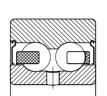
The narrow NKE cam rollers, series **3612** are available with either cylindrical (without suffix) or crowned outer ring outer diameter (suffix **R**) as standard.

The radius of crowning on single row cam rollers for the series **3612..-R**, is standardised at **R = 400** mm, irrespective of their outer diameter.

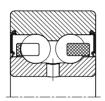
Double Row Cam Rollers

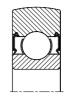
The internal design of **NKE double row cam rollers** (series **305** and **306**) are based on the double row angular contact ball bearings of the series **32**.. (for series **305**) or **33**.. (for series **306** cam rollers), respectively.

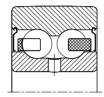

NKE double row cam rollers have contact angles of 25° they also feature polyamide cages as standard.

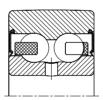

Double row cam rollers are widely used with pressed steel shields, (suffix -2Z), they are also available with contacting seals (suffix -2RSR) as standard.

As for single row cam rollers, **NKE double row** cam rollers are produced with either a cylindrical or sphered outer ring diameters.


The radius of crowning of double row cam roller outer diameter is also **standardised at R = 400 mm**.




3057...2Z 3067...2Z


3057...2RSR 3067...2RSR

3612..R

3058...2Z 3068...27

3058...2RSR 3068...2RSR

Dichtungswerkstoff

Für die berührenden Dichtungen abgedichteter **NKE Laufrollen** (Nachsetzzeichen **-2RSR**) wird standardmäßig ein verschleißfester synthetischer Kautschuk (**NBR**) verwendet.

Dieser Dichtungswerkstoff ist für Betriebstemperaturen von -30°C bis ca. +120°C geeignet.

Auf Anfrage können NKE Laufrollen auch mit Dichtungen aus anderen Werkstoffen, wie beispielsweise mit berührenden Dichtungen aus **FPM** für Hochtemperaturanwendungen, geliefert werden.

Material of Seals

For the contacting seal of sealed **NKE cam** rollers (suffix -2RSR) a wear-resistant synthetic rubber (NBR) is used as standard material.

This seal material is suitable for operating temperatures of -30°C up to +120°C (-22°F up to +248°F).

On request, the NKE cam rollers are supplied with alternative seal materials, such as high-temperature **FPM**-contacting seals.

Fettfüllung

Alle mit Dicht- oder Deckscheiben gelieferten **NKE Laufrollen** werden bereits werksseitig mit einem qualitativ hochwertigen Wälzlagerfett befüllt. Dieser Schmierstoff ist für Betriebstemperaturen von etwa **-30°C** bis ca. **+110°C** geeignet.

Obwohl Laufrollen unter normalen Betriebsbedingungen praktisch wartungsfrei sind, kann unter erschwerten Betriebsbedingungen, wie etwa beim Vorliegen starker Staubbelastung, bei hohen Drehzahlen, bei permanenten Betriebstemperaturen von mehr als 70°C oder unter dem Einfluß erhöhter Feuchtigkeit, eine regelmäßige Nachschmierung erforderlich sein.

Zu diesem Zweck weisen alle zweireihigen NKE Laufrollen serienmäßig eine Schmierbohrung im Innenring auf, um bei Bedarf eine Nachschmierung der Laufrollen zu ermöglichen.

Bei einer Nachschmierung ist, neben der Verwendung eines geeigneten Schmierstoffes, auf ein langsames Nachschmieren zu achten, da ansonsten die Dicht- oder Deckscheiben aus dem Lager gedrückt werden können.

Auf Anfrage können NKE Laufrollen auch mit Sonderfetten nach Kundenspezifikationen geliefert werden.

Käfige

Einreihige NKE Laufrollen werden standardmäßig mit Stahlblechkäfigen gefertigt, die zweireihigen Laufrollen sind grundsätzlich mit Polyamidkäfigen ausgestattet.

Toleranzen

NKE Laufrollen werden mit Ausnahme der Durchmessertoleranz des Außenring-Außendurchmessers bei Laufrollen mit balligem Außenring, in Normaltoleranz (PN) gefertigt. Die Toleranz des Außenring-Außendurchmessers bei Laufrollen mit balligem Außendurchmesser beträgt das Doppelte des Normalwertes.

Auf Anfrage können kleinere Laufrollen auch mit eingeengten Toleranzen, wie beispielsweise in den Toleranzklassen **P6** oder **P5** gefertigt werden.

Grease Filling

NKE cam rollers incorporating either seals or shields are supplied grease filled from the factory with a proven high quality rolling bearing grease suitable for operating temperatures of -30°C up to +110°C (-22°F up to +230°F).

Although cam rollers, operating under normal conditions, run generally maintenance free. Some application require additional lubrication where high speeds, heavy dust, permanent operating temperatures over +70°C (+158°F) exist.

Double row cam rollers only feature a lubrication hole in the inner rings to provide a simple and effective re-lubricating method.

Where re-lubrication is necessary, it is emphasised that, undue pressure by the regreasing method may cause unnecessary damage to either the seals or shields.

NKE cam rollers are be supplied with special grease fills according to customer specification or with different grease fill volumes than the standard.

Cages

Single row NKE cam rollers are standard fitted with pressed steel cages as standard. Double row cam rollers feature solid polyamide cages as standard.

Tolerances

NKE cam rollers with cylindrical outer ring diameter are produced to normal class tolerance (PN) as standard. For cam rollers with sphered out ring diameters, the outer ring diameter tolerance is double the standard value.

Some of the smaller cam rollers may also be produced to tolerance classes (e.g. **P6** or **P5**) on request.

Lagerluft

NKE Laufrollen werden standardmäßig in Normalluft (Luftgruppe CN nach DIN 620) geliefert.

Auf Anfrage können NKE Laufrollen auch mit anderen Lagerluftwerten gefertigt werden.

Belastbarkeit

Im Unterschied zu normalen Wälzlagern berührt bei den Laufrollen der Außenring lediglich mit einem sehr kleinen Bereich die Gegenstücke.

Diese Berührung verursacht Verformungen im Außenring, die durch die in den Produkttabellen neben den üblichen Tragzahlen angegebenen Maximalwerte der zulässigen dynamischen bzw. statischen Radialbelastung berücksichtigt werden.

Äquivalente dynamische Belastung

Bei einer Berechnung von Laufrollen als Wälzlager gilt:

$$P = F_r$$

wobei jedoch $P \le F_r$ zul sein muss. (F_r zul siehe Produkttabellen)

Äquivalente statische Lagerbelastung

Für Laufrollen gilt:

$$P_0 = F_r$$

wobei jedoch $P_0 \le F_{0r}$ zul $(F_{0r}$ zul siehe Produkttabellen)

Internal Clearance

NKE cam rollers are produced with normal internal clearance group (CN) as standard according to DIN 620.

NKE cam rollers are also produced to other internal clearances.

Load Carrying Capability:

Unlike the "normal" rolling element bearings, the outer ring of cam rollers contact their adjacent mating surface on a very small contacting area; this causes deformations of the outer ring.

These deformations are considered by the recommended maximum values for the permissible dynamic and static radial loads as shown in by the product tables.

Equivalent Dynamic Load

Cam rollers must be calculated as rolling element bearings:

$$P = F_{r}$$

But, **P** must be \leq **F**_r **zul** (for **F**, **zul** see product tables)

Equivalent Static Bearing Load

For cam rollers:

$$P_0 = F_r$$

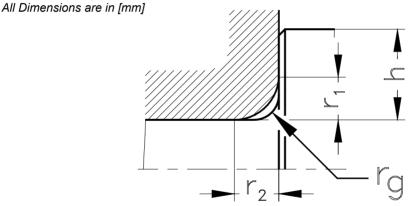
But, P_0 must be $\leq F_{0r}$ zul (for F_{0r} zul see product tables)

Anschlussmaße bei Laufrollen

Die Radien der Kantenverrundung an den Innenringen dürfen nicht an den Hohlkehlen am Wellenbund anliegen.

Dazu muss der größte Hohlkehlradius an den Anschlussteilen (\mathbf{r}_g) kleiner sein als der kleinste Radius für die Kantenverrundung (\mathbf{r}_s) der Lagerringe.

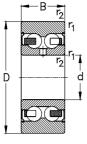
Da bei Laufrollen üblicherweise Punktlast am Innenring vorliegt, kann der Wellensitz eine lose Passung, beispielsweise nach g6, h6 oder j6 aufweisen.

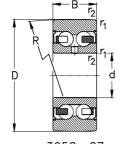

Abutment and Fillet Dimensions for Cam Rollers

The bearing inner ring must contact adjacent surfaces with their side faces only. The radius of inner ring corners must not touch the fillet radius of the shaft shoulder.

Therefore, the largest fillet radius (r_g) must be smaller than the minimum fillet dimension of the cam roller inner rings (r_s) as listed in the product tables.

Since cam rollers normally have point loaded inner rings, their shaft fits may be rather loose, (i.e. according to ISO-tolerance fields g6, h6 or j6).


Alle Abmessungen in [mm]



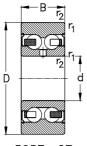
r ₁ , r _{2 min}	r _{g max}	h _{min}
0,6	0,6	2,1
1	1	2,8
1,1	1	3,5
1,5	1,5	4,5
2	2	5,5

Laufrollen, zweireihig Cam Rollers, Double Row

3057...2Z 3067...2Z

3058...2Z 3068...2Z

	Haup	otabmessur [mm]	ngen		Bezeichnung		
	Boun	dary dimens [mm]	sions		Designation		
D	d	В	R	r ₁ , r ₂ min	mit zylindrischem Außenring with cylindrical outer ring	mit balligem Außenring with sphered outer ring	
32	10	14	400	0,6	305700-2Z	305800-2Z	
	10	14	400	0,6	305700-2RSR	305800-2RSR	
35	12	15,9	400	0,6	305701-2Z	305801-2Z	
	12	15,9	400	0,6	305701-2RSR	305801-2RSR	
40	15	15,9	400	0,6	305702-2Z	305802-2Z	
	15	15,9	400	0,6	305702-2RSR	305802-2RSR	
47	17	17,5	400	0,6	305703-2Z	305803-2Z	
	17	17,5	400	0,6	305703-2RSR	305803-2RSR	
	15	19	400	1	306702-2Z	306802-2Z	
	15	19	400	1	306702-2RSR	306802-2RSR	
52	20	20,6	400	1	305704-2Z	305804-2Z	
	20	20,6	400	1	305704-2RSR	305804-2RSR	
	17	22,2	400	1	306703-2Z	306803-2Z	
	17	22,2	400	1	306703-2RSR	306803-2RSR	
62	25	20,6	400	1	305705-2Z	305805-2Z	
	25	20,6	400	1	305705-2RSR	305805-2RSR	
	20	22,2	400	1,1	306704-2Z	306804-2Z	
	20	22,2	400	1,1	306704-2RSR	306804-2RSR	
72	30	23,8	400	1	305706-2Z	305806-2Z	
	30	23,8	400	1	305706-2RSR	305806-2RSR	
	25	25,4	400	1,1	306705-2Z	306805-2Z	
	25	25,4	400	1,1	306705-2RSR	306805-2RSR	


Anschlussmaße siehe Seite 881


Abutment and fillet dimensions see on page 881

	Richtdrehzahl Speed rating	Tragzahlen [kN] Load ratings [kN]		Maximal : Radialla	Gewicht [kg] Weight [kg]	
				max. pei radial lo	m	
D	[min ⁻¹]	C _r dyn.	C ₀r stat.	F_{r max} dyn.	F _{0r max} stat.	
32	13000	7,4	4,1	4,25	6	0,062
	8500	7,4	4,1	4,25	6	0,062
35	11000	10	5,2	3,9	5,6	0,078
	7300	10	5,2	3,9	5,6	0,078
40	10000	11,1	6,4	6	8,5	0,1
	6500	11,1	6,4	6	8,5	0,1
47	9000	13,8	8,3	9,5	13,4	0,16
	6000	13,8	8,3	9,5	13,4	0,16
	10000	14,6	9,2			0,15
	6500	14,6	9,2			0,15
52	8000	18,2	11	8,3	12	0,22
	5300	18,2	11	8,3	12	0,22
	9500	17,2	11			0,2
	6300	17,2	11			0,2
62	7000	19,9	13,4	15,3	22	0,32
	4500	19,9	13,4	15,3	22	0,32
	9000	21,1	14,5			0,34
	6000	21,1	14,5			0,34
72	6000	27,6	18,6	17,3	24,5	0,49
	4000	27,6	18,6	17,3	24,5	0,49
	7900	27,5	19,5			0,5
	5200	27,5	19,5			0,5

Laufrollen, zweireihig Cam Rollers, Double Row

3057...2Z 3067...2Z

3058...2Z 3068...2Z

Hauptabmessungen [mm]					Bezeichnung		
	Boundary dimensions [mm]				Designation		
D	d	В	R	r ₁ , r ₂ min	mit zylindrischem Außenring with cylindrical outer ring	mit balligem Außenring with sphered outer ring	
80	35	27	400	1,1	305707-2Z	305807-2Z	
	35	27	400	1,1	305707-2RSR	305807-2RSR	
	30	30,2	400	1,1	306706-2Z	306806-2Z	
	30	30,2	400	1,1	306706-2RSR	306806-2RSR	
85	40	30,2	400	1,1	305708-2Z	305808-2Z	
	40	30,2	400	1,1	305708-2RSR	305808-2RSR	
90	35	34,9	400	1,5	306707-2Z	306807-2Z	
	35	34,9	400	1,5	306707-2RSR	306807-2RSR	
100	40	36,5	400	1,5	306708-2Z	306808-2Z	
	40	36,5	400	1,5	306708-2RSR	306808-2RSR	

Anschlussmaße siehe Seite 881

Abutment and fillet dimensions see on page 881

	Richtdrehzahl Speed rating	Tragzahlen [kN]		Maximal : Radialla	Gewicht [kg] Weight [kg]	
		Load ratings [kN]		max. permissible radial load [kN]		m
D	[min ⁻¹]	C _r dyn.	C ₀r stat.	F_{r max} dyn.	F _{0r max} stat.	≈
80	5300	35,1	24	16,6	24	0,65
	3500	35,1	24	16,6	24	0,65
	6200	36,5	26,5			0,67
	4100	36,5	26,5			0,67
85	5000	34,5	22,5			0,75
	5000	34,5	22,5			0,75
90	5100	44,5	33			0,95
	3400	44,5	33			0,95
100	4700	56	42			1,2
	4700	56	42			1,2

Gehäuselagereinheiten

Bearing Units

Gehäuselager Insert Bearings

Stehlagereinheiten, Grauguss Plummer Block Units. Cast Iron

Zweilochflanscheinheiten, Grauguss Oval Flanged Units, Cast Iron

Vierlochflanscheinheiten, Grauguss Square Flanged Units, Cast Iron

Runde Flanscheinheiten, Grauguss Round Flanged Units, Cast Iron

Spannlagereinheiten, Grauguss Take Up Units, Cast Iron

Stehlagereinheiten, Stahlblech *Plummer Block Units, Pressed Steel*

Zweilochflanscheinheiten, Stahlblech Oval Flanged Units, Pressed Steel

Gehäuselagereinheiten

Allgemeines

Mit den standardmäßig in mehreren Bauformen einbaufertig verfügbaren NKE Gehäuselagereinheiten lassen sich auf konstruktiv ein-fachste Weise in wirtschaftlicher und technischer Hinsicht optimale Lagerungen verwirklichen.

Die Einheiten bestehen aus einem gegossenen oder aus Stahlblech gestanzten **Gehäuse**, welches mit mehreren unterschiedlichen **Lagereinsätzen** kombiniert werden kann.

Durch die sphärische Ausführung des Lager-Außendurchmessers sowie des Innendurchmessers des Gehäuses weisen diese Einheiten eine Selbsteinstellfunktion auf, wodurch z.B. die bei geschweißten Stahlkonstruktionen unver-meidlichen Fluchtungsfehler bei der Montage kompensiert werden können (statische Fluch-tungsfehler).

Die **Gehäuselager** sind in unterschiedlichen Bauformen und Dichtungsvarianten verfügbar.

Voraussetzung für einen späteren, optimalen Betrieb der NKE Gehäuselagereinheiten sind eine entsprechende Kenntnis über die sachgemäße Montage von Gehäuselagereinheiten sowie adäquate Sauberkeit am Montageplatz.

Grundsätzlich müssen die Lager in deren Originalverpackung aufbewahrt werden und sind erst unmittelbar vor dem Einbau auszupacken. Weitere allgemeine Hinweise zu Handling, Einbau und Ausbau von Wälzlagern siehe NKE Hauptkatalog S.157ff.

Bevor die NKE Lagereinheit auf die Welle aufgeschoben wird, muss die Welle frei von etwaigen Beschädigungen oder Rost sein. Für einen reibungslosen Betrieb sind die Lagersitze der Welle vor jeder Montage auf Maßund Formgenauigkeit zu prüfen.

Weiters sind auch die jeweiligen Unterlagen bzw. Rahmen auf Schäden zu untersuchen und auf ihre Ebenheit zu prüfen. Diese sollte sich innerhalb der Toleranzbereiche IT7 bzw. IT8 befinden.

Bearing Units

General

NKE bearing units are produced in several different designs as standard. They offer simple, effective and reliable technical solutions with the minimum design work requirements.

NKE bearing units consist of a **housing** which is made from either cast iron or pressed steel. These housings may be combined with several different types of **insert bearings**.

These insert bearings have a self-aligning feature due to their spherical outer diameters and the corresponding design of the bearing housing. This feature allows for any static misalignment, which can, e.g. frequently occur in the case of welded framework and large transmissions, etc.

Insert bearings are produced and available in several different designs to meet various technical demands

To ensure optimum operation auf NKE bearing units the knowledge of correct mounting and adequate cleanliness of the assembly area are indispensable.

Bearings must be stored in their original packing and shall only be unpacked immediately prior to the actual mounting. Further general information regarding handling, mounting and dismounting of bearings see NKE General Catalogue p. 342ff.

Before the bearing unit is mounted the shaft shall be checked for corrosion or other damage. To ensure trouble free operation also the shaft / bearing seat the dimensional and geometrical accuracy shall be checked.

Also the bearing unit base plate / support structure shall be checked for any damage and flatness which shall conform to the tolerance ranges IT7 respectively IT8.

Gehäuse

Je nach erforderlichem Einbaufall stehen gestanzte Stahlblechgehäuse oder gegossene Gehäuse in mehreren Bauformen zur Verfügung.

Dabei wird primär zwischen **Stehlagergehäusen** und **Flanschlagergehäusen** unterschieden, siehe Abb. 1 und 2.

Housings

Depending upon the individual application requirements, there are different housing designs available in either **cast iron** or **pressed steel** material (see fig. 1 and 2).

For the primary distinction between **plummer block housings** and **flanged housings**, see fig. 1 and 2.

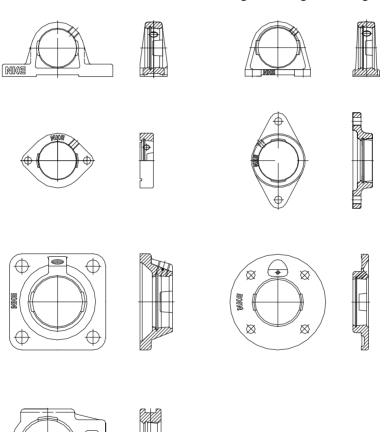


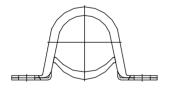
Abb. 1: Grundbauformen der NKE Standard-Gußgehäuse Fig. 1: Basic designs of NKE standard cast iron housings

Gegossene NKE Gehäuse bestehen aus Grauguss GG20 mit einer Mindestzugfestigkeit σmin ≥ 200 N/mm².

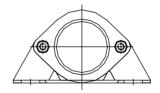
Diese Gehäuse weisen eine hohe Steifigkeit gegen Verformung auf und sind daher zur Aufnahme mittlerer bis hoher Belastungen optimal geeignet.

Für lediglich gering beanspruchte Konstruktionen stehen auch einige Typen von gestanzten und verzinkten **Stahlblechgehäuse** zur Verfügung, die eine im Vergleich zu den gegossenen Gehäusen erheblich leichtere Bauweise ermöglichen (siehe Abb. **2**).

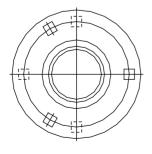
Diese Stahlblechgehäuse zeichnen sich darüber hinaus durch eine sehr einfache Montage aus.


NKE cast housings are made from **ductile cast iron GG20** with a minimum tensile resistance of σ min $\geq 200 \text{ N/mm}^2$.

These cast iron housings provide a high stiffness against deformation and thus are capable of accepting medium to high loads in an optimum way.


For less demanding applications, however, there are also several types of **pressed steel housings** available, see fig. **2**.

These housings are made from zinc plated pressed steel and enable lighter weight designs. Such housings enable considerable savings in terms of weight and/or mass when compared to cast iron housings.


These housings also offer a very simple, effective and efficient way of mounting.

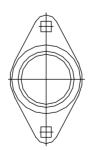


Abb. 2: NKE Standardprogramm Stahlblechgehäuse Fig. 2: NKE standard types pressed steel housings

Gehäuselager

Zur Ausstattung der Gehäuse stehen standardmäßig mehrere unterschiedliche Varianten von Gehäuselagern zur Verfügung, siehe Abb. 3:

Insert Bearings

There are different design variants of insert bearings available as standard in order to fit the housings in an optimum way, see fig. 3:

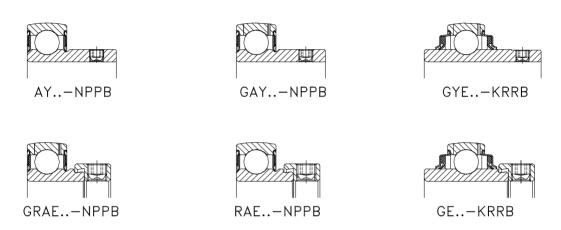


Abb. 3: NKE Standard-Gehäuselagertypen Fig. 3: NKE standard types of insert bearings

Alle **Gehäuselager** weisen einen **sphärisch geformten** Aussenring (Nachsetzzeichen **B**) auf. Dadurch wird eine – allerdings je nach Lagerbauform unterschiedlich grosse – Kompensation von Schiefstellungen bzw. Fluchtungsfehlern ermöglicht.

All insert bearings feature a **spherical outer ring** (suffix **B**) which compensates for misalignment and off-set position within a certain amount.

The ability to compensate for misalignments, however, depends on the individual insert bearing type.

Gehäuselagereinheiten

Bearing Units

Alle NKE **Gehäuselager** werden bereits werksseitig mit einem hochwertigen lithiumverseiften Standard-Wälzlagerfett auf Mineralölbasis, Klasse **K3K-30** nach DIN 51825 befüllt

Nähere Informationen zur Fettfüllung der NKE Lager bzw. Informationen zur Wälzlagerschmierung im Allgemeinen finden Sie im Abschnitt "Schmierung von Wälzlagern" ab Seite 145.

Verschiedene Gehäuselagertypen stehen auch mit mehreren unterschiedlichen **Abdichtungen** zur Verfügung, welche auch unter ungünstigen Betriebsbedingungen eine optimale Abdichtung des Lagers gegen Umwelteinflüsse garantieren.

Grundbauformen der Gehäuselager

Um ein möglichst umfassendes Spektrum an Anwendungsmöglichkeiten abdecken zu können, sind **NKE Gehäuselager** in mehreren unterschiedlichen Ausführungen verfügbar.

Die wichtigsten Standardbauformen werden im Folgenden vorgestellt.

Gehäuselager, Bauformen AY und GAY

NKE Gehäuselager der Bauform AY bzw. GAY (siehe Abb. 4) weisen einen einseitig verlängerten Innenring auf.

Diese Bauformen eignen sich primär für Standardanwendungen auch bei wechselnder Drehrichtung.

Bei Gehäuselagern der Bauform **GAY** ist eine Nachschmierung der Lager durch in den Aussenring integrierte Schmierbohrungen möglich, während die Bauform **AY** nicht nachschmierbar ist.

All NKE **insert bearings** are supplied grease filled during manufacture with a proven high-quality medium temperature mineral oil based, lithium soaped rolling bearing grease, class **K3K-30** according to DIN 51825 as standard.

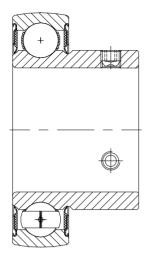
Further information about the grease filling of NKE bearings and general information about the lubrication of rollings bearings can be found in the chapter "Lubrication of Rolling Bearings", on page 330.

Several types of insert bearings are also available with different **seal arrangements** in order to offer optimum protection of the bearing against the environment even under harsh operating conditions

Basic Design Variants of Insert Bearings

NKE insert bearings are produced in several different design variations as standard. This allows the selection of the optimum bearing type from a defined standard product range.

The most common designs are introduced in the following:


Insert Bearings, AY and GAY Design

NKE insert bearings of **AY** and **GAY** design, respectively, feature an inner ring which is extended on one side.

These bearings are primarily suitable for standard applications also with changing rotational direction.

GAY design insert bearings enable a regreasing through lubricating holes in their outer rings, whilst insert bearings of the **AY** design totally lack a regreasing possibility.

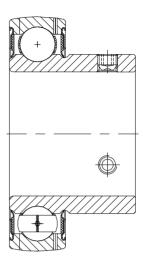


Abb. 4: NKE Gehäuselager, Bauformen AY und GAY Fig. 4: NKE insert bearings, AY and GAY design

Bei den Gehäuselagern der Bauformen AY und GAY erfolgt die Fixierung des Innenringes auf der Welle mittels zweier in den Innenring integrierter, um 120° zueinander versetzter Gewindestifte mit Ringschneiden.

Diese Befestigungsmethode ermöglicht eine rasche und kostengünstige Montage der Lager auf die Welle

Lediglich wenn die Lager nur geringen Drehzahlen und Belastungen ausgesetzt sind, können Gehäuselager dieser Bauformenen auch bei wechselnder Drehrichtung eingesetzt werden.

NKE Gehäuselager der Bauformen AY bzw. GAY werden standardmäßig mit P-Dichtungen gefertigt; Nachsetzzeichen NPP.

The inner ring of the Insert Bearings of the **AY** and **GAY** design is fixed onto the shaft by means of two grub screws spaced 120° to each other.

This fastening system enables a quick, effective and economical mounting of the bearing to the shaft.

It is only recommended to use insert bearings of this design under reverse rotations in applications where the bearings are exposed to moderate loads and speeds.

NKE insert bearings of **AY** and **GAY** design, respectively, are manufactured with **P**-type seals as a standard, identified by the suffix **NPP**.

Gehäuselager, Bauform GYE

NKE Gehäuselager der Bauform **GYE** weisen einen auf beiden Seiten verlängerten Innenring auf, siehe Abb. 5.

Insert Bearings, GYE Design

NKE **GYE**-type insert bearings feature an inner ring which is extended on both sides, see fig. 5.

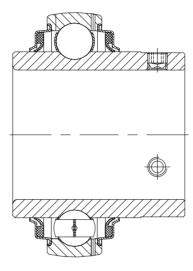


Abb. 5: NKE Gehäuselager, Bauform GYE Fig. 5: NKE insert bearing, GYE design

Dadurch können Gehäuselager der Bauform GYE zum einen mit einer effizienteren Dichtungsbauform (Nachsetzzeichen KRRB) ausgestattet werden und weisen dadurch einen wesentlich größeren Fettraum auf, was wiederum eine verlängerte Gebrauchsdauer des Lagers auch unter schwierigen Betriebsbedingungen ermöglicht.

Auch bei dieser Bauform erfolgt die Fixierung des Innenringes auf der Welle mittels zweier in den Innenring integrierter, um 120° zueinander versetzter Gewindestifte mit Ringschneiden.

Damit gelten auch für die Gehäuselager der Baureihe GYE die für die Bauform GAY genannten Einschränkungen hinsichtlich der Einsatzbedingungen. This allows the **GYE**-type insert bearings to be fitted with a more effective sealing arrangement (indicated by a suffix KRRB).

Additionally the GYE-type insert bearings have a larger internal space which acts as an extra grease reservoir in order to provide extended service life even under difficult operating conditions

GYE-type insert bearings are is fixed onto the shaft by means of two grub screws located in the inner ring, spaced 120° to each other.

Thus, the insert bearings of the GYE design are also subjected to the same limitations in terms of optimum operating conditions as for insert bearings of the GAY-design.

Gehäuselager, Bauform GE

Insert Bearings, GE Design

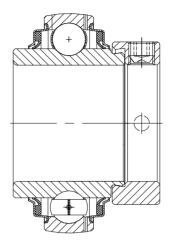


Abb. 6: NKE Gehäuselager, Bauform GE Fig. 6: NKE insert bearing, GE design

NKE Gehäuselager der Bauform GE unterscheiden sich von den bisher beschriebenen Gehäuselagern durch die **Exzenterringbefestigung**.

Dabei wird ein separater Spannring mit einer exzentrischen Ausdrehung an einer Stirnfläche gegen den entsprechend geformten Innenring verdreht.

Dadurch wird der Innenring gegen die Welle fixiert.

Der Exzenterring wird abschließend durch einen in den Ring integrierten Gewindestift mit Ringschneide in gespannter Position fixiert.

Durch die Exzenterringbefestigung ist eine sehr rasche und einfache Befestigung der Lager möglich.

Darüber hinaus ist diese Methode auch sehr schonend für die Welle.

Gehäuselager mit Exzenterringbefestigung eignen sich primär für Anwendungen mit gleich bleibender Drehrichtung. GE type insert bearings are different from the previously described insert bearing designs by having an **eccentric locking collar** for fixing the bearing onto the shaft.

With this method, a separate locking collar having an off/centre turned groove in one side face is mated against a correspondingly shaped inner ring.

Thus, the inner ring is locked in position on the shaft seat

Following its mounting, the eccentric locking collar is fixed in the engaged position by tightening a grub screw which is incorporated in the locking collar.

The fixing of insert bearings by means of eccentric locking collars enables a very quick, effective and simple mounting of bearings onto the shafts

Furthermore, this method protects the shaft more than the grub screws.

Durch den auf beiden Seiten verlängerten Innenring können NKE Gehäuselager der Bauform GE zum einen mit einer effizienteren Dichtungsbauform (Nachsetzzeichen KRR) ausgestattet werden und weisen weiters auch einen wesentlich größeren Fettraum auf, was wiederum eine verlängerte Gebrauchsdauer des Lagers auch unter schwierigen Betriebsbedingungen ermöglicht.

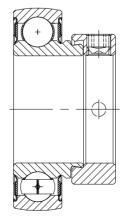
Insert bearings that are fixed by eccentric locking collars are primarily suitable for applications with a constant rotational direction.

Due to the inner ring being extended on both sides, the NKE GE-type insert bearings can be fitted with a more effective sealing arrangement (indicated by a suffix KRR). Additionally, the **GE**-type insert bearings also have a larger internal space which acts as an extra grease reservoir in order to provide extended service life even under difficult operating conditions.

Gehäuselager, Bauformen RAE und GRAE

NKE Gehäuselager der Bauformen RAE und GRAE, siehe Abb. 7, weisen einen einseitig verlängerten Innenring auf und werden mittels Exzenterring auf der Welle montiert.

Gehäuselager der Bauformen **RAE** und **GRAE** eignen sich primär für Anwendungen mit gleichbleibender Drehrichtung.


Bei Gehäuselagern der Bauform **GRAE** ist eine Nachschmierung der Lager durch in den Außenring integrierte Schmierbohrungen möglich, während die Bauform **RAE** nicht nachschmierbar ist

Insert Bearings, RAE and GRAE Designs

NKE insert bearings of **RAE** and **GRAE** design, respectively, (see fig. 7) feature an inner ring which is extended on one side. They are fixed on the shafts by means of an eccentric locking collar.

RAE and **GRAE** type insert bearings are primarily suitable for applications with a constant rotational direction.

GRAE design insert bearings enable a regreasing through lubricating holes in their outer rings, whilst insert bearings of the **RAE** design totally lack a re-greasing possibility.

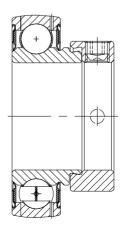


Abb. 7: NKE Gehäuselager, Bauformen RAE und GRAE Fig. 7: NKE insert bearings, RAE and GRAE design

NKE Gehäuselager der Bauformen **RAE** und **GRAE** werden standardmäßig mit **P**-Dichtungen geliefert, Nachsetzzeichen **NPP**.

Dichtungsbauformen

Alle NKE Gehäuselager werden serienmäßig mit definierten Standarddichtungen gefertigt. Dabei handelt es sich um Dichtungsbauformen, die sich unter normalen Einsatz- und Umweltbedingungen optimal bewährt haben.

Mehrere Gehäuselagerbauarten sind darüber hinaus auf Wunsch auch mit anderen Dichtungsbauformen verfügbar, um spezifischen Anforderungen gerecht zu werden.

P-Dichtung

NKE **RAE** and **GRAE** type insert bearings are manufactured with **P**-type seals as a standard, indicated by the suffix **NPP**.

Sealing Systems

All NKE insert bearings are manufactured to defined standard sealing arrangements.

These seals are to designs historically proven to be the optimum solution when operating under "normal" operating conditions.

Several types of insert bearings are also available upon request with alternative seals to provide optimum protection even under harsh and unfavourable operating conditions.

P Seal

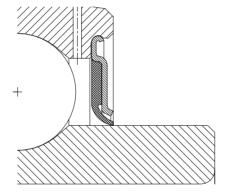


Abb. 8: NKE Gehäuselagerdichtung, Bauform **P** Fig. 8: NKE insert bearing seal, **P** design

Die NKE Gehäuselagerdichtung der Bauform **P**, siehe Abb. 8, besteht aus einer außen liegenden verzinkten Stahlblechscheibe, auf welche eine einlippige NBR-Dichtung aufvulkanisiert ist.

Die außen liegende Stahlblechscheibe dient der Versteifung der Dichtlippe und bietet darüber hinaus einen guten Schutz gegen eine mechanische Beschädigung der Dichtung.

NKE **P** type insert bearing seals consist of a zinc plated pressed steel shield on the outer side with a single vulcanized NBR-lip seal (see fig. 8).

The external pressed steel shield acts as a carrier to support the seal lip. Furthermore, the steel carrier also protects the rubber seal lip against mechanical damage.

Gehäuselagereinheiten

Bearing Units

Die **P-Dichtung** stellt eine sehr gute Dichtung für normale Betriebsbedingungen dar und zeichnet sich durch eine geringe Baubreite aus.

Daher wurde die **P**-Dichtung als Standarddichtung bei den NKE Gehäuselagern der Bauformen **AY**, **GAY** und **RAE**, **GRAE** dar.

R-Dichtung

Bei den Gehäuselagerdichtungen der Bauform R, siehe Abb. 9, wurde die außen liegende verzinkte Stahlblechscheibe abgesetzt ausgeführt, um ein größeres Fettreservoir zu ermöglichen.

P-seals perform very well under normal operating conditions and require only limited space.

Thus, the P seal is selected as the standard sealing design for NKE insert bearings of both AY, GAY and RAE, GRAE design.

R Seal

The pressed steel shields of the **R**-type insert bearing seals, see Fig. 9, have a "stepped" design in order to create extra space for accommodating extra grease.

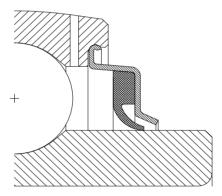


Abb. 9: NKE Gehäuselagerdichtung, Bauform R Fig. 9: NKE insert bearing seal, R design

Zum Schutz der Dichtlippe wurde die Stahlblechscheibe möglichst weit herabgezogen.

Die Dichtlippe der aufvulkanisierten einlippigen NBR-Dichtung weist eine radiale Vorspannung auf, wodurch eine wesentlich verbesserte Dichtwirkung erreicht wird.

Die **R**-Dichtung stellt die Standarddichtungsbauform bei den NKE Gehäuselagern der Bauformen **GYE** und **GE** dar.

The steel shield is extended as far as possible in order to protect the sealing lip from damage.

The single sealing lip of the vulcanized NBR rubber seal has a radial preload that ensures significant improvement of the sealing efficiency.

Thus, the **R**-type seal is defined as the standard seal for NKE insert bearings of both **GYE** and **GE** type.

P3-Dichtung

P3 Seal

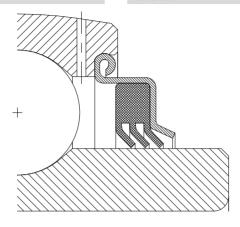


Abb. 10: NKE Gehäuselagerdichtung, Bauform P3 Fig. 10: NKE insert bearing seal, P3 design

NKE Gehäuselagerdichtungen der Bauform P3, siehe Abb. 10, weisen eine **Dreilippendichtung** auf, um auch extremen Beanspruchungen zu genügen.

Die **P3**-Dichtung stellt eine sehr effiziente Dichtungsbauform dar, welche auch beim Vorhandensein starker Verunreinigungen eine gute Leistungsfähigkeit aufweist.

NKE Gehäuselager mit **P3**-Dreilippendichtung werden nur auftragsbezogen gefertigt. Die P3-Dichtung kann auf Wunsch bei NKE Gehäuselagern der Bauformen **GYE** und **GE** eingebaut werden.

Da bei der Verwendung dieser sehr leistungsfähigen Dichtung naturgemäß auch die Reibung stark ansteigt, sind die mit dieser Dichtung ausgestatteten Lager nur für geringe Drehzahlen geeignet.

NKE insert bearing seals of the P3 design (see fig. 10) feature a **triple-lip** sealing arrangement suitable for use even under very tough operating conditions and harsh environment.

The **P3** seal provides a very effective sealing of the bearing which features a superior performance even under the presence of heavy contamination.

NKE Insert bearings with **P3** triple-lip seals are manufactured to customer order only. NKE insert bearings of both the **GYE** and **GE** designs can also be fitted with **P3** triple-lip seals to customer orders.

This very effective sealing system also causes the internal friction of the bearings to increase, therefore the bearings fitted with triple-lip seals are only suitable for comparatively low operational speeds.

L-Dichtung

L-Seal

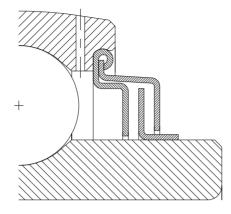


Abb. 11: NKE Gehäuselagerdichtung, Bauform L Fig. 11: NKE insert bearing seal, L design

Bei der NKE Gehäuselagerdichtungen der Bauform L handelt es sich um eine dreiteilige berührungslose Labyrinthdichtung aus verzinktem Stahlblech.

Dabei bilden zwei in eine Haltenut im Außenring eingepresste Stahlblechscheiben den Labyrinthkörper, während eine dritte, auf den Innenring aufgepresste Blechscheibe mit L-förmigem Querschnitt das Labyrinth formt.

Die **L**-Dichtung ist eine berührungslose Dichtungsbauform und weist daher keine zusätzliche Reibung auf.

Daher werden **L**-Dichtungen primär für Anwendungen mit hohen Drehzahlen verwendet.

NKE **Gehäuselager** mit **L**-Dichtungen werden nur auftragsbezogen gefertigt. Diese Dichtungsbauform kann bei NKE Gehäuselagern der Bauformen **GYE** und **GE** verwendet werden.

The non-contacting NKE labyrinth insert bearing seals of the **L** design consist of a triple arrangement of zinc plated pressed steel shields. Two shields are pressed into a corresponding circular groove on the outer ring which forms the seal body whilst a third L-shaped pressed steel shield, located on the inner ring forms the labyrinth gap.

Since the **L**-type insert bearing seal is a noncontacting seal it does not create extra friction. Thus this seal design is mainly for higher operating speeds.

NKE **insert bearings** with **L**-type non-contacting seals are manufactured to customer order only. NKE **insert bearings** of both the **GYE** and **GE** design can be equipped with **L**-type seals to individual customer orders.

Dichtungswerkstoffe

Für die schleifenden Dichtungen der NKE **Gehäuselager** (Dichtungsbauformen **P**, **R** und **P3**) wird standardmäßig ein verschleißfester synthetischer Kautschuk (**NBR**) verwendet.

Dieser Dichtungswerkstoff ist für Betriebstemperaturen von **–30°C** bis ca. **+120°C** geeignet. Die Stahlblechteile der Dichtungen sind verzinkt, um gegen Korrosion geschützt zu sein.

Auf Anfrage können **NKE Gehäuselager** auch mit Dichtungen aus anderen Werkstoffen, wie beispielsweise mit berührenden Dichtungen aus **FPM** für Hochtemperaturanwendungen, geliefert werden.

Wellenschutzkappen

Zur Abdeckung der umlaufenden Wellenenden bei Gehäuselagereinheiten liefert NKE Kunststoffschutzkappen, welche in eine Nut im Gehäuse einrasten

Diese Wellenschutzkappen schützen vor Verletzungen durch umlaufende Wellen und dienen auch als zusätzlicher Schutz der Lager vor Verunreinigung.

Die Gehäusebaureihen, für welche Wellenschutzkappen geliefert werden können, sind in den Produkttabellen angegeben.

Zur Befestigung der Wellenschutzkappen haben die dafür vorgesehenen Gehäuse auf der Seite der Einführtasche eine Ringnut. Gehäuse dieser Bauart werden durch das Nachsetzzeichen "N" gekennzeichnet.

NKE Wellenschutzkappen bestehen aus flexiblem Kunststoff und sind für Betriebstemperaturen von -20°C bis +80°C geeignet.

Wellenschutzkappen gehören zum NKE Zubehörprogramm und müssen separat bestellt werden.

Seal Materials

For the contacting seal of **NKE insert bearings** (seal designs **P**, **R** and **P3**) a wear resistant **synthetic rubber** (**NBR**) is used as the standard seal material

This seal material is suitable for operating temperatures of -30°C (-22°F) up to +120°C (248°F).

Pressed steel components of the seals are zinc plated in order to prevent corrosion formation.

Upon request, the **NKE insert bearings** can also be supplied with alternative seal materials, such as high-temperature **FPM** contacting seals.

Housing End Caps

To safeguard the rotating shaft ends at bearing units, NKE housing end caps are available. These housing end cups snap into a groove machined into the bearing housing.

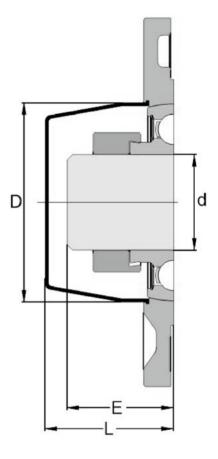
NKE housing end caps protect from possible injury due to rotating shaft ends and additionally provide extra protection to the bearings against contamination

The housing types for which end caps are available are listed in the product tables.

For affixing the housing end cups to the bearing housings, a groove has been machined into the side face allowing the fitment of the end caps. Bearing houseings featuring such grooves are identified by a suffix "N".

NKE housing end cups are made from flexible synthetic material and can be used for operating temperatures from -20°C to +80°C.

NKE housing end caps belong to the NKE accessories range and must be ordered separately.


Gehäuselagereinheiten

Bearing Units

Wellenschutzkappen	Abmessungen / Dimensions							
Housing end cups	ø d	ø D	L	E max.				
CUP04	20	48	36	30				
CUP05	25	54	38	30				
CUP06	30	63	44	35				
CUP07	35	73	47	39				
CUP08	40	82	50	41				
CUP10	50	92	55	45				
CUP12	60	112	65	55				

Tabelle 1: Wellenschutzkappen für NKE Gehäuselagereinheiten Table 1: Housing end caps for NKE bearing units

Fettfüllung der Gehäuselager

Alle **NKE Gehäuselager** werden bereits werksseitig mit einem qualitativ hochwertigen lithiumverseiften Wälzlagerfett befüllt.

Dieser Schmierstoff ist für Betriebstemperaturen von etwa **–30°C** bis ca. **+120°C** geeignet.

Obwohl **NKE Gehäuselager** unter normalen Betriebsbedingungen praktisch wartungsfrei laufen, kann unter erschwerten Betriebsbedingungen, wie etwa beim Vorliegen starker Staubbelastung, bei hohen Drehzahlen, bei permanenten Betriebstemperaturen von mehr als 70°C oder unter dem Einfluss erhöhter Feuchtigkeit, eine regelmäßige Nachschmierung erforderlich sein.

Zu diesem Zweck werden bestimmte NKE Gehäuselager wie z.B. die Lager der Baureihen GAY, GYE, GE und GRAE bereits serienmässig mit Schmierbohrungen im Außenring gefertigt, um eine Nachschmierung zu ermöglichen.

Bei einer Nachschmierung ist, neben der Verwendung eines geeigneten und mit der Originalbefettung verträglichen Schmierstoffes auch auf ein langsames Nachschmieren zu achten, da ansonsten die Dichtscheiben aus dem Lager gedrückt werden können.

Auf Anfrage können alle NKE **Gehäuselager** auch mit Sonderfetten nach Kundenspezifikationen geliefert werden.

Achtung:

Bitte beachten Sie, dass auch bei einer Verwendung von nachschmierbar ausgelegten NKE Gehäuselagern eine Nachschmierbarkeit der Lagereinheiten nur dann gewährleistet ist, wenn auch die gewählten Gehäusebauformen nachschmierbar sind

Bei der Verwendung von Stahlblechgehäusen ist daher die unter den jeweiligen Betriebsbedingungen erzielbare Schmierstoff-Gebrauchsdauer zu beachten!

Grease Filling of Insert Bearings

NKE insert bearings are supplied grease filled with a proven high quality lithium soap based rolling bearing grease suitable for operating temperatures of **-30°C** (-22°F) up to +120°C (248°F).

NKE **insert bearings**, operating under normal conditions, generally run maintenance free.

Some applications require additional regular relubrication when operating at high speeds, heavy dust and constant temperatures over **70°C** (**158°F**).

For these reasons, several NKE **insert bearings**, namely series **GAY**, **GYE**, **GE** and **GRAE**, feature lubrication holes in their outer rings as standard to provide a simple and effective relubricating method.

Where relubrication is necessary, it must be stated any undue pressure by the regreasing method may cause unnecessary damage to either the seals or shields.

It must also be taken into consideration that only greases that are fully compatible with the initial grease fill may be used.

NKE **insert bearings** are also supplied, according to customer specification, with special grease fill.

Important:

Please note that – even when using NKE insert bearings of a re-greaseable design – a regreasing of the completed unit is only possible when selecting a regeaseable housing design, e.g. a cast iron housing type.

Therefore, the service life of the grease used in the insert bearings under known operating conditions must be taken into consideration when used in pressed steel housings.

Bearing Units

Ausführliche Informationen zur Bestimmung der voraussichtlichen Schmierstoff-Gebrauchsdauer unter Berücksichtigung der tatsächlich vorliegenden Betriebsbedingungen finden Sie im Kapitel Abschnitt "Auswahl und Dimensionierung von Wälzlagern", ab Seite 82.

For comprehensive detailed guidelines and technical information, including the determination of the probable grease service life is provided chapter "Selection of Bearing Type and Size", on page 270.

Käfige

Alle NKE **Gehäuselager** werden standardmäßig mit Stahlblechkäfigen gefertigt.

Auf Anfrage können NKE Gehäuselager auch mit anderen Käfigausführungen nach Kundenspezifikationen geliefert werden.

Toleranzen

NKE Gehäuselager werden standardmäßig in Normaltoleranz (**PN**) gefertigt.

Auf Anfrage können diese auch mit eingeengten Toleranzen, wie beispielsweise in den Toleranzklassen **P6** und **P5** gefertigt werden. Detaillierte Werte für die einzelnen Toleranzklassen entnehmen Sie bitte den Tabellen im Abschnitt "Lagerdaten / Toleranzen", Seite 52.

Normaltoleranzen für den Innenring

Alle Maße in [mm]
Toleranzwerte in [µm]

Cages

NKE **insert bearings** are fitted with pressed steel cages as standard.

NKE **insert bearings** can also be supplied with special cages according to customer specification.

Tolerances

NKE insert bearings are produced to normal tolerance class (**PN**) as standard.

On request these bearings are also produced to closer tolerances, such as tolerance classes **P6** and **P5**. Detailed tolerance values are listed in the tables shown in the chapter "Bearing data / Tolerances" page 237.

Normal tolerances for the inner rings

All dimensions shown in [mm] Tolerances in $[\mu m]$

Nennmaß der										
Lagerbohrung	ød	>	12	18	24	30	40	50	60	90
Nominal bore		≤	18	24	30	40	50	60	90	120
diameter										
Bohrung, zylindrisch										
Abweichung	A dmn	max	+18	+18	+18	+18	+18	+18	+25	+30
Bore, cylindrical	∆dmp	min	0	0	0	0	0	0	0	0
deviation										

Tabelle 2: Normaltoleranzen für Innenringe von NKE Gehäuselagern Table 2: Normal tolerances for the inner rings of NKE insert bearings

Normaltoleranzen für den Außenring

Alle Maße in [mm]
Toleranzwerte in [µm]

Normal tolerances for the outer rings

All dimensions shown in [mm] Tolerances in $[\mu m]$

Nennmaß des Außendurchmessers Nominal outer diameter	ø D	> ≤	30 50	50 80	80 120	120 150	150 180	180 250
Außendurchmesser, Abweichung Outer diameter deviation	∆ Dmp	max min	0 -11	0 -13	0 -15	0 -18	0 -25	0 -30

Tabelle 3: Normaltoleranzen für **Außenringe** von NKE **Gehäuselagern** *Table 3: Normal tolerances for the outer rings of NKE insert bearings*

Lagerluft

NKE Gehäuselager werden aufgrund der spezifischen Anforderungen standardmäßig mit Radialluftklasse C3, d.h. mit einer größeren Lagerluft als normal geliefert.

Genaue Lagerluftwerte sind in der folgenden Tabelle 4 angegeben.

Alle Maße in [mm]

Lagerluftwerte in [µm]

Internal Clearance

Due to their characteristic requirements, NKE insert bearings are produced with radial clearance group C3 (i.e. a larger internal radial clearance than normal) as standard.

The values of the internal radial clearance are provided in table 4 below.

All dimensions shown in [mm]

Values of radial internal

clearance shown in [µm]

Nennmaß der											
Lagerbohrung	ø d	>	10	18	24	30	40	50	65	80	100
Nominal bore		≤	18	24	30	40	50	65	80	100	120
diameter											
Radiale Lagerluft		min	11	13	13	15	18	23	25	30	36
Radial internal clearance		max	25	28	28	33	36	43	51	58	66

Tabelle 4: Radiale Lagerluft der NKE **Gehäuselager** (Lagerluftklasse **C3** nach DIN620)

Table 4: Radial internal clearance of NKE insert bearings (Clearance Group **C3** according to DIN 620)

Auf Anfrage können NKE **Gehäuselager** auch mit anderen Lagerluftwerten gefertigt werden.

NKE **insert bearings** are, upon request, also produced to other internal clearances.

Mindestbelastung:

Zum kinematisch korrekten Betrieb benötigen Wälzlager in allen Betriebszuständen eine Mindestbelastung.

Für NKE Gehäuselager muss die Mindestbelastung 1% der dynamischen Tragzahl betragen.

Zusammenbau der NKE Gehäuselagereinheit:

Falls die NKE-Gehäuse und dazugehörige Lager nicht im montierten Zustand geliefert werden, sondern vom Kunden zusammengebaut werden, ist vor dem Einbau des Gehäuselagers die Aufnahmebohrung des Gehäuses mit Montagepaste zu bestreichen, um ein Einschwenken des Lagerrings zu erleichtern. Zum Einschwenken selbst kann ein passendes Rohrstück in die Lagerbohrung gesteckt werden. Ein ausreichend strammer Sitz des Lagers im Gehäuse bewirkt, dass beim Nachschmieren kein Fett zwischen Gehäuse und Lager austritt und ausreichend Frischfett in das Lager gelangt.

ZU BEACHTEN:

Durch ein mehrmaliges Schwenken bzw. Montieren / Demontieren des Lagers im Gehäuse kann es durch Oberflächenglättungen zu einer erhöhten Leichtgängigkeit kommen, die die grundsätzliche Lagerfunktion jedoch noch nicht beeinflusst.

Minimum Load:

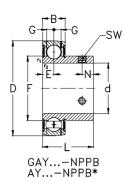
Bearings require a minimum load under all operating conditions to ensure kinematically correct rolling element function.

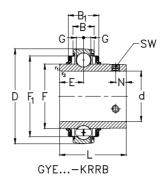
For NKE insert bearings the minimum load must be **1%** of the dynamic load rating.

Assembly of the NKE Bearing Unit:

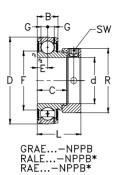
When NKE bearing housings and insert bearings are delivered non-assembled and have to be joined by the customer, the bore of the housing shall be lubricated with an assembly lubricant prior to inserting the bearing into the housing to ease the assembly process. To swivel the bearing into place a suitable tube may be inserted into the bearing bore.

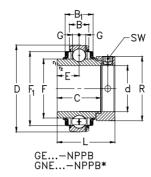
A suitably tight fit of the insert bearing in the housing ensures that no grease leaks between the housing and the bearing during re-greasing and that sufficient fresh grease is injected into the bearing.


NOTE:


Repeated swivelling or mounting / dismounting of the insert bearing in the housing will burnish the housing bore surface thereby easing the movement between the components. This shall not affect the overall bearing unit's function.

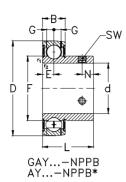
Insert bearings

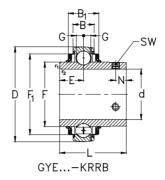




* Nicht nachschmierbare Ausführung Non regreaseable execution

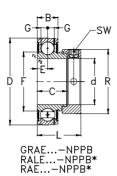
		Hauptabmessungen [mm] Boundary dimensions [mm]			Gehäuselager Insert bearing		Hauptabmessungen [mm] Boundary dimensions		
		[m	nm]		_		[m	m]	
d	D	В	B ₁	С		E	F	F ₁	G
12	40	12		19	GRAE12-NPPB	6.5	23		3.3
	40	12		19	RAE12-NPPB	6.5	23		
	40	12			AY12-NPPB	6	23.9		
	40	12			GAY12-NPPB	6	23.9		3.3
	40	12	16.6		GYE12-KRRB	11.5	23.9	31.6	3.3
15	40	12		19	GRAE15-NPPB	6.5	23		3.3
	40	12		19	RAE15-NPPB	6.5	23		
	40	12			AY15-NPPB	6	23.9		
	40	12			GAY15-NPPB	6	23.9		3.3
	40	12	16.6		GYE15-KRRB	11.5	23.9	31.6	3.3
16	40	12	16.6		GYE16-KRRB	11.5	23.9	31.6	3.3
17	40	12	-	19	GRAE17-NPPB	6.5	23		3.3
	40	12		19	RAE17-NPPB	6.5	23		
	40	12	16.6	19	GE17-KRRB	13.9	23.9	31.6	3.3
	40	12			AY17-NPPB	6	23		
	40	12			GAY17-NPPB	6	23.9		3.3
	40	12	16.6		GYE17-KRRB	11.5	23.9	31.6	3.3
20	47	14		21.4	GRAE20-NPPB	7.5	26.9		3.7
	47	14		21.4	RAE20-NPPB	7.5	26.9		
	42	12	-	16.7	RALE20-NPPB	6	25.4		
	47	14	16.6	34.1	GE20-KRRB	17.1	27.6	37.4	3.7
	47	14			AY20-NPPB	7	28.3		

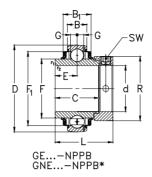



* Nicht nachschmierbare Ausführung Non regreaseable execution

		Hauptabm [m Boundary o	m] dimensions			Tragzahlen [kN] Load ratings [kN]		Gewicht [kg] Weight [kg]
d	N	L	sw	R_{max}	C, [kN]	C₀r [kN]	C _u	m
12		28.6	3	28	9.6	4.8	0.2	0.12
	-	28.6	3	28	9.6	4.8	0.2	0.12
	4	22	2.5		9.6	4.8	0.2	0.1
	4	22	2.5		9.6	4.8	0.2	0.1
	4	27.4	2.5		9.6	4.8	0.2	0.11
15	-	28.6	3	28	9.6	4.8	0.2	0.12
		28.6	3	28	9.6	4.8	0.2	0.12
	4	22	2.5		9.6	4.8	0.2	0.09
	4	22	2.5		9.6	4.8	0.2	0.09
	4	27.4	2.5		9.6	4.8	0.2	0.1
16	4	27.4	2.5		9.6	4.8	0.2	0.1
17	-	37.3	3	28	9.6	4.8	0.2	0.12
		28.6	3	28	9.6	4.8	0.2	0.12
		28.6	3	28	9.6	4.8	0.2	0.16
	4	22	2.5		9.6	4.8	0.2	0.08
	4	22	2.5		9.6	4.8	0.2	0.08
	4	27.4	2.5		9.6	4.8	0.2	0.09
20		31	3	33	12.8	6.7	0.3	0.16
		31	3	33	12.8	6.7	0.3	0.16
		24.6	3	30	9.4	5	0.2	0.09
		43.7	2.5	33	12.8	6.7	0.3	0.2
	4.5	25	2.5		12.8	6.7	0.3	0.13

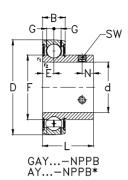
Insert bearings

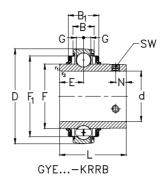




* Nicht nachschmierbare Ausführung Non regreaseable execution

		Hauptabmessungen [mm] Boundary dimensions [mm]			Gehäuselager Insert bearing		Hauptabmessungen [mm] Boundary dimensions [mm]		
d	D	В	B ₁	С		E	F	F ₁	G
20	47	14			GAY20-NPPB	7	28.3		3.7
	47	14	16.6	-	GYE20-KRRB	12.7	27.6	37.4	3.7
25	52	15		21.4	GRAE25-NPPB	7.5	30.5		3.9
	52	15		21.4	RAE25-NPPB	7.5	30.5		
	47	12		17.5	RALE25-NPPB	6	30		
	52	15	16.7	34.9	GE25-KRRB	17.5	33.8	42.5	3.9
	52	15			AY25-NPPB	7.5	33.5		
	52	15			GAY25-NPPB	7.5	33.5		3.9
	52	15	16.7		GYE25-KRRB	14.3	33.8	42.5	3.9
30	62	18		23.8	GRAE30-NPPB	9	37.4		5
	62	18		23.8	RAE30-NPPB	9	37.4		
	55	13		18.5	RALE30-NPPB	6.5	35.7		
	62	18	20.7	36.5	GE30-KRRB	18.3	40.2	52	5
	72	20	24	36.5	GNE30-KRRB	17.5	44	60.2	6.2
	62	18			AY30-NPPB-1	9	39.4		
	62	18			GAY30-NPPB	9	39.4		5
	62	18	20.7		GYE30-KRRB	15.9	40.2	52	5
35	72	19		25.4	GRAE35-NPPB	9.5	44.6		5.7
	72	19		25.4	RAE35-NPPB	9.5	44.6		
	72	19	22.5	37.7	GE35-KRRB	18.8	46.8	60.3	5.7
	80	22	25	38.1	GNE35-KRRB	18.3	48	66.6	7
	72	19			GAY35-NPPB	9.5	46.9		5.7

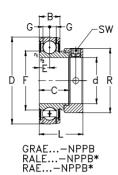


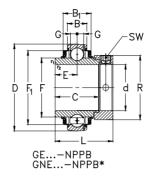


* Nicht nachschmierbare Ausführung Non regreaseable execution

		Hauptabm [m	m]			Tragzahlen [kN]		Gewicht [kg]
		Boundary o				Load ratings [kN]		Weight [kg]
d	N	L	sw	R_{max}	C, [kN]	C _{or} [kN]	C _u	m
20	4.5	25	2.5		12.8	6.7	0.3	0.13
	4.5	31	2.5		12.8	6.7	0.3	0.17
25		31	3	37.5	14	7.9	0.4	0.19
		31	3	37.5	14	7.9	0.4	0.19
		25.4	3	36	10.1	5.9	0.3	0.12
		44.4	2.5	37.5	14	7.9	0.4	0.25
	5	27	2.5		14	7.9	0.4	0.16
	5	27	2.5	-	14	7.9	0.4	0.16
	5	34.1	2.5		14	7.9	0.4	0.2
30		35.7	4	44	19.5	11.3	0.5	0.31
		35.7	4	44	19.5	11.3	0.5	0.31
		26.5	2.5	42.5	13.2	8.3	0.4	0.17
		48.4	4		19.5	11.3	0.5	0.38
		50	5	51	27	15.2	0.7	0.54
	5	30	3		19.5	11.3	0.5	0.25
	5	30	3		19.5	11.3	0.5	0.25
	5	38.1	3		19.5	11.3	0.5	0.33
35		38.9	5	51	25.7	15.3	0.7	0.48
		38.9	5	51	25.7	15.3	0.7	0.48
		51.1	5	51	25.7	15.3	0.7	0.55
		51.6	5	55	19.5	11.3	0.5	0.73
	6	35	3		25.7	15.3	0.7	0.39

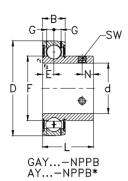
NKE

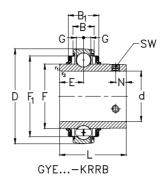




* Nicht nachschmierbare Ausführung Non regreaseable execution

	Hauptabmessungen [mm]			1	Gehäuselager		•	iessungen m]	
		,	dimensions nm]	3	Insert bearing		•	dimensions m]	
d	D	В	B ₁	С		E	F	F ₁	G
35	72	19	22.5		GYE35-KRRB	17.5	46.8	60.3	5.7
40	80	21		30.2	GRAE40-NPPB	11	49.4		6.2
	80	21		30.2	RAE40-NPPB	11	49.4		
	80	21	23.5	42.9	GE40-KRRB	21.4	52.3	68.3	6.2
	90	23	26	41	GNE40-KRRB	18	53.8	74.5	7.5
	80	21			GAY40-NPPB	10.5	52.4		6.2
	80	21	23.5		GYE40-KRRB	19	52.3	68.3	6.2
45	85	22		30.2	GRAE45-NPPB	11	54.5		6.4
	85	22	26.4	42.9	GE45-KRRB	21.4	57.9	72.3	6.4
	85	22			GAY45-NPPB	11	57		6.4
	85	22	26.4		GYE45-KRRB	19	57.9	72.3	6.4
50	90	22		30.2	GRAE50-NPPB	11	59.4		6.9
	90	22		30.2	RAE50-NPPB	11	59.4		
	90	22	26.4	49.2	GE50-KRRB	24.6	62.8	77.3	6.9
	110	29	31	49.2	GNE50-KRRB	24.6	68.8	92.7	9.1
	90	22			GAY50-NPPB	11	62		6.5
	90	22	26.4		GYE50-KRRB	19	62.8	77.3	6.5
55	100	24		32.5	GRAE55-NPPB	12	66		7
	100	25	29	55.5	GE55-KRRB	27.8	69.8	85.9	7
	100	25	29		GYE55-KRRB	22	69.8	85.9	7
60	110	24	-	37.1	GRAE60-NPPB	13.5	72		7.6
	110	24	29	61.9	GE60-KRRB	31	76.5	94.5	7.6

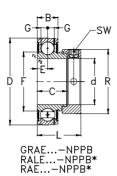


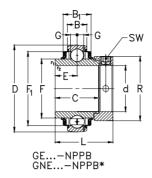


* Nicht nachschmierbare Ausführung Non regreaseable execution

		Hauptabm [m				Tragzahlen [kN]		Gewicht [kg]
		Boundary o				Load ratings [kN]		Weight [kg]
d	N	L	SW	R_{max}	C, [kN]	C _{or} [kN]	C _u	m
35	6	42.9	3		25.7	15.3	0.7	0.49
40		43.7	5	58	29.5	18.2	0.8	0.62
		43.7	5	58	29.5	18.2	0.8	0.62
		56.3	5	58	29.5	18.2	0.8	0.74
		54.6	5	63	40.8	24	1.1	1.09
	8	39.5	4		29.5	18.2	0.8	0.51
	8	49.2	4		29.5	18.2	8.0	0.65
45		43.7	5	63	31.7	20.7	0.9	0.69
		56.3	5	63	31.7	20.7	0.9	0.81
	8	41.5	4		31.7	20.7	0.9	0.55
	8	49.2	4		31.7	20.7	0.9	0.7
50		43.7	5	69	35.1	23.2	1.1	0.77
		43.7	5	69	35.1	23.2	1.1	0.77
		62.7	5	69	35.1	23.2	1.1	1
		66.7	5	75.8	61.9	38	1.7	1.87
	9	43	4		35.1	23.2	1.1	0.62
	8.5	51.6	4		35.1	23.2	1.1	0.8
55		48.4	5	76	43.5	29.2	1.3	0.81
		71.4	5	76	43.3	29.2	1.3	1.42
	9	55.6	5		43.5	29.2	1.3	1.1
60		53.1	5	84	47.7	33	1.5	1.4
		77.8	5	84	47.7	33	1.5	1.84

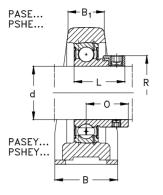
NKE

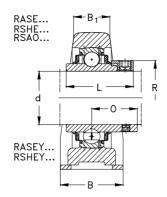




* Nicht nachschmierbare Ausführung Non regreaseable execution

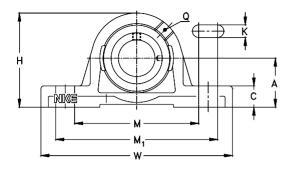
		Hauptabmessungen [mm]			Gehäuselager		Hauptabm [m	nessungen m]	
		-	dimensions nm]	5	Insert bearing		Boundary ([m	dimensions m]	1
d	D	В	B ₁	С		E	F	F ₁	G
60	130	33	37.2	52	GNE60-KRRB	23	79.4	109	11.2
	110	24			GAY60-NPPB	13	76		7.6
	110	24	29		GYE60-KRRB	25.4	76.5	94.5	7.6
65	125	28	32	48.5	GE65-KRRB	21.5	85.2	109	8.9
	125	28	32	48.5	GYE65-KRRB	30.2	85.2	109	8.9
70	125	28	32	48.5	GE70-KRRB	21.5	85.2	109	8.9
	150	37	41	58	GNE70-KRRB	26	92.2	127	12.3
	125	28	32		GYE70-KRRB	30.2	85.2	109	8.9
75	130	28	30.5	49.5	GE75-KRRB	21.5	90	113	8.5
	130	28	30.5		GYE75-KRRB	33.3	90	113	8.5
80	140	30	38	53.2	GE80-KRRB	23.4	97	120	8.8
	170	41	51	73	GNE80-KRRB	34	109	142.8	13.2
	140	30	38		GYE80-KRRB	33.3	97	120	8.8
90	160	32	35	52	GE90-KRRB	23	109.4	138	10
	190	45	52.6	77.5	GNE90-KRRB	35.5	122.2	161.3	14.3
	160	32	35		GYE90-KRRB	39.7	109.4	138	10
100	180	36	39	57.5	GE100-KRRB	25.5	122.2	155.5	11.2
	215	49	59.4	86	GNE100-KRRB	39.5	137.1	182.8	16.7

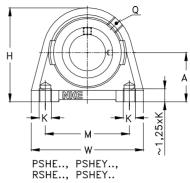

* Nicht nachschmierbare Ausführung Non regreaseable execution


		Hauptabm [m Boundary o	m] limensions			Tragzahlen [kN] Load ratings [kN]		Gewicht [kg] Weight [kg]
d	N	L	sw	R_{max}	C, [kN]	C _{or} [kN]	C _u	m
60		68.4	5	89	81.8	52	2.4	2.97
	10	47	5		47.7	33	1.5	1.07
	10	65.1	5		47.7	33	1.5	1.32
65		66.1	6	96	61	45.1	2.1	2.71
		74.6	5		61	45.1	2.1	2.25
70		66.1	6	96	61	45.1	2.1	2.45
		75.4	6	102	104	68.1	3	4.37
	12	74.6	5		61	45.1	2.1	1.95
75		67.1	6	100	66	49.5	2.2	2.65
	12	77.8	5		66	49.5	2.2	2.19
80		71	6	108	72	54	2.3	2.95
		93.7	6	118	123	87	3.5	7.1
	12	82.6	5		72	54	2.3	2.93
90		69.5	6	118	96	72	2.9	3.72
		101	6	132	143	107	4.1	9.3
	12	96	6		96	72	2.9	4.2
100		75	6	132	122	93	3.6	4.65
		109.5	6	145	173	141	5.1	12.3

Stehlagereinheiten, Grauguss

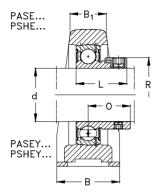
Plummer Block Units, Cast Iron

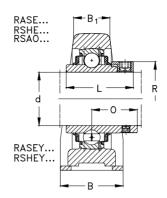




	Haup	otabmessur [mm]	ngen	Bezeichnung					
	Boun	dary dimens [mm]	sions		Designation				
				Lagereinheit	Gehäuse	Gehäuselager			
d	Α	W	Н	Bearing Unit	Housing	Insert Bearing			
12	30,2	125	57	PASE12	ASE03	GRAE12-NPPB			
	30,2	125	57	PASEY12	ASE03	GAY12-NPPB			
	30,2	125	57	RASEY12	ASE03	GYE12-KRRB			
	30,2	63	57	PSHE12	SHE03	GRAE12-NPPB			
	30,2	63	57	PSHEY12	SHE03	GAY12-NPPB			
	30,2	63	57	RSHEY12	SHE03	GYE12-KRRB			
15	30,2	125	57	PASE15	ASE03	GRAE15-NPPB			
	30,2	125	57	PASEY15	ASE03	GAY15-NPPB			
	30,2	125	57	RASEY15	ASE03	GYE15-KRRB			
	30,2	63	57	PSHE15	SHE03	GRAE15-NPPB			
	30,2	63	57	PSHEY15	SHE03	GAY15-NPPB			
	30,2	63	57	RSHEY15	SHE03	GYE15-KRRB			
16	30,2	125	57	RASEY16	ASE03	GYE16-KRRB			
17	30,2	125	57	PASE17	ASE03	GRAE17-NPPB			
	30,2	125	57	RASE17	ASE03	GE17-KRRB			
	30,2	125	57	PASEY17	ASE03	GAY17-NPPB			
	30,2	125	57	RASEY17	ASE03	GYE17-KRRB			
	30,2	63	57	PSHE17	SHE03	GRAE17-NPPB			
	30,2	63	57	RSHE17	SHE03	GE17-KRRB			
	30,2	63	57	PSHEY17	SHE03	GAY17-NPPB			
	30,2	63	57	RSHEY17	SHE03	GYE17-KRRB			
20	33,3	130	64	PASE20-N	ASE04-N	GRAE20-NPPB			

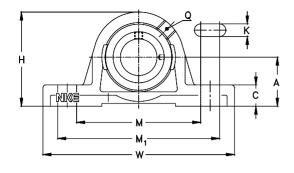
Gewicht

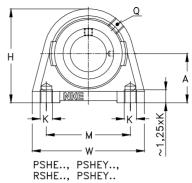



				П	auptabin [m]		11				[kg]
				Во	oundary o [m		າຣ				Weight [kg]
d	В	B ₁	С	K	L	M	M₁	0	Q	R_{max}	[m]
12	30	18	10	11	28,6	87	103	22,1	M6	28	0,46
	30	18	10	11	22	87	103	16	M6		0,44
	30	18	10	11	27,4	87	103	15,9	M6		0,45
	30	18		M 8	28,6	47		22,1	M6	28	0,44
	30	18		M 8	22	47		16	M6		0,42
	30	18		M 8	27,4	47		15,9	M6		0,43
15	30	18	10	11	28,6	87	103	22,1	M6	28	0,46
	30	18	10	11	22	87	103	16	M6		0,43
	30	18	10	11	27,4	87	103	15,9	M6		0,45
	30	18		M 8	28,6	47		22,1	M6	28	0,44
	30	18		M 8	22	47		16	M6		0,41
	30	18		M 8	27,4	47		15,9	M6		0,42
16	30	18	10	11	27,4	87	103	15,9	M6		0,45
17	30	18	10	11	28,6	87	103	22,1	M6	28	0,46
	30	18	10	11	37,3	87	103	23,4	M6	28	0,5
	30	18	10	11	22	87	103	16	M6		0,42
	30	18	10	11	27,4	87	103	15,9	M6		0,45
	30	18		M 8	28,6	47		22,1	M6	28	0,44
	30	18		M 8	37,3	47		23,4	M6	28	0,48
	30	18		M 8	22	47		16	M6		0,4
	30	18		M 8	27,4	47		15,9	M6		0,41
20	32	19	14,5	11	31	89,5	105	23,5	R1/8"	33	0,55

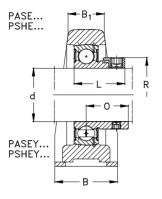
Hauptabmessungen

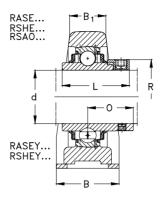
Stehlagereinheiten, Grauguss Plummer Block Units, Cast Iron





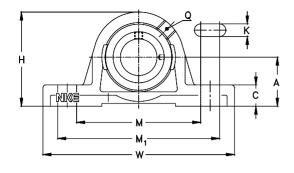
	Haup	otabmessur [mm]	ngen	Bezeichnung				
	Bour	ndary dimens [mm]	sions		Designation			
				Lagereinheit	Gehäuse	Gehäuselager		
d	Α	W	Н	Bearing Unit	Housing	Insert Bearing		
20	33,3	130	64	RASE20-N	ASE04-N	GE20-KRRB		
	33,3	130	64	PASEY20-N	ASE04-N	GAY20-NPPB		
	33,3	130	64	RASEY20-N	ASE04-N	GYE20-KRRB		
	33,3	65	64	PSHE20-N	SHE04-N	GRAE20-NPPB		
	33,3	65	64	RSHE20-N	SHE04-N	GE20-KRRB		
	33,3	65	64	PSHEY20-N	SHE04-N	GAY20-NPPB		
	33,3	65	64	RSHEY20-N	SHE04-N	GYE20-KRRB		
25	36,5	130	70	PASE25-N	ASE05-N	GRAE25-NPPB		
	36,5	130	70	RASE25-N	ASE05-N	GE25-KRRB		
	36,5	130	70	PASEY 25-N	ASE05-N	GAY25-NPPB		
	36,5	130	70	RASEY25-N	ASE05-N	GYE25-KRRB		
	36,5	70	70	PSHE25-N	SHE05-N	GRAE25-NPPB		
	36,5	70	70	RSHE25-N	SHE05-N	GE25-KRRB		
	36,5	70	70	PSHEY25-N	SHE05-N	GAY25-NPPB		
	36,5	70	70	RSHEY25-N	SHE05-N	GYE25-KRRB		
30	42,9	158	82	PASE30-N	ASE06-N	GRAE30-NPPB		
	42,9	158	82	RASE30-N	ASE06-N	GE30-KRRB		
	42,9	158	82	PASEY30-N	ASE06-N	GAY30-NPPB		
	42,9	158	82	RASEY30-N	ASE06-N	GYE30-KRRB		
	42,9	98	82	PSHE30-N	SHE06-N	GRAE30-NPPB		
	42,9	98	82	RSHE30-N	SHE06-N	GE30-KRRB		
	42,9	98	82	PSHEY30-N	SHE06-N	GAY30-NPPB		

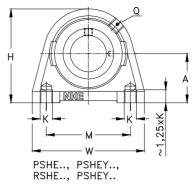



Hauptabmessungen [mm]											Gewicht [kg]
				Во		dimensior m]	าร				Weight [kg]
d	В	B ₁	С	K	L	М	M₁	0	Q	R _{max}	[m]
20	32	19	14,5	11	43,7	89,5	105	26,6	R1/8"	33	0,59
	32	19	14,5	11	25	89,5	105	18	R1/8"		0,52
	32	19	14,5	11	31	89,5	105	18,3	R1/8"		0,56
	32	19		M 8	31	50,8		23,5	R1/8"	33	0,51
	32	19		M 8	43,7	50,8		26,6	R1/8"	33	0,55
	32	19		M 8	25	50,8		18	R1/8"		0,48
	32	19		M 8	31	50,8		18,3	R1/8"		0,52
25	36	21	14,5	11	31	94,5	110,5	23,5	R1/8"	37,5	0,64
	36	21	14,5	11	44,4	94,5	110,5	26,9	R1/8"	37,5	0,7
	36	21	14,5	11	27	94,5	110,5	19,5	R1/8"		0,61
	36	21	14,5	11	34,1	94,5	110,5	19,6	R1/8"		0,65
	36	21		M10	31	50,8		23,5	R1/8"	37,5	0,6
	36	21		M10	44,4	50,8		26,9	R1/8"	37,5	0,66
	36	21		M10	27	50,8		19,5	R1/8"		0,57
	36	21		M10	34,1	50,8		19,6	R1/8"		0,61
30	40	25	17	14	35,7	109,5	125,5	26,7	R1/8"	44	1,04
	40	25	17	14	48,4	109,5	125,5	30,1	R1/8"	44	1,11
	40	25	17	14	30	109,5	125,5	21	R1/8"		0,98
	40	25	17	14	38,1	109,5	125,5	22,2	R1/8"		1,06
	40	25		M10	35,7	76,2		26,7	R1/8"	44	1,05
	40	25		M10	48,4	76,2		30,1	R1/8"	44	1,12
	40	25		M10	30	76,2		21	R1/8"		0,99

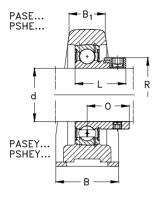
Stehlagereinheiten, Grauguss

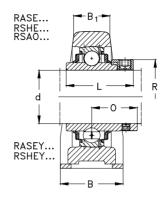
Plummer Block Units, Cast Iron





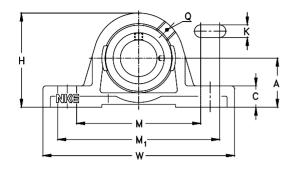
	Haup	otabmessur [mm]	ngen	Bezeichnung					
	Boun	dary dimens [mm]	sions		Designation				
				Lagereinheit	Gehäuse	Gehäuselager			
d	Α	W	Н	Bearing Unit	Housing	Insert Bearing			
30	42,9	98	82	RSHEY30-N	SHE06-N	GYE30-KRRB			
	50	180	95	RSAO30-N	SAO06-N	GNE30-KRRB			
35	47,6	163	93	PASE35-N	ASE07-N	GRAE35-NPPB			
	47,6	163	93	RASE35-N	ASE07-N	GE35-KRRB			
	47,6	163	93	PASEY35-N	ASE07-N	GAY35-NPPB			
	47,6	163	93	RASEY35-N	ASE07-N	GYE35-KRRB			
	47,6	103	93	PSHE35-N	SHE07-N	GRAE35-NPPB			
	47,6	103	93	RSHE35-N	SHE07-N	GE35-KRRB			
	47,6	103	93	PSHEY35-N	SHE07-N	GAY35-NPPB			
	47,6	103	93	RSHEY35-N	SHE07-N	GYE35-KRRB			
	56	210	106	RSAO35-N	SAO07-N	GNE35-KRRB			
40	49,2	179	99	PASE40-N	ASE08-N	GRAE40-NPPB			
	49,2	179	99	RASE40-N	ASE08-N	GE40-KRRB			
	49,2	179	99	PASEY40-N	ASE08-N	GAY40-NPPB			
	49,2	179	99	RASEY40-N	ASE08-N	GYE40-KRRB			
	49,2	116	99	PSHE40-N	SHE08-N	GRAE40-NPPB			
	49,2	116	99	RSHE40-N	SHE08-N	GE40-KRRB			
	49,2	116	99	PSHEY40-N	SHE08-N	GAY40-NPPB			
	49,2	116	99	RSHEY40-N	SHE08-N	GYE40-KRRB			
	60	220	116	RSAO40-N	SAO08-N	GNE40-KRRB			
45	54	192	107	PASE45	ASE09	GRAE45-NPPB			
	54	192	107	RASE45	ASE09	GE45-KRRB			

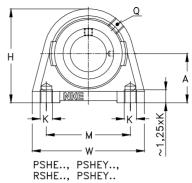



Hauptabmessungen [mm] Boundary dimensions [mm]												
d	В	B ₁	С	K	L	М	M ₁	0	Q	R _{max}	[m]	
30	40	25		M10	38,1	76,2		22,2	R1/8"		1,07	
	50	28	18	17,5	50	137	143	32,5	R1/8"	51	1,8	
35	45	27	19	14	38,9	119,5	132,5	29,4	R1/8"	51	1,58	
	45	27	19	14	51,1	119,5	132,5	32,3	R1/8"	51	1,6	
	45	27	19	14	35	119,5	132,5	25,5	R1/8"		1,44	
	45	27	19	14	42,9	119,5	132,5	25,4	R1/8"		1,54	
	45	27		M10	38,9	82,6		29,4	R1/8"	51	1,44	
	45	27		M10	51,1	82,6		32,3	R1/8"	51	1,51	
	45	27		M10	35	82,6		25,5	R1/8"		1,35	
	45	27		M10	42,9	82,6		25,4	R1/8"		1,45	
	56	30	20	17,5	51,6	152	168	33,4	R1/8"	55	2,75	
40	48	30	19	14	43,7	126,5	150	32,7	R1/8"	58	1,71	
	48	30	19	14	56,3	126,5	150	34,9	R1/8"	58	1,83	
	48	30	19	14	39,5	126,5	150	29	R1/8"		1,6	
	48	30	19	14	49,2	126,5	150	30,2	R1/8"		1,74	
	48	30		M12	43,7	88,9		32,7	R1/8"	58	1,84	
	48	30		M12	56,3	88,9		34,9	R1/8"	58	1,96	
	48	30		M12	39,5	88,9		29	R1/8"	-	1,73	
	48	30		M12	49,2	88,9		30,2	R1/8"		1,87	
	60	31	22	17,5	54,6	160	180	36,6	R1/8"	63	3,18	
45	48	32	21,5	14	43,7	135	164,3	32,7	R1/8"	63	2,09	
	48	32	21,5	14	56,3	135	164,3	34,9	R1/8"	63	2,21	

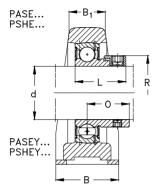
Stehlagereinheiten, Grauguss

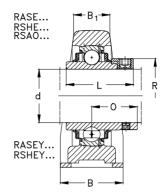
Plummer Block Units, Cast Iron





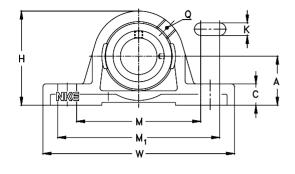
	Haup	otabmessu [mm]	ngen	Bezeichnung					
	Bour	ndary dimen [mm]	sions		Designation				
d	Α	w	н	Lagereinheit Bearing Unit	Gehäuse Housing	Gehäuselager Insert Bearing			
45	54	192	107	PASEY45	ASE09	GAY45-NPPB			
	54	192	107	RASEY45	ASE09	GYE45-KRRB			
	54	120	107	PSHE45	SHE09	GRAE45-NPPB			
	54	120	107	RSHE45	SHE09	GE45-KRRB			
	54	120	107	PSHEY45	SHE09	GAY45-NPPB			
	54	120	107	RSHEY45	SHE09	GYE45-KRRB			
50	57,2	200	115	PASE 50-N	ASE10-N	GRAE50-NPPB			
	57,2	200	115	RASE 50-N	ASE10-N	GE50-KRRB			
	57,2	200	115	PASEY 50-N	ASE10-N	GAY50-NPPB			
	57,2	200	115	RASEY 50-N	ASE10-N	GYE50-KRRB			
	57,2	135	115	PSHE50-N	SHE10-N	GRAE50-NPPB			
	57,2	135	115	RSHE50-N	SHE10-N	GE50-KRRB			
	57,2	135	115	PSHEY50-N	SHE10-N	GAY50-NPPB			
	57,2	135	115	RSHEY50-N	SHE10-N	GYE50-KRRB			
	75	275	143	RSAO50-N	SAO10-N	GNE50-KRRB			
55	63,5	222	124,5	PASE55	ASE11	GRAE55-NPPB			
	63,5	222	124,5	RASE55	ASE11	GE55-KRRB			
	63,5	222	124,5	RASEY55	ASE11	GYE55-KRRB			
	64	150	125	PSHE55	SHE11	GRAE55-NPPB			
	64	150	125	RSHE55	SHE11	GE55-KRRB			
	64	150	125	RSHEY55	SHE11	GYE55-KRRB			
60	69,9	240	140	PASE60-N	ASE12-N	GRAE60-NPPB			

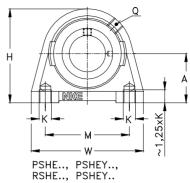




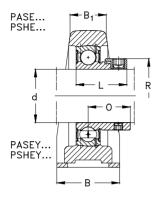
Hauptabmessungen [mm]											
				Во	•	dimensioi m]	าร				Weight [kg]
d	В	B₁	С	K	L	М	M ₁	0	Q	R _{max}	[m]
45	48	32	21,5	14	41,5	135	164,3	30,5	R1/8"		1,95
	48	32	21,5	14	49,2	135	164,3	30,2	R1/8"		2,1
	48	32		M12	43,7	95,3		32,7	R1/8"	63	2,14
	48	32		M12	56,3	95,3		34,9	R1/8"	63	2,26
	48	32		M12	41,5	95,3		30,5	R1/8"		2
	48	32		M12	49,2	95,3		30,2	R1/8"		2,15
50	54	34	21,5	18	43,7	153	163	32,7	R1/8"	69	2,47
	54	34	21,5	18	62,7	153	163	38,1	R1/8"	69	2,7
	54	34	21,5	18	43	153	163	32	R1/8"		2,32
	54	34	21,5	18	51,6	153	163	32,6	R1/8"		2,5
	54	34		M16	43,7	101,6		32,7	R1/8"	69	2,79
	54	34		M16	62,7	101,6		38,1	R1/8"	69	3,02
	54	34		M16	43	101,6		32	R1/8"		2,64
	54	34		M16	51,6	101,6		32,6	R1/8"		2,82
	75	39	27	20	66,7	197	227	42,1	R1/8"	75,8	6,1
55	60	35	22,5	18	48,4	164,5	187,5	36,4	R1/8"	76	2,79
	60	35	22,5	18	71,4	164,5	187,5	43,6	R1/8"	76	3,4
	60	35	22,5	18	55,6	164,5	187,5	33,4	R1/8"		3,08
	60	35		M16	48,4	118		36,4	R1/8"	76	2,91
	60	35		M16	71,4	118		43,6	R1/8"	76	3,52
	60	35		M16	55,6	118		33,4	R1/8"		3,2
60	60	42	25	18	53,1	180	200	39,6	R1/8"	84	4,35

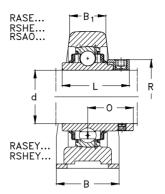
Stehlagereinheiten, Grauguss Plummer Block Units, Cast Iron





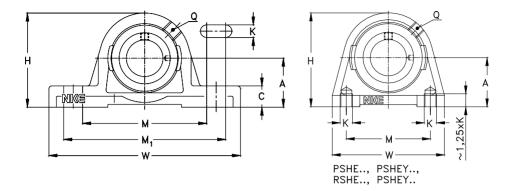
	Haup	otabmessur [mm]	ngen	Bezeichnung					
	Boun	dary dimen: [mm]	sions		Designation				
				Lagereinheit	Gehäuse	Gehäuselager			
d	Α	W	Н	Bearing Unit	Housing	Insert Bearing			
60	69,9	240	140	RASE60-N	ASE12-N	GE60-KRRB			
	69,9	240	140	PASEY60-N	ASE12-N	GAY60-NPPB			
	69,9	240	140	RASEY60-N	ASE12-N	GYE60-KRRB			
	69,9	150	140	PSHE60-N	SHE12-N	GRAE60-NPPB			
	69,9	150	140	RSHE60-N	SHE12-N	GE60-KRRB			
	69,9	150	140	PSHEY60-N	SHE12-N	GAY60-NPPB			
	69,9	150	140	RSHEY60-N	SHE12-N	GYE60-KRRB			
	85	330	165	RSAO60	SAO12	GNE60-KRRB			
65	79,4	260	156	RASE65	ASE14	GE65-KRRB			
	79,4	260	156	RASEY65	ASE14	GYE65-KRRB			
70	79,4	260	156	RASE70	ASE14	GE70-KRRB			
	79,4	260	156	RASEY70	ASE14	GYE70-KRRB			
	95	360	187	RSAO70	SAO14	GNE70-KRRB			
75	82,5	265	164	RASE75	ASE15	GE75-KRRB			
	82,5	265	164	RASEY75	ASE15	GYE75-KRRB			
80	89	290	175	RASE80	ASE16	GE80-KRRB			
	89	290	175	RASEY80	ASE16	GYE80-KRRB			
	116	390	226	RSAO80	SAO16	GNE80-KRRB			
90	101,6	330	200	RASE90	ASE18	GE90-KRRB			
	101,6	330	200	RASEY90	ASE18	GYE90-KRRB			
	130	410	250	RSAO90	SAO18	GNE90-KRRB			
100	115	380	225	RASE100	ASE20	GE100-KRRB			



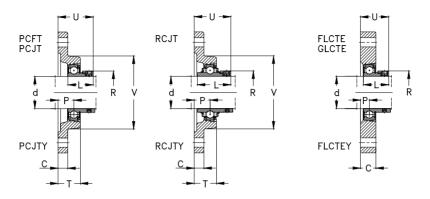

Hauptabmessungen [mm]											Gewicht [kg]	
				Во	oundary o [m	dimensior m]	าร				Weight [kg]	
d	В	B ₁	С	K	L	M	M ₁	0	Q	R _{max}	[m]	
60	60	42	25	18	77,8	180	200	46,8	R1/8"	84	4,79	
	60	42	25	18	47	180	200	34	R1/8"		4,02	
	60	42	25	18	65,1	180	200	39,7	R1/8"		4,27	
	60	42		M16	53,1	118		39,6	R1/8"	84	4,1	
	60 42 M16 77,8 118 46,8 R1/8" 84											
	60	42		M16	47	118		34	R1/8"		3,37	
	60	42		M16	65,1	118		39,7	R1/8"		4,02	
	85	46	32	25	68,4	237	263	45,4	R1/8"	89	9	
65	65	44	27,5	22	66,1	196,5	208,5	44,6	R1/8"	96	6,41	
	65	44	27,5	22	74,6	196,5	208,5	44,4	R1/8"		5,95	
70	65	44	27,5	22	66,1	196,5	208,5	44,6	R1/8"	96	6,15	
	65	44	27,5	22	74,6	196,5	208,5	44,4	R1/8"		5,65	
	90	54	35	27	75,4	267	297	49,4	R1/8"	102	11	
75	66	48	27,5	22	67,1	202	218	45,6	R1/8"	100	7,65	
	66	48	27,5	22	77,8	202	218	44,5	R1/8"		7,19	
80	78	55	30	26	71	224	240	47,6	R1/8"	108	8,65	
	78	55	30	26	82,6	224	240	49,3	R1/8"		8,63	
	110	76	50	25,5	93,7	296	334	59,7	R1/8"	118	22,5	
90	85	55	35	27	69,6	260	276	46,6	R1/8"	118	12,1	
	85	55	35	27	96	260	276	56,3	R1/8"		12,6	
	120	84	57	28	101	314	366	65,5	R1/8"	132	29,5	
100	95	62	40	30	75	300	316	49,5	R1/8"	132	15,9	

Stehlagereinheiten, Grauguss

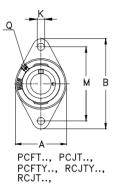
Plummer Block Units, Cast Iron

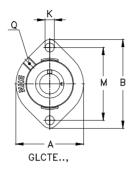


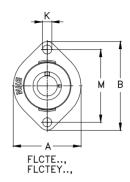
	Haup	otabmessur [mm]	ngen		Bezeichnung						
Boundary dimensions Designation [mm]											
				Lagereinheit	Gehäuse	Gehäuselager					
d	Α	W	н	Bearing Unit	Housing	Insert Bearing					
100	145	440	280	RSAO100	SAO20	GNE100-KRRB					
120	135	440	265	RASE120 ASE24 GE120-KRRB							



					auptabme [mi oundary o [mi	m] Iimensioi					Gewicht [kg] Weight [kg]
d	В	B ₁	С	K	L	М	M ₁	0	Q	R_{max}	[m]
100	130	94	65	32	109,5	360	390	70	R1/8"	145	41
120	105	70	45	33	81	350	366	52,5	R1/8"	152	25,5


Zweilochflanscheinheiten, Grauguss *Oval Flanged Units, Cast Iron*

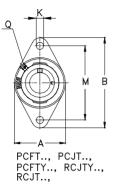


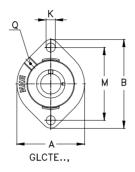


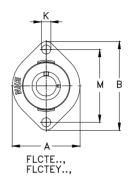
	Haup	otabmessu [mm]	ngen		Bezeichnung			
	Boun	ndary dimen [mm]	sions	Designation				
				Lagereinheit	Gehäuse	Gehäuselager		
d	Α	В	С	Bearing unit	Housing	Insert bearing		
12	58,7	81	15	FLCTE12	LCTE03	RAE12-NPPB		
	58,7	81	15	GLCTE12	GLCTE03	GRAE12-NPPB		
	58,7	81	15	FLCTEY12	LCTE03	AY12-NPPB		
	57	99	9,5	PCFT12	CFT03	GRAE12-NPPB		
	57	99	9,5	PCJT12	CJT03	GRAE12-NPPB		
	57	99	9,5	PCJTY12	CJT03	GAY12-NPPB		
	57	99	9,5	RCJTY12	CJT03	GYE12-KRRB		
15	58,7	81	15	FLCTE15	LCTE03	RAE15-NPPB		
	58,7	81	15	GLCTE15	GLCTE03	GRAE15-NPPB		
	58,7	81	15	FLCTEY15	LCTE03	AY15-NPPB		
	57	99	9,5	PCFT15	CFT03	GRAE15-NPPB		
	57	99	9,5	PCJT15	CJT03	GRAE15-NPPB		
	57	99	9,5	PCJTY15	CJT03	GAY15-NPPB		
	57	99	9,5	RCJTY15	CJT03	GYE15-KRRB		
16	57	99	9,5	RCJTY16	CJT03	GYE 16-KRRB		
17	58,7	81	15	FLCTE17	LCTE03	RAE17-NPPB		
	58,7	81	15	GLCTE17	GLCTE03	GRAE17-NPPB		
	58,7	81	15	FLCTEY17	LCTE03	AY17-NPPB		
	57	99	9,5	PCFT17	CFT03	GRAE17-NPPB		
	57	99	9,5	PCJT17	CJT03	GRAE17-NPPB		
	57	99	9,5	PCJTY17	CJT03	GAY17-NPPB		
	57	99	9,5	RCJT17	CJT03	GE17-KRRB		



Hauptabmessungen [mm]								Gewicht [kg]		
	Boundary dimensions [mm]								Weight [kg]	
d [mm]	٧	K	L	М	Р	Q	R_{max}	т	U	[m]
12		6,6	28,6	63,5	8,4		28	-	30,5	0,3
		6,6	28,6	63,5	8,4	M6	28	-	30,5	0,3
		6,6	22	63,5	8,4				26	0,28
	57	11,5	28,6	76,5	10	M6	28	18	32,1	0,39
	57	11,5	28,6	76,5	17	M6	28	25	39,1	0,37
	57	11,5	22	76,5	17	M6		25	33	0,35
	57	11,5	27,4	76,5	17	M6		25	32,9	0,36
15		6,6	28,6	63,5	8,4		28	-	30,5	0,3
		6,6	28,6	63,5	8,4	M6	28		30,5	0,3
		6,6	22	63,5	8,4				26	0,27
	57	11,5	28,6	76,5	10	M6	28	18	32,1	0,39
	57	11,5	28,6	76,5	17	M6	28	25	39,1	0,37
	57	11,5	22	76,5	17	M6		25	33	0,34
	57	11,5	27,4	76,5	17	M6		25	32,9	0,35
16	57	11,5	27,4	76,5	17	M6		25	32,9	0,34
17		6,6	28,6	63,5	8,4		28	-	30,5	0,3
		6,6	28,6	63,5	8,4	M6	28		30,5	0,3
		6,6	22	63,5	8,4				26	0,26
	57	11,5	28,6	76,5	10	M6	28	18	32,1	0,39
	57	11,5	28,6	76,5	17	M6	28	25	39,1	0,37
	57	11,5	22	76,5	17	M6		25	33	0,33
	57	11,5	37,3	76,5	17	M6	28	25	40,4	0,41


Zweilochflanscheinheiten, Grauguss *Oval Flanged Units, Cast Iron*

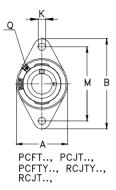


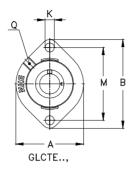


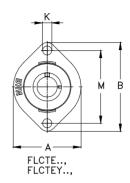
		ptabmessur [mm] ndary dimens [mm]	•	Bezeichnung Designation			
				Lagereinheit	Gehäuse	Gehäuselager	
d	Α	В	С	Bearing unit	Housing	Insert bearing	
17	57	99	9,5	PCJTY17	CJT03	GAY17-NPPB	
	57	99	9,5	RCJT17	CJT03	GE17-KRRB	
	57	99	9,5	RCJTY17	CJT03	GYE17-KRRB	
20	66,5	90,5	17	FLCTE20	LCTE04	RAE20-NPPB	
	66,5	90,5	17	GLCTE20	GLCTE04	GRAE20-NPPB	
	66,5	90,5	17	FLCTEY20	LCTE04	AY20-NPPB	
	61	112	10	PCFT20	CFT04	GRAE20-NPPB	
	61	112	10	PCJT20-N	CJT04-N	GRAE20-NPPB	
	61	112	10	PCJTY20-N	CJT04-N	GAY20-NPPB	
	61	112	10	RCJT20-N	CJT04-N	GE020-KRRB	
	61	112	10	RCJTY20-N	CJT04-N	GYE20-KRRB	
25	71	97	17,5	FLCTE25	LCTE05	RAE25-NPPB	
	71	97	17,5	GLCTE25	GLCTE05	GRAE25-NPPB	
	71	97	17,5	FLCTEY25	LCTE05	AY25-NPPB	
	70	124	11	PCFT25	CFT05	GRAE25-NPPB	
	70	124	11	PCJT25-N	CJT05-N	GRAE25-NPPB	
	70	124	11	PCJTY25-N	CJT05-N	GAY25-NPPB	
	70	124	11	RCJT25-N	CJT05-N	GE25-KRRB	
	70	124	11	RCJTY25-N	CJT05-N	GYE25-KRRB	
30	84	112,5	20,5	FLCTE30	LCTE06	RAE30-NPPB	
	84	112,5	20,5	GLCTE30	GLCTE06	GRAE30-NPPB	
	84	112,5	20,5	FLCTEY30	LCTE06	AY30-NPPB	



Hauptabmessungen [mm] Boundary dimensions [mm] d											
[mm]	V	K	L	М	Р	Q	R_{max}	т	U	[m]	
17	57	11,5	22	76,5	17	M6		25	33	0,33	
	57	11,5	37,3	76,5	17	M6	28	25	40,4	0,41	
	57	11,5	27,4	76,5	17	M6		25	32,9	0,34	
20	-	9	31	71,4	9,5		33	-	33	0,39	
		9	31	71,4	9,5	R1/8	33		33	0,39	
		9	25	71,4	9,5				27	0,36	
	61	11,5	31	90	10,5	R1/8"	33	17,5	34	0,45	
	61	11,5	31	90	19	R1/8"	33	28	42,5	0,48	
	61	11,5	25	90	19	R1/8"		28	37	0,45	
	61	11,5	43,7	90	19	R1/8"	33	28	45,6	0,52	
	61	11,5	31	90	19	R1/8"		28	37,3	0,49	
25		9	31	76,2	9,9		37,5		33,4	0,47	
		9	31	76,2	9,9	R1/8"	37,5		33,4	0,47	
		9	27	76,2	9,9				29,4	0,44	
	70	11,5	31	99	12,5	R1/8"	37,5	20	36	0,52	
	70	11,5	31	99	19	R1/8"	37,5	29	42,5	0,56	
	70	11,5	27	99	19	R1/8"		29	38,5	0,48	
	70	11,5	44,4	99	19	R1/8"	37,5	29	45,9	0,62	
	70	11,5	34,1	99	19	R1/8"		29	38,8	0,57	
30		11,5	35,7	90,5	11,4		44		38,1	0,76	
		11,5	35,7	90,5	11,4	R1/8"	44		38,1	0,76	
		11,5	29	90,5	11,4	-			32,4	0,7	


Zweilochflanscheinheiten, Grauguss *Oval Flanged Units, Cast Iron*

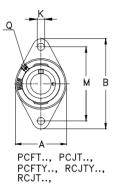


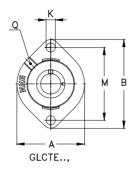


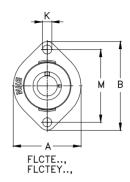
	Hau	ptabmessur [mm]	ngen		Bezeichnung	
	Boul	ndary dimens [mm]	sions		Designation	
				Lagereinheit	Gehäuse	Gehäuselager
d	Α	В	С	Bearing unit	Housing	Insert bearing
30	84	112,5	20,5	GLCTE30	GLCTE06	GRAE30-NPPB
	84	112,5	20,5	FLCTEY30	LCTE06	AY30-NPPB
	80	142	12	PCFT30	CFT06	GRAE30-NPPB
	80	142	12	PCJT30-N	CJT06-N	GRAE30-NPPB
	80	142	12	PCJTY30-N	CJT06-N	GAY30-NPPB
	80	142	12	RCJT30-N	CJT06-N	GE30-KRRB
	80	142	12	RCJTY30-N	CJT06-N	GYE30-KRRB
35	94	126	22	FLCTE35	LCTE07	RAE35-NPPB
	94	126	22	GLCTE35	GLCTE07	GRAE35-NPPB
	94	126	22	FLCTEY35	LCTE07	AY35-NPPB
	92	155	12,5	PCFT35	CFT07	GRAE35-NPPB
	92	155	12,5	PCJT35-N	CJT07-N	GRAE35-NPPB
	92	155	12,5	PCJTY35-N	CJT07-N	GAY35-NPPB
	92	155	12,5	RCJT35-N	CJT07-N	GE35-KRRB
	92	155	12,5	RCJTY35-N	CJT07-N	GYE35-KRRB
40	100	150	24	FLCTE40	LCTE08	RAE40-NPPB
	100	150	24	GLCTE40	GLCTE08	GRAE40-NPPB
	100	150	24	FLCTEY40	LCTE08	AY40-NPPB
	105	172	13	PCFT40	CFT08	GRAE40-NPPB
	105	172	13	PCJT40-N	CJT08-N	GRAE40-NPPB
	105	172	13	PCJTY40-N	CJT08-N	GAY40-NPPB
	105	172	13	RCJT40-N	CJT08-N	GE40-KRRB



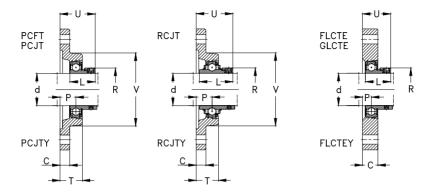
				Haupt	abmess [mm]	ungen				Gewicht [kg]
				Bound	dary dime [mm]	nsions				Weight [kg]
d [mm]	V	K	L	М	Р	Q	R_{max}	т	U	[m]
30		11,5	35,7	90,5	11,4	R1/8"	44		38,1	0,76
		11,5	29	90,5	11,4				32,4	0,7
	80	11,5	35,7	116,5	13,3	R1/8"	44	22,3	40	0,77
	80	11,5	35,7	116,5	20	R1/8"	44	29	46,7	0,81
	80	11,5	30	116,5	20	R1/8"		29	41	0,75
	80	11,5	48,4	116,5	20	R1/8"	44	29	50,1	0,88
	80	11,5	38,1	116,5	20	R1/8"		29	42,2	0,75
35		11,5	38,9	100	12,4	-	51		41,8	1,02
		11,5	38,9	100	12,4	R1/8"	51		41,8	1,02
		11,5	35	100	12,4				37,9	0,93
	92	14	38,9	130	15,5	R1/8"	51	25	44,9	1,08
	92	14	38,9	130	21	R1/8"	51	30,5	50,4	1,12
	92	14	35	130	21	R1/8"		30,5	46,5	1,03
	92	14	51,1	130	21	R1/8"	51	30,5	53,3	1,19
	92	14	42,9	130	21	R1/8"		30,5	46,4	1,13
40	100	14	43,7	119	13,5		58	-	46,2	1,27
	100	14	43,7	119	13,5	R1/8"	58		46,2	1,27
	100	14	39,5	119	13,5				42,5	1,18
	105	14	43,7	143,5	18,3	R1/8"	58	28,8	51	1,42
	105	14	43,7	143,5	24	R1/8"	58	34,5	56,7	1,54
	105	14	39,5	143,5	24	R1/8"		34,5	53	1,43
	105	14	56,3	143,5	24	R1/8"	58	34,5	58,9	1,66


Zweilochflanscheinheiten, Grauguss *Oval Flanged Units, Cast Iron*



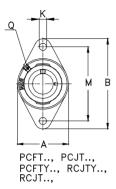


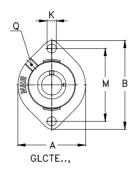
		ptabmessur [mm] ndary dimens [mm]		Bezeichnung Designation				
				Lagereinheit	Gehäuse	Gehäuselager		
d	Α	В	С	Bearing unit	Housing	Insert bearing		
40	105	172	13	PCJTY40-N	CJT08-N	GAY40-NPPB		
	105	172	13	RCJTY40-N	CJT08-N	GYE40-KRRB		
45	111	180	13	PCFT45	CFT09	GRAE45-NPPB		
	111	180	13	PCJT45	CJT09	GRAE45-NPPB		
	111	180	13	PCJTY45	CJT09	GAY45-NPPB		
	111	180	13	RCJT45	CJT09	GE45-KRRB		
	111	180	13	RCJTY45	CJT09	GYE45-KRRB		
50	116	190	13	PCFT50	CFT10	GRAE50-NPPB		
	116	190	13	PCJT50-N	CJT10-N	GRAE50-NPPB		
	116	190	13	PCJTY50-N	CJT10-N	GAY50-NPPB		
	116	190	13	RCJT50-N	CJT10-N	GE50-KRRB		
	116	190	13	RCJTY50-N	CJT10-N	GYE50-KRRB		
55	134	222	15	PCJT55	CJT11	GRAE55-NPPB (RRB)		
	134	222	15	RCJT55	CJT11	GE55-KRRB		
	134	222	15	RCJTY55	CJT11	GYE55-KRRB		
60	138	238	16	PCJT60-N	CJT12-N	GRAE60-NPPB		
	138	238	16	PCJTY60-N	CJT12-N	GAY60-NPPB		
	138	238	16	RCJT60-N	CJT12-N	GE60-KRRB		
	138	238	16	RCJTY60-N	CJT12-N	GYE60-KRRB		
65	160	258	18	RCJT65	CJT13	GE65-KRRB		
	160	258	18	RCJTY65	CJT13	GYE65-KRRB		
70	160	258	18	RCJT70	CJT14	GE70-KRRB		

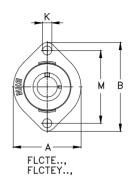


Hauptabmessungen [mm] Boundary dimensions [mm] d											
d [mm]	٧	K	L	М	Р	Q	R _{max}	т	U	[m]	
40	105	14	39,5	143,5	24	R1/8"	max	34,5	53	1,43	
	105	14	49,2	143,5	24	R1/8"		34,5	54,2	1,57	
45	111	14	43,7	148,5	19,2	R1/8"	63	30,2	51,9	1,59	
	111	14	43,7	148,5	24	R1/8"	63	35	56,7	1,69	
	111	14	41,5	148,5	24	R1/8"		35	54,5	1,55	
	111	14	56,3	148,5	24	R1/8"	63	35	58,9	1,81	
	111	14	49,2	148,5	24	R1/8"		35	54,2	1,7	
50	116	14	43,7	157	19,2	R1/8"	69	30,2	51,9	1,82	
	116	18	43,7	157	28	R1/8"	69	39	60,7	1,97	
	116	18	43	157	28	R1/8"		39	60	1,82	
	116	18	62,7	157	28	R1/8"	69	39	66,1	2,2	
	116	18	51,6	157	28	R1/8"		39	60,6	2	
55	134	18	48,4	184	31	R1/8"	76	43,5	67,4	2,31	
	134	18	71,4	184	31	R1/8"	76	43,5	74,6	2,92	
	134	18	55,6	184	31	R1/8"		43,5	64,4	2,6	
60	138	18	53,1	202	34	R1/8"	84	46	73,6	3,25	
	138	18	47	202	34	R1/8"		46	68	2,92	
	138	18	77,8	202	34	R1/8"	84	46	80	3,69	
	138	18	65,1	202	34	R1/8"		46	73,7	3,17	
65	160	21	66,1	216	38	R1/8"	96	57	82,6	6,41	
	160	21	74,6	216	38	R1/8"		57	82,4	5,95	
70	160	21	66,1	216	38	R1/8"	96	57	82,6	6,15	

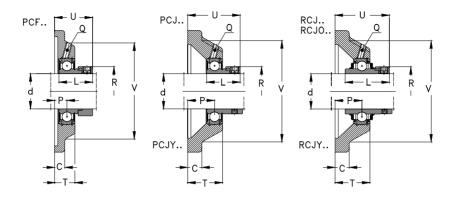
Zweilochflanscheinheiten, Grauguss

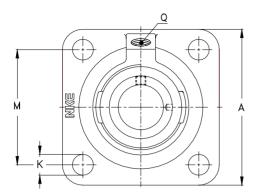

Oval Flanged Units, Cast Iron



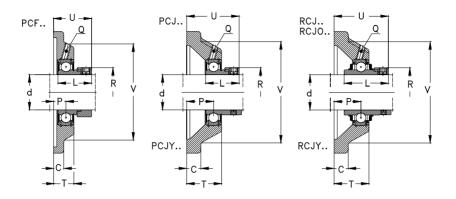


	Hau	ptabmessur [mm]	ngen		Bezeichnung				
	Bour	ndary dimens [mm]	sions		Designation				
				Lagereinheit	Gehäuse	Gehäuselager			
d	Α	В	С	Bearing unit	Housing	Insert bearing			
65	160	258	18	RCJT65	CJT13	GE65-KRRB			
	160	258	18	RCJTY65	CJT13	GYE65-KRRB			
70	160	258	18	RCJT70	CJT14	GE70-KRRB			
	160	258	18	RCJTY70	CJT14	GYE70-KRRB			
75	160	258	18	RCJT75	CJT15	GE75-KRRB			
	160	258	18	RCJTY75	CJT15	GYE75-KRRB			

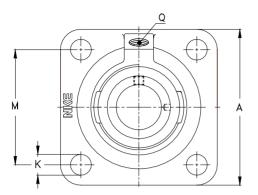



Hauptabmessungen [mm] Boundary dimensions [mm]										Gewicht [kg] Weight [kg]
d [mm]										
			66,1	216	38	R1/8"	96	5 7	82,6	[m]
65	160	21	6,41							
	160	21	74,6	216	38	R1/8"		57	82,4	5,95
70	160	21	66,1	216	38	R1/8"	96	57	82,6	6,15
	160	160 21 74,6 216 38 R1/8" 57 82,4								
75	160	60 21 67,1 216 38 R1/8" 100 57 83,6								
	160	21	77,8	216	38	R1/8"		57	82,5	5,54

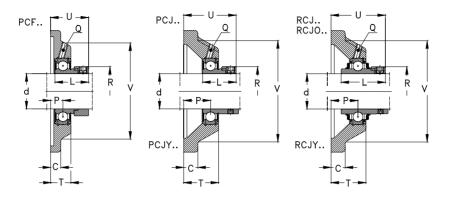
	Нас	uptabmessung [mm]	en	Bezeichnung				
	Вог	ındary dimensio [mm]	ns		Designation			
				Lagereinheit	Gehäuse	Gehäuselager		
d	Α	U	С	Bearing unit	Housing	Insert bearing		
12	76	39,1	9,5	PCJ12	CJ03	GRAE12-NPPB		
	76	33	9,5	PCJY12	CJ03	GAY12-NPPB		
	76	32,9	9,5	RCJY12	CJ03	GYE12-KRRB		
15	76	39,1	9,5	PCJ15	CJ03	GRAE15-NPPB		
	76	33	9,5	PCJY15	CJ03	GAY15-NPPB		
	76	32,9	9,5	RCJY15	CJ03	GYE15-KRRB		
16	76	32,9	9,5	RCJY16	CJ03	GYE16-KRRB		
17	76	39,1	9,5	PCJ17	CJ03	GRAE17-NPPB		
	76	40,4	9,5	RCJ17	CJ 03	GE17-KRRB		
	76	33	9,5	PCJY17	CJ03	GAY17-NPPB		
	76	32,9	9,5	RCJY17	CJ03	GYE17-KRRB		
20	86	34	10	PCF20	CF04	GRAE20-NPPB		
	86	42,5	10	PCJ20-N	CJ04-N	GRAE20-NPPB		
	86	45,6	10	RCJ20-N	CJ04-N	GE20-KRRB		
	86	37	10	PCJY20-N	CJ04-N	GAY20-NPPB		
	86	37,3	10	RCJY20-N	CJ04-N	GYE20-KRRB		
25	95	36	11	PCF25	CF05	GRAE25-NPPB		
	95	42,5	11	PCJ25-N	CJ05-N	GRAE25-NPPB		
	95	45,9	11	RCJ25-N	CJ05-N	GE25-KRRB		
	95	38,5	11	PCJY25-N	CJ05-N	GAY25-NPPB		
	95	38,8	11	RCJY25-N	CJ05-N	GYE25-KRRB		
30	108	40	12	PCF30	CF06	GRAE30-NPPB		



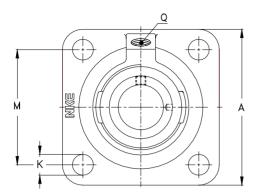
PCF.., RCJ.., PCJY.., PCJ.., RCJO.., RCJY..,


		Gewicht [kg] Weight [kg]							
d	K	L	М	Р	R _{max}	Q	т	٧	[m]
12	11,5	28,6	54	17	28	M6	27	58	0,52
	11,5	22	54	17		M6	27	58	0,5
	11,5	27,4	54	17		M6	27	58	0,51
15	11,5	28,6	54	17	28	M6	27	58	0,52
	11,5	22	54	17		M6	27	58	0,49
	11,5	27,4	54	17		M6	27	58	0,51
16	11,5	27,4	54	17		M6	27	58	0,51
17	11,5	28,6	54	17	28	M6	27	58	0,52
	11,5	37,3	54	17	28	M6	27	58	0,56
	11,5	22	54	17		M6	27	58	0,48
	11,5	27,4	54	17		M6	27	58	0,51
20	11,5	31	63,5	10,5	33	R1/8"	20	68	0,55
	11,5	31	63,5	19	33	R1/8"	29	68	0,61
	11,5	43,7	63,5	19	33	R1/8"	29	68	0,65
	11,5	25	63,5	19		R1/8"	29	68	0,58
	11,5	31	63,5	19		R1/8"	29	68	0,62
25	11,5	31	70	12,5	37,5	R1/8"	22	74	0,71
	11,5	31	70	19	37,5	R1/8"	29	74	0,76
	11,5	44,4	70	19	37,5	R1/8"	29	74	0,82
	11,5	27	70	19		R1/8"	29	74	0,73
	11,5	34,1	70	19		R1/8"	29	74	0,77
30	11,5	35,7	82,5	13,3	44	R1/8"	22,3	85	1,01

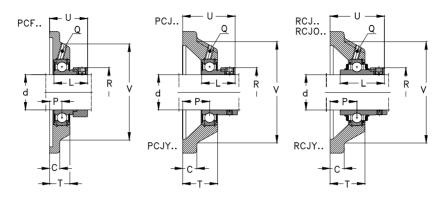
	Hau	ptabmessung [mm]	en		Bezeichnung	
	Вои	ndary dimensio [mm]	ons		Designation	
				Lagereinheit	Gehäuse	Gehäuselager
d	Α	U	С	Bearing unit	Housing	Insert bearing
30	108	46,7	12	PCJ30-N	CJ06-N	GRAE30-NPPB
	108	50,1	12	RCJ30-N	CJ06-N	GE30-KRRB
	108	41	12	PCJY30-N	CJ06-N	GAY30-NPPB
	108	42,2	12	RCJY30-N	CJ06-N	GYE30-KRRB
	125	53,1	15	RCJO30	CJO06	GNE30-KRRB
35	118	44,9	12,5	PCF35	CF07	GRAE35-NPPB
	118	50,4	12,5	PCJ35-N	CJ07-N	GRAE35-NPPB
	118	53,3	12,5	RCJ35-N	CJ07-N	GE35-KRRB
	118	46,5	12,5	PCJY35-N	CJ07-N	GAY35-NPPB
	118	46,4	12,5	RCJY35-N	CJ07-N	GYE35-KRRB
	135	53,4	16	RCJO35	CJO07	GNE35-KRRB
40	130	51	13	PCF40	CF08	GRAE40-NPPB
	130	56,7	13	PCJ40-N	CJ08-N	GRAE40-NPPB
	130	58,9	13	RCJ40-N	CJ08-N	GE40-KRRB
	130	53	13	PCJY40-N	CJ08-N	GAY40-NPPB
	130	54,2	13	RCJY40-N	CJ08-N	GYE40-KRRB
	150	59,6	17	RCJO40	CJO08	GNE40-KRRB
45	137	51,9	13	PCF45	CF09	GRAE45-NPPB
	137	56,7	13	PCJ45	CJ09	GRAE45-NPPB
	137	58,9	13	RCJ45	CJ09	GE45-KRRB
	137	54,5	13	PCJY45	CJ09	GAY45-NPPB
	137	54,2	13	RCJY45	CJ09	GYE45-KRRB



PCF.., RCJ.., PCJY.., PCJ.., RCJO.., RCJY..,

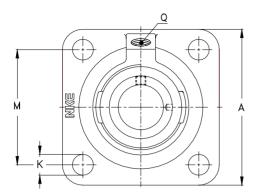

		Gewicht [kg] Weight [kg]							
d	K	L	М	Р	R_{max}	Q	Т	V	[m]
30	11,5	35,7	82,5	20	44	R1/8"	29	85	1,09
	11,5	48,4	82,5	20	44	R1/8"	29	85	1,16
	11,5	30	82,5	20		R1/8"	29	85	1,03
	11,5	38,1	82,5	20	-	R1/8"	29	85	1,11
	14,5	50	95	20,6	51	R1/8"	30,6	98	1,75
35	14	38,9	92	15,5	51	R1/8"	25	100	1,37
	14	38,9	92	21	51	R1/8"	30,5	100	1,4
	14	51,1	92	21	51	R1/8"	30,5	100	1,47
	14	35	92	21		R1/8"	30,5	100	1,31
	14	42,9	92	21	-	R1/8"	30,5	100	1,41
	19	51,6	100	20	55	R1/8"	31	104	2,55
40	14	43,7	101,5	18,3	58	R1/8"	28,8	110	1,72
	14	43,7	101,5	24	58	R1/8"	34,5	110	1,9
	14	56,3	101,5	24	58	R1/8"	34,5	110	2,02
	14	39,5	101,5	24		R1/8"	34,5	110	1,79
	14	49,2	101,5	24		R1/8"	34,5	110	1,93
	19	54,6	112	23	63	R1/8"	34,5	121	3,1
45	14	43,7	105	19,2	63	R1/8"	30,2	116	1,99
	14	43,7	105	24	63	R1/8"	35	116	2,22
	14	56,3	105	24	63	R1/8"	35	116	2,26
	14	41,5	105	24		R1/8"	35	116	2
	14	49,2	105	24		R1/8"	35	116	2,15

	Hau	ptabmessunge [mm]	en		Bezeichnung	
	Вои	ndary dimensio [mm]	ns		Designation	
				Lagereinheit	Gehäuse	Gehäuselager
d	Α	U	С	Bearing unit	Housing	Insert bearing
50	143	51,4	13	PCF50	CF10	GRAE50-NPPB
	143	60,7	13	PCJ50-N	CJ10-N	GRAE50-NPPB
	143	66,1	13	RCJ50-N	CJ10-N	GE50-KRRB
	143	60	13	PCJY50-N	CJ10-N	GAY50-NPPB
	143	60,6	13	RCJY50-N	CJ10-N	GYE50-KRRB
	175	70,1	19	RCJO50	CJO10	GNE50-KRRB
55	162	67,4	15	PCJ55	CJ11	GRAE55-NPPB
	162	74,6	15	RCJ55	CJ11	GE55-KRRB
	162	64,4	15	RCJY55	CJ11	GYE55-KRRB
60	175	73,6	16	PCJ60-N	CJ12-N	GRAE60-NPPB
	175	80,8	16	RCJ60-N	CJ12-N	GE60-KRRB
	175	68	16	PCJY60-N	CJ12-N	GAY60-NPPB
	175	73,7	16	RCJY60-N	CJ12-N	GYE60-KRRB
	195	78,4	22	RCJO60	CJO12	GNE60-KRRB
65	188	82,6	18	RCJ65	CJ14	GE65-KRRB
	188	82,4	18	RCJY65	CJ14	GYE65-KRRB
70	188	82,6	18	RCJ70	CJ14	GE70-KRRB
	188	82,4	18	RCJY70	CJ14	GYE70-KRRB
	226	85,4	25	RCJO70	CJO14	GNE70-KRRB
75	197	86,9	20	RCJ75	CJ15	GE75-KRRB
	197	85,8	20	RCJY75	CJ15	GYE75-KRRB
80	197	88,9	20	RCJ80	CJ16	GE80-KRRB

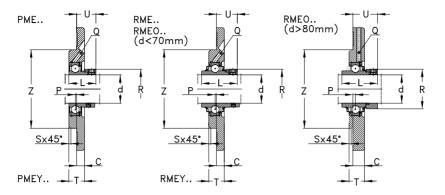


PCF.., RCJ.., PCJY.., PCJ.., RCJO.., RCJY..,

				lauptabme [mr Boundary d [mr	n] imensions				Gewicht [kg] Weight [kg]
d	K	L	М	Р	R_{max}	Q	Т	V	[m]
50	14	43,7	111	19,2	69	R1/8"	30,2	125	2,2
	18	43,7	111	28	69	R1/8"	39	125	2,3
	18	62,7	111	28	69	R1/8"	39	125	2,53
	18	43	111	28	-	R1/8"	39	125	2,15
	18	51,6	111	28		R1/8"	39	125	2,33
	23	66,7	132	28	75,8	R1/8"	42,5	144	4,9
55	18	48,4	130	31	76	R1/8"	43,5	140	2,91
	18	71,4	130	31	76	R1/8"	43,5	140	3,52
	18	55,6	130	31		R1/8"	43,5	140	3,2
60	18	53,1	143	34	84	R1/8"	46	150	4,1
	18	77,8	143	34	84	R1/8"	46	150	4,54
	18	47	143	34	-	R1/8"	46	150	4,02
	18	65,1	143	34		R1/8"	46	150	4,22
	23	68,4	150	33	89	R1/8"	49,5	170	6,8
65	18	66,1	150	38	96	R1/8"	52	165	6,11
	18	74,6	150	38		R1/8"	52	165	5,65
70	18	66,1	150	38	96	R1/8"	52	165	5,85
	18	74,6	150	38		R1/8"	52	165	5,35
	25	75,4	178	36	102	R1/8"	54,5	196	10
75	23	67,1	153	41,3	100	R1/8"	55,8	170	6,5
	23	77,8	153	41,3		R1/8"	55,8	170	6,04
80	23	71	153	41,3	108	R1/8"	55,8	180	6,85

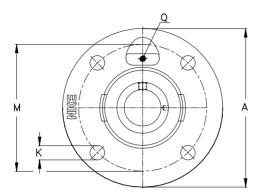

Vierlochflanscheinheiten, Grauguss Square Flanged Units, Cast Iron

	Нас	uptabmessung [mm]	en	Bezeichnung							
	Вог	ındary dimensio [mm]	ns		Designation						
				Lagereinheit	Gehäuse	Gehäuselager					
d	Α	U	С	Bearing unit	Housing	Insert bearing					
80	197	90,6	20	RCJY80	CJ16	GYE80-KRRB					
	250	109,7	25	RCJO80	CJO 16	GNE80-KRRB					
90	235	70,3	22	RCJ90	CJ18	GE90-KRRB					
	235	80,1	22	RCJY90	CJ18	GYE90-KRRB					
	280	114	28,5	RCJO90	CJO18	GNE90-KRRB					
100	265	77,5	25	RCJ100	CJ20	GE100-KRRB					
	310	125	32	RCJO100	CJO20	GNE100-KRRB					
120	305	83	28	RCJ120	CJ24	GE120-KRRB					

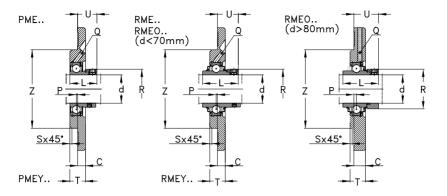


PCF.., RCJ.., PCJY.., PCJ.., RCJO.., RCJY..,

	Gewicht [kg] Weight [kg]								
d	K	L	М	Р	[m]				
80	23	82,6	153	41,3		R1/8"	55,8	180	6,82
	28	93,7	196	50	17,15				
90	23	69,5	187	23,8	118	R1/8"	39,8	200	9
	23	96	187	23,8		R1/8"	39,8	200	9,48
	28	101	216	48,5	132	R1/8"	85	230	21,6
100	27	75	210	28	132	R1/8"	46	230	12,25
	32	109,5	242	55	33,6				
120	30	81	240	31	18				

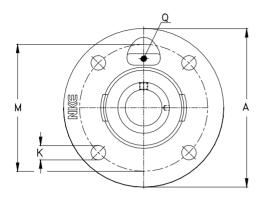

Runde Flanscheinheiten, Grauguss Round Flanged Units, Cast Iron

	Hauj	ptabmessur [mm]	igen		Bezeichnung				
	Bour	ndary dimens [mm]	sions		Designation				
				Lagereinheit	Gehäuse	Gehäuselager			
d	Α	U	С	Bearing unit	Housing	Insert bearing			
20	100	21,5	8	PME20-N	ME04-N	GRAE20-NPPB			
	100	24,6	8	RME20-N	ME04-N	GE20-KRRB			
	100	16	8	PMEY20-N	ME04-N	GAY20-NPPB			
	100	16,3	8	RMEY20-N	ME04-N	GYE20-KRRB			
25	115	21	9	PME25-N	ME05-N	GRAE25-NPPB			
	115	24,4	9	RME25-N	ME05-N	GE25-KRRB			
	115	17	9	PMEY25-N	ME05-N	GAY25-NPPB			
	115	17,3	9	RMEY25-N	ME05-N	GYE25-KRRB			
30	125	24,7	9,5	PME30-N	ME06-N	GRAE30-NPPB			
	125	28,1	9,5	RME30-N	ME06-N	GE30-KRRB			
	125	19	9,5	PMEY30-N	ME06-N	GAY30-NPPB			
	125	20,2	9,5	RMEY30-N	ME06-N	GYE30-KRRB			
	162	34,5	15	RMEO30	MEO06	GNE30-KRRB			
35	135	28,4	10	PME35-N	ME07-N	GRAE35-NPPB			
	135	31,3	10	RME35-N	ME07-N	GE35-KRRB			
	135	24,5	10	PMEY35-N	ME07-N	GAY35-NPPB			
	135	24,4	10	RMEY35-N	ME07-N	GYE35-KRRB			
	174	25,4	16	RMEO35	MEO07	GNE35-KRRB			
40	145	31,7	11,5	PME40-N	ME08-N	GRAE40-NPPB			
	145	33,9	11,5	RME40-N	ME08-N	GE40-KRRB			
	145	28	11,5	PMEY40-N	ME08-N	GAY40-NPPB			
	145	29,2	11,5	RMEY40-N	ME08-N	GYE40-KRRB			

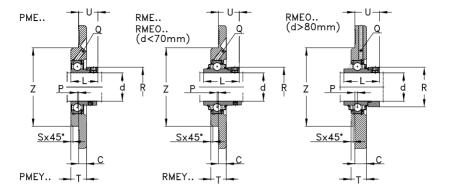


PME.., PMEY.., RME.., RMEY.., RMEO..

	Hauptabmessungen [mm] Boundary dimensions [mm]												
d	K	L	M	P	R_{max}	Q	S	Т	Z_{h8}	[m]			
20	9	31	78	2	33	M6	2	17	62	0,53			
	9	43,7	78	2	33	M6	2	17	62	0,57			
	9	25	78	2		M6	2	17	62	0,5			
	9	31	78	2		M6	2	17	62	0,54			
25	9	31	90	2,5	37,5	M6	2	19	70	0,74			
	9	44,4	90	2,5	37,5	M6	2	19	70	0,8			
	9	27	90	2,5		M6	2	19	70	0,71			
	9	34,1	90	2,5	-	M6	2	19	70	0,75			
30	11,5	35,7	100	2	44	M6	2	20,5	80	0,97			
	11,5	48,4	100	2	44	M6	2	20,5	80	1,04			
	11,5	30	100	2		M6	2	20,5	80	0,91			
	11,5	38,1	100	2		M6	2	20,5	80	0,99			
	14,5	50	134	2	51	M6	2	23	90	1,7			
35	11,5	38,9	110	1	51	M6	2	20,5	90	1,27			
	11,5	51,1	110	1	51	M6	2	20,5	90	1,34			
	11,5	35	110	1		M6	2	20,5	90	1,18			
	11,5	42,9	110	1		M6	2	20,5	90	1,28			
	19	51,6	141	2	55	M6	2	25	100	2,4			
40	11,5	43,7	120	1	58	M6	2	23	100	1,62			
	11,5	56,3	120	1	58	M6	2	23	100	1,74			
	11,5	39,5	120	1		M6	2	23	100	1,51			
	11,5	49,2	120	1		M6	2	23	100	1,65			

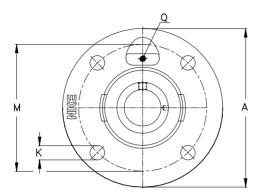

Runde Flanscheinheiten, Grauguss Round Flanged Units, Cast Iron

	Hau	ptabmessun [mm]	gen		Bezeichnung				
	Bour	ndary dimens [mm]	ions		Designation				
				Lagereinheit	Gehäuse	Gehäuselager			
d	Α	U	С	Bearing unit	Housing	Insert bearing			
40	194	39,1	17	RMEO40	MEO08	GNE40-KRRB			
45	155	30,7	12	PME45	ME09	GRAE45-NPPB			
	155	32,9	12	RME45	ME09	GE45-KRRB			
	155	28,5	12	PMEY45	ME09	GAY45-NPPB			
	155	28,2	12	RMEY45	ME09	GYE45-KRRB			
50	165	31,7	13	PME50-N	ME10-N	GRAE50-NPPB			
	165	37,1	13	RME50-N	ME10-N	GE50-KRRB			
	165	31	13	PMEY50-N	ME10-N	GAY50-NPPB			
	165	31,6	13	RMEY50-N	ME10-N	GYE50-KRRB			
	230	44,6	19	RMEO50	MEO10	GNE50-KRRB			
55	185	36,4	15	PME55	ME11	GRAE55-NPPB			
	185	43,6	15	RME55	ME11	GE55-KRRB			
	185	33,4	15	RMEY55	ME11	GYE55-KRRB			
60	195	38,6	16	PME60-N	ME12-N	GRAE60-NPPB			
	195	45,8	16	RME60-N	ME12-N	GE60-KRRB			
	195	33	16	PMEY60-N	ME12-N	GAY60-NPPB			
	195	38,7	16	RMEY60-N	ME12-N	GYE60-KRRB			
	256	47,9	22	RMEO60	MEO12	GNE60-KRRB			
65	215	44,6	18	RME65	ME14	GE65-KRRB			
	215	44,4	18	RMEY65	ME14	GYE65-KRRB			
70	215	44,6	18	RME70	ME14	GE70-KRRB			
	215	44,4	18	RMEY70	ME14	GYE70-KRRB			

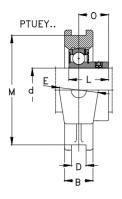

PME.., PMEY.., RME.., RMEY.., RMEO..

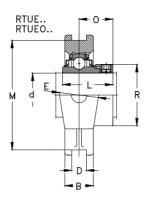
	Hauptabmessungen [mm] Boundary dimensions [mm]													
d	K	L	M	P	R_{max}	Q	s	т	Z _{h8}	[m]				
40	19	54,6	158	2,5	63	M6	2	27	115	2,8				
45	14	43,7	130	2	63	M6	2	25	105	1,93				
	14	56,3	130	2	63	M6	2	25	105	2,05				
	14	41,5	130	2		M6	2	25	105	1,79				
	14	49,2	130	2		M6	2	25	105	1,94				
50	14	43,7	135	1	69	R1/8"	3	25	110	2,3				
	14	62,7	135	1	69	R1/8"	3	25	110	2,53				
	14	43	135	1		R1/8"	3	25	110	2,15				
	14	51,6	135	1		R1/8"	3	25	110	2,33				
	23	66,7	187	2,5	75,8	R1/8"	2	31	140	4,6				
55	18	48,4	150	0	76	M6	3	27,5	125	2,76				
	18	71,4	150	0	76	M6	3	27,5	125	3,37				
	18	55,6	150	0		M6	3	27,5	125	3,05				
60	18	53,1	160	1	84	R1/8"	3	29	135	3,55				
	18	77,8	160	1	84	R1/8"	3	29	135	3,99				
	18	47	160	1		R1/8"	3	29	135	3,22				
	18	65,1	160	1		R1/8"	3	29	135	3,47				
	23	68,4	212	2,5	89	R1/8"	3	36	160	6				
65	18	66,1	177	0	96	R1/8"	6	32	150	5,81				
	18	74,6	177	0		R1/8"	6	32	150	5,35				
70	18	66,1	177	0	96	R1/8"	6	32	150	5,55				
	18	74,6	177	0		R1/8"	6	32	150	5,1				

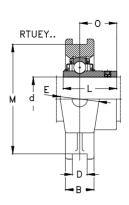
Runde Flanscheinheiten, Grauguss


Round Flanged Units, Cast Iron

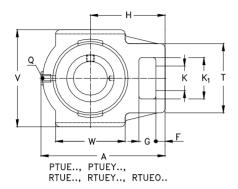
	Hauı	ptabmessun [mm]	igen		Bezeichnung				
	Bour	ndary dimens [mm]	ions		Designation				
				Lagereinheit	Gehäuse	Gehäuselager			
d	Α	U	С	Bearing unit	Housing	Insert bearing			
70	300	49,9	25	RMEO70	MEO14	GNE70-KRRB			
75	220	45,6	18	RME75	ME15	GE75-KRRB			
	220	44,5	18	RMEY75	ME15	GYE75-KRRB			
80	220	49,6	18	RME80	ME16	GE80-KRRB			
	220	51,3	18	RMEY80	ME16	GYE80-KRRB			
	275	56,7	22	RMEO80	MEO16	GNE80-KRRB			
90	265	50,5	20	RME90	ME18	GE90-KRRB			
	265	60,3	20	RMEY90	ME18	GYE90-KRRB			
	300	62,5	22	RMEO90	MEO18	GNE90-KRRB			
100	295	53,4	22	RME100	ME20	GE100-KRRB			
	340	68,5	27	RMEO100	MEO20	GNE100-KRRB			
120	350	56,5	24	RME120	ME24	GE120-KRRB			

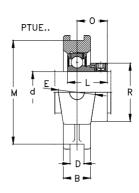

PME.., PMEY.., RME.., RMEY.., RMEO..


	Gewicht [kg] Weight [kg]											
d	d K L M P R _{max} Q S T Z _{h8}											
70	25	75,4	252	0,5	102	R1/8"	4	43	185	9		
75	18	67,1	184	0	100	R1/8"	6	32	160	5,65		
	18	77,8	184	0		5,19						
80	18	71	184	-2	108	R1/8"	6	31	160	5,75		
	18	82,6	184	-2		R1/8"	6	31	160	5,73		
	22	93,7	235	-3	118	R1/8"	6	50	200	12,7		
90	23	69,5	220	-4	118	R1/8"	3	32	190	8,82		
	23	96	220	-4		R1/8"	3	32	190	9,3		
	22	101	260	-3	132	R1/8"	6	50	220	12,7		
100	23	75	245	-4	132	R1/8"	3	36	210	11,45		
	26	250	22,3									
120	27	81	295	-4	152	R1/8"	3	40	250	17,43		

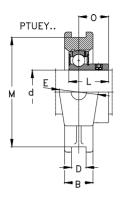

Spannlagereinheiten, Grauguss

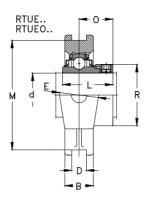
Take Up Units, Cast Iron

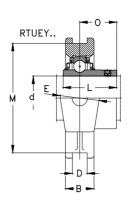




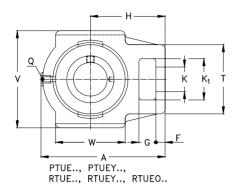
	Haup	tabmessu [mm]	ngen	Bezeichnung					
	Boun	dary dimer [mm]	sions		Designation				
				Lagereinheit	Gehäuse	Gehäuselager			
d	Α	V	В	Bearing unit	Housing	Insert bearing			
20	94,5	90	25	PTUE20	TUE04	GRAE20-NPPB			
	94,5	90	25	RTUE20	TUE04	GE20-KRRB			
	94,5	90	25	PTUEY20	TUE04	GAY20-NPPB			
	94,5	90	25	RTUEY20	TUE04	GYE20-KRRB			
25	98,5	90	25	PTUE25	TUE05	GRAE25-NPPB			
	98,5	90	25	RTUE25	TUE05	GE25-KRRB			
	98,5	80	25	PTUEY25	TUE05	GAY25-NPPB			
	98,5	90	25	RTUEY25	TUE05	GYE25-KRRB			
30	114,5	102	25	PTUE30	TUE06	GRAE30-NPPB			
	114,5	102	25	RTUE30	TUE06	GE30-KRRB			
	114,5	102	25	PTUEY30	TUE06	GAY30-NPPB			
	114,5	102	25	RTUEY30	TUE06	GYE30-KRRB			
35	131,5	102	30	PTUE35	TUE07	GRAE35-NPPB			
	131,5	102	30	RTUE35	TUE07	GE35-KRRB			
	131,5	102	30	PTUEY35	TUE07	GAY35-NPPB			
	131,5	102	30	RTUEY35	TUE07	GYE35-KRRB			
40	141	115	35	PTUE40	TUE08	GRAE40-NPPB			
	141	115	35	RTUE40	TUE08	GE40-KRRB			
	141	115	35	PTUEY40	TUE08	GAY40-NPPB			
	141	115	35	RTUEY40	TUE08	GYE40-KRRB			
45	141	115	35	PTUE45	TUE09	GRAE45-NPPB			
	141	115	35	RTUE45	TUE09	GE45-KRRB			

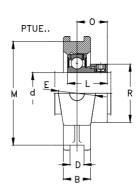



Hauptabmessungen [mm] Boundary dimensions [mm]													Gewicht [kg] Weight [kg]		
d	D _{H13}	E	F	G	Н	K	K ₁	L	М	0	Q	R_{max}	Т	W	[m]
20	12	37	9	18	60	19	32	31	76	23,4	R1/8"	33	51	50	0,83
	12	37	9	18	60	19	32	43,7	76	26,6	R1/8"	33	51	50	0,87
	12	37	9	18	60	19	32	25	76	18	R1/8"		51	50	0,8
	12	37	9	18	60	19	32	31	76	18,3	R1/8"		51	50	0,84
25	12	37	10	18	62	19	32	31	76	23,5	R1/8"	37,5	51	50	0,85
	12	37	10	18	62	19	32	44,4	76	26,9	R1/8"	37,5	51	50	0,91
	12	37	10	18	62	19	32	27	76	19,5	R1/8"		51	50	0,82
	12	37	10	18	62	19	32	34,1	76	19,8	R1/8"		51	50	0,86
30	12	37	10	18	70	22	36,5	35,7	89	26,7	R1/8"	44	56	57	1,17
	12	37	10	18	70	22	36,5	48,4	89	30,1	R1/8"	44	56	57	1,24
	12	37	10	18	70	22	36,5	30	89	21	R1/8"		56	57	1,11
	12	37	10	18	70	22	36,5	38,1	89	22,2	R1/8"		56	57	1,19
35	12	40	13	18	80	22	36,5	38,9	89	29,4	R1/8"	51	64	63	1,73
	12	40	13	18	80	22	36,5	51,1	89	32,3	R1/8"	51	64	63	1,8
	12	40	13	18	80	22	36,5	35	89	22,3			64	63	1,64
	12	40	13	18	80	22	36,5	42,9	89	25,4	R1/8"		64	63	1,74
40	16	50	16	20	88	29	49	43,7	102	32,7	R1/8"	58	82	82	2,4
	16	50	16	20	88	29	49	56,3	102	34,9	R1/8"	58	82	82	2,52
	16	50	16	20	88	29	49	39,5	102	29			82	82	2,29
	16	50	16	20	88	29	49	49,2	102	30,2	R1/8"		82	82	2,43
45	16	50	16	20	88	29	49	43,7	102	32,7	R1/8"	63	82	82	2,49
	16	50	16	20	88	29	49	56,3	102	34,9	R1/8"	63	82	82	2,61

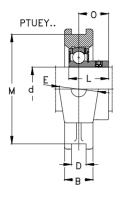

Spannlagereinheiten, Grauguss

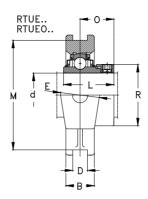
Take Up Units, Cast Iron

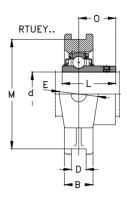




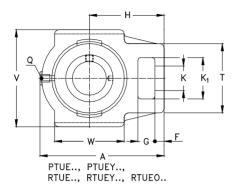
	Haup	otabmessu [mm]	ngen	Bezeichnung				
	Bour	ndary dimen [mm]	sions		Designation			
				Lagereinheit	Gehäuse	Gehäuselager		
d	Α	V	В	Bearing unit	Housing	Insert bearing		
45	141	115	35	PTUEY45	TUE09	GAY45-NPPB		
	141	115	35	RTUEY45	TUE09	GYE45-KRRB		
50	148	115	35	PTUE50	TUE10	GRAE50-NPPB		
	148	115	35	RTUE50	TUE10	GE50-KRRB		
	148	115	35	PTUEY50	TUE10	GAY50-NPPB		
	148	115	35	RTUEY50	TUE10	GYE-50-KRRB		
55	169	145	42	PTUE55	TUE11	GRAE55-NPPB		
	169	145	42	RTUE55	TUE11	GE55-KRRB		
	169	145	42	RTUEY55	TUE11	GYE55-KRRB		
60	186	146	44	PTUE60	TUE12	GRAE60-NPPB		
	186	146	44	RTUE60	TUE12	GE60-KRRB		
	186	146	44	PTUEY60	TUE12	GAY60-NPPB		
	186	146	44	RTUEY60	TUE12	GYE60-KRRB		
65	214	166	50	RTUE65	TUE13/14	GE65-KRRB		
	214	166	50	RTUEY65	TUE13/14	GYE65-KRRB		
70	214	166	50	RTUE70	TUE13/14	GE70-KRRB		
	214	166	50	RTUEY70	TUE13/14	GYE70-KRRB		
75	214	166	50	RTUE 75	TUE15	GE 75 KRRB		
	214	166	50	RTUEY 75	TUE15	GYE 75 KRRB		
80	230	184	50	RTUE 80	TUE16	GE 80 KRRB		
	230	184	50	RTUEY 80	TUE16	GYE 80 KRRB		
	282	230	60	RTUEO 80	TUEO16	GNE 80 KRRB		

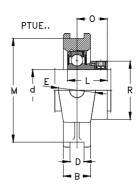



Hauptabmessungen [mm] Boundary dimensions [mm]														Gewicht [kg] Weight [kg]	
d	D _{H13}	E	F	G	н	K	K ₁	L	М	0	Q	R_{max}	т	w	[m]
45	16	50	16	20	88	29	49	41,5	102	30,5			82	82	2,35
	16	50	16	20	88	29	49	49,2	102	30,2		-	82	82	2,5
50	16	50	16	20	90	29	49	43,7	102	32,7	R1/8"	69	83	85	2,42
	16	50	16	20	90	29	49	62,7	102	38,1	R1/8"	69	83	85	2,65
	16	50	16	20	90	29	49	43	102	32	R1/8"		83	85	2,27
	16	50	16	20	90	29	49	51,6	102	32,6	R1/8"		83	85	2,45
55	22	60	17	26	104	35	63,5	48,4	130	36,4	R1/8"	76	102	95	3,99
	22	60	17	26	104	35	63,5	71,4	130	43,6	R1/8"	76	102	95	4,6
	22	60	17	26	104	35	63,5	55,6	130	33,4	R1/8"		102	95	4,28
60	22	60	19	32	118	35	63,5	53,1	130	39,6	R1/8"	84	102	100	4,3
	22	60	19	32	118	35	63,5	77,8	130	46,8	R1/8"	84	102	100	4,84
	22	60	19	32	118	35	63,5	47	130	34	R1/8"		102	100	3,97
	22	60	19	32	118	35	63,5	65,1	130	39,7	R1/8"		102	100	4,22
65	25	70	20	35	135	41	70	66,1	151	44,6	R1/8"	96	110	120	7,46
	25	70	20	35	135	41	70	74,6	151	44,4	R1/8"		110	120	7
70	25	70	20	35	135	41	70	66,1	151	44,6	R1/8"	96	110	120	7,2
	25	70	20	35	135	41	70	74,6	151	44,4	R1/8"		110	120	6,7
75	25	70	20	35	135	41	70	67,1	151	45,6	R1/8"	100	110	120	7,05
	25	70	20	35	135	41	70	77,8	151	44,5	R1/8"		110	120	6,59
80	28	70	20	35	140	41	70	71	165	47,6	R1/8"	108	110	120	8,4
	28	70	20	35	140	41	70	82,6	165	49,3	R1/8"		110	120	8,38
	30	102	28	42	174	53	98	93,7	204	59,7	R1/8"	118	150	150	17,25

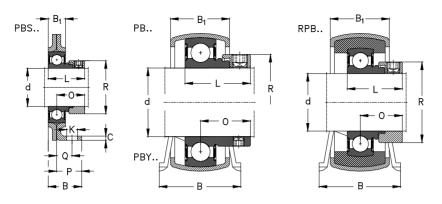

Spannlagereinheiten, Grauguss

Take Up Units, Cast Iron

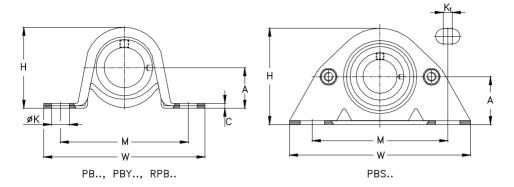




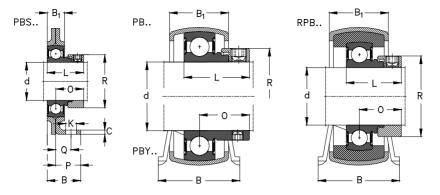
	Hauj	otabmessu [mm]	ngen	Bezeichnung					
	Bour	ndary dimen [mm]	sions	Designation					
				Lagereinheit	Gehäuse	Gehäuselager			
d	Α	V	В	Bearing unit	Housing	Insert bearing			
90	275	215	55	RTUE 90	TUE18	GE 90 KRRB			
	312	255	66	RTUEO 90	TUEO18	GNE 90 KRRB			
100	295	240	60	RTUE 100	TUE20	GE 100 KRRB			
	345	290	75	RTUEO 100	TUEO20	GNE 100 KRRB			
120	345	285	70	RTUE 120	TUE24	GE 120 KRRB			



Hauptabmessungen [mm] Boundary dimensions [mm]												Gewicht [kg] Weight [kg]			
d	D _{H13}	E	F	G	н	K	K ₁	L	М	0	Q	R_{max}	Т	w	[m]
90	28	80	30	40	170	47	80	69,5	190	46,5	R1/8"	118	130	140	11,57
	32	110	30	46	192	57	106	101	228	65,5	R1/8"	132	160	165	22,9
100	28	90	30	40	180	47	80	75	215	49,5	R1/8"	132	130	160	14,55
	35	120	32	48	210	59	115	109	260	70	R1/8"	145	175	190	31,35
120	32	100	35	45	210	55	95	81	255	52.5	R1/8"	152	150	190	22 43

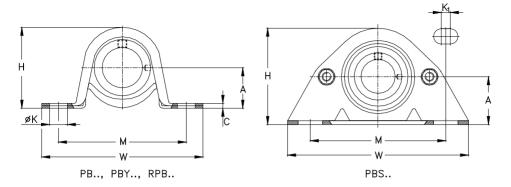

Stehlagereinheiten, Stahlblech Plummer Block Units, Pressed Steel

	Hauptabm [m	•		Bezeichnung					
	Boundary o				Designation				
				Lagereinheit	Gehäuse	Gehäuselager			
d	Α	В	С	Bearing unit	Housing	Insert bearing			
12	30,2	32,5	2,6	PBS12	40PBS	RAE12-NPPB			
	22,2	25,4	2,6	PB12	40B/T	RAE12-NPPB			
	22,2	25,4	2,6	PBY12	40B/T	AY12-NPPB			
	25,4	31,8	3,3	RPB12	47B/T	RAE12-NPPB			
15	30,2	32,5	2,6	PBS15	40PBS	RAE15-NPPB			
	22,2	25,4	2,6	PB15	40B/T	RAE15-NPPB			
	22,2	25,4	2,6	PBY15	40B/T	AY15-NPPB			
	25,4	31,8	3,3	RPB15	47B/T	RAE15-NPPB			
17	30,2	32,5	2,6	PBS17	40PBS	RAE17-NPPB			
	22,2	25,4	2,6	PB17	40B/T	RAE17-NPPB			
	22,2	25,4	2,6	PBY17	40B/T	AY17-NPPB			
	25,4	31,8	3,3	RPB17	47B/T	RAE17-NPPB			
20	33,6	33	3	PBS20	47PBS	RAE20-NPPB			
	25,4	31,8	3,3	PB20	47B/T	RAE20-NPPB			
	25,4	31,8	3,3	PBY20	47B/T	AY20-NPPB			
	28,6	31,8	4	RPB20	52B/T	RAE20-NPPB			
25	36,5	34,1	3,4	PBS25	52PBS	RAE25-NPPB			
	28,6	31,8	4	PB25	52B/T	RAE25-NPPB			
	28,6	31,8	4	PBY25	52B/T	AY25-NPPB			
	33,3	38	4	RPB25	62B/T	RAE25-NPPB			
30	42,9	38,9	3,4	PBS30	62PBS	RAE30-NPPB			
	33,3	38	4	PB30	62B/T	RAE30-NPPB			

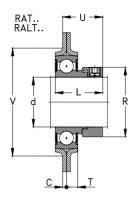


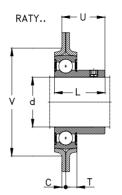
					- Boundary	mm]	Ū					Gewicht [kg] Weight [kg]
d	B₁	н	K	K ₁	L	М	Р	Q	0	R_{max}	W	[m]
12	14,2	59,6	10,5	5,6	28,6	92	25,4	15	22,1	28	123,8	0,32
	18,4	43,2	9,5		28,6	68			22,1	28	85,7	0,17
	18,4	43,2	9,5		22	68			16		85,7	0,15
	22,3	50,1	9,5		28,6	76			22,1	28	98,4	0,23
15	14,2	59,6	10,5	5,6	28,6	92	25,4	15	22,1	28	123,8	0,32
	18,4	43,2	9,5		28,6	68				28	85,7	0,17
	18,4	43,2	9,5		22	68			16		85,7	0,15
	22,3	50,1	9,5		28,6	76	-		22,1	28	98,4	0,23
17	14,2	59,6	10,5	5,6	28,6	92	25,4	15	22,1	28	123,8	0,32
	18,4	43,2	9,5		28,6	68			22,1	28	85,7	0,17
	18,4	43,2	9,5		22	68			16		85,7	0,15
	22,3	50,1	9,5		28,6	76	-		22,1	28	98,4	0,23
20	15,8	66,8	10,5	5,6	31	97	25,4	15	23,5	33	127	0,45
	22,3	50,1	9,5		31	76			23,5	33	98,4	0,27
	22,3	50,1	9,5		25	76			18		98,4	0,22
	23,5	56,5	11,5		31	86			23,5	33	108	0,28
25	17,4	72	10,5	9,5	31	95,5	25,4	14,3	23,5	37,5	133,5	0,49
	23,5	56,5	11,5		31	86			23,5	37,5	108	0,3
	23,5	56,5	11,5		27	86			19,5		108	0,26
	26,5	66,1	11,5		31	95			23,5	37,5	117,5	0,38
30	17,4	85	13,5	8	35,7	119	30,2	16	26,7	44	159	0,79
	26,5	66,1	11,5		35,7	95			26,7	44	117,5	0,5

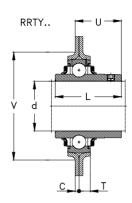
Stehlagereinheiten, Stahlblech


Plummer Block Units, Pressed Steel

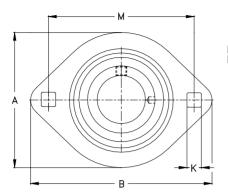
	•	essungen m]			Bezeichnung	
	•	dimensions m]	Designation			
				Lagereinheit	Gehäuse	Gehäuselager
d	Α	В	С	Bearing unit	Housing	Insert bearing
30	33,3	38	4	PBY30	62B/T	AY30-NPPB-1
	33,3	38	4	RPB30	62B/T	RAE30-NPPB
35	47,6	46,1	4	PBS35	72PBS	RAE35-NPPB
40	55	53,5	4	PBS40	80PBS	RAE40-NPPB



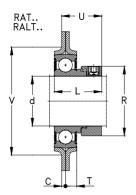


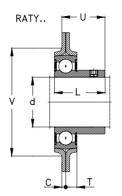

Hauptabmessungen [mm] Boundary dimensions [mm]											Gewicht [kg] Weight [kg]	
d	B₁	Н	K	K ₁	L	M	Р	Q	0	R_{max}	w	[m]
30	26,5	66,1	11,5		30	95			21		117,5	0,4
	26,5	66,1	11,5		26,5	95			20	42,5	117,5	0,45
35	22,2	94,4	13,5	8	38,9	127	35	20,7	29,4	51	165	1,05
40	23	106	13,5	8	43,7	136,5	40	25	32,7	58	180	1,33

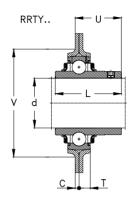
Zweilochflanscheinheiten, Stahlblech *Oval Flanged Units, Pressed Steel*



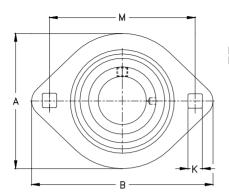
		ptabmessur [mm] ndary dimens		Bezeichnung Designation				
		[mm]						
				Lagereinheit	Gehäuse	Gehäuselager		
d	Α	В	С	Bearing unit	Housing	Insert bearing		
12	58,7	81	2	RAT12	40MST	RAE12-NPPB		
	58,7	81	2	RATY12	40MST	AY12-NPPB		
	58,7	81	2	RRTY12	40MST	GYE12-KRRB		
15	58,7	81	2	RAT15	40MST	RAE15-NPPB		
	58,7	81	2	RATY15	40MST	AY15-NPPB		
	58,7	81	2	RRTY15	40MST	GYE14-KRRB		
16	58,7	81	2	RRTY16	40MST	GYE16-KRRB		
17	58,7	81	2	RAT17	40MST	RAE17-NPPB		
	58,7	81	2	RATY17	40MST	AY17-NPPB		
	58,7	81	2	RRTY17	40MST	GYE17-KRRB		
20	58,7	81	2	RALT20	42LST	RALE20-NPPB		
	66	90,5	2	RAT20	47MST	RAE20-NPPB		
	66	90,5	2	RATY20	47MST	AY20-NPPB		
	66	90,5	2	RRTY20	47MST	GYE20-KRRB		
25	71	95,2	2	RALT25	47LST	RALE25-NPPB		
	71	95,2	2	RAT25	52MST	RAE25-NPPB		
	71	95,2	2	RATY25	52MST	GAY25-NPPB		
	71	95,2	2	RRTY25	52MST	GYE25-KRRB		
30	84	112,7	2,5	RAT30	62MST	RAE30-NPPB		
	84	112,7	2,5	RATY30	62MST	AY30-NPPB		
	84	112,7	2,5	RRTY30	62MST	GYE30-KRRB		
35	93,7	123	2,5	RAT35	72MST	RAE35-NPPB		




RAT.., RALT.., RATY.., RRTY..


			·	ptabmessur [mm] ndary dimen: [mm]				Gewicht [kg] Weight [kg]
d	K	L	М	R_{max}	Т	U	V	[m]
12	7,1	28,6	63,5	28	7	24	48	0,19
	7,1	22	63,5		7	18	48	0,14
	7,1	27,4	63,5		7	17,9	48	0,17
15	7,1	28,6	63,5	28	7	24	48	0,19
	7,1	22	63,5		7	18	48	0,13
	7,1	27,4	63,5		7	17,9	48	0,16
16	7,1	27,4	63,5		7	17,9	48	0,16
17	7,1	28,6	63,5	28	7	24	48	0,19
	7,1	22	63,5		7	18	48	0,12
	7,1	27,4	63,5		7	17,9	48	0,15
20	7,1	24,6	63,5	30	7	20,6	48	0,21
	8,7	31	71,5	33	8	25,5	55	0,27
	8,7	25	71,5		8	20	55	0,22
	8,7	31	71,5		8	20,6	55	0,26
25	8,7	25,4	76	36	7,1	21,4	55	0,22
	8,7	31	76	37,5	8,7	25,5	60	0,34
	8,7	27	76		8,7	21,5	60	0,26
	8,7	34,1	76	-	8,7	22,2	60	0,3
30	10,5	35,7	90,5	44	8,7	29,2	71	0,49
	10,5	30	90,5		8,7	23,5	71	0,41
	10,5	38,1	90,5		8,7	24,7	71	0,49
35	10,5	38,9	100	51	10,5	31,5	81	0,72

Zweilochflanscheinheiten, Stahlblech Oval Flanged Units, Pressed Steel



	Haup	otabmessur [mm]	ngen	Bezeichnung					
	Bour	ndary dimen: [mm]	sions	Designation					
				Lagereinheit	Gehäuse	Gehäuselager			
d	Α	В	С	Bearing unit	Housing	Insert bearing			
35	93,7	123	2,5	RATY35	72MST	GAY35-NPPB			
	93,7	123	2,5	RRTY35	72MST	GYE35-KRRB			
40	100	148	3,5	RAT40	80MST	RAE40-NPPB			
	100	148	3,5	RATY40	80MST	GAY40-NPPB			
	100	148	3,5	RRTY40	80MST	GYE40-KRRB			

RAT.., RALT.., RATY.., RRTY..

	Gewicht [kg] Weight [kg]											
d	d K L M R _{max} T U V											
35	10,5	35	100		10,5	28	81	0,56				
	10,5	42,9	100	-	10,5	27,9	81	0,41				
40	13,5	43,7	119	58	11,5	36,2	90	0,98				
	13,5 39,5 119 11,5 32,5 90											
	13.5 49.2 119 11.5 33.7 90											

Zubehör

Accessories

Spannhülsen

. Adapter Sleeves

Abziehhülsen

Withdrawal Sleeves

Nutmuttern

Lock Nuts

Sicherungsbleche

Locking Washers

Spann- und Abziehhülsen

Allgemeines

Spann- und Abziehhülsen sind Befestigungselemente für die Befestigung von Wälzlagern mit kegeliger Bohrung auf zylindrischen Wellensitzen.

Dadurch lassen sich in vielen Fällen der Ein- und Ausbau von Lagern wesentlich vereinfachen.

Da sich sowohl Spann- als auch die Abziehhülsen bis zu einem gewissen Grade dem Wellendurchmesser anpassen können, sind größere **Durchmessertoleranzen** zulässig.

Dagegen sind die **Formtoleranzen** des Lagersitzes enger zu wählen, da Formfehler des Lagersitzes direkt die Laufgenauigkeit der gesamten Lagerung beeinflussen.

Darüber hinaus ermöglichen Spann- und Abziehhülsen die Verwendung von Wellensitzen mit lediglich gedrehter Oberfläche.

Für Anwendungsfälle mit untergeordneter Rundlaufgenauigkeit kann auch blankgezogenes Rundmaterial verwendet werden.

Als Faustregel können folgende Toleranzen verwendet werden:

Adapter and Withdrawal Sleeves

General

Adapter and withdrawal sleeves are devices using to mount and secure rolling element bearings with tapered bores onto cylindrical shaft seats.

This enables the mounting or dismounting of rolling element bearings in a simple and effective way for a variety of applications.

Since, adapter and withdrawal sleeves are able to adapt to shaft diameter variations within certain limits, larger than normal **shaft diameter tolerances** are accommodated.

The **geometrical accuracy**, however, must be more closely defined, as the form errors of the shaft affect the running accuracy of the total bearing arrangement in a direct way.

Furthermore, using adapter or withdrawal sleeves allows bearing seats with lower surface qualities, (e.g. turned surfaces) to be acceptable.

For applications where no accurate shaft guidance of bearings is required, bright drawn round bar stock may also be used.

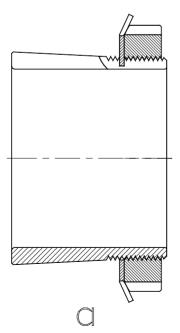
Generally the following tolerances may be used for guidance:

Erwartete Laufgenauigkeit	Toleranz des Wellensitzes				
Li Wartote Laurgeriaurgkeit	Tolerance o	of shaft seat			
Exposted rupping accuracy	Durchmesser	Formgenauigkeit			
Expected running accuracy	Diameter tolerance	Form accuracy			
Normal	h 7, h8, h 9	IT5			
normal	117,110,119	2			
Gering	h10, h11	IT7			
low	1110, 1111	2			

Spannhülsen

Normen, Hauptabmessungen

Spannhülsen DIN 5415


Allgemeines

Spannhülsen (siehe Abbildung unten) sind geschlitzte Stahlhülsen, die auf der einen Seite an der Mantelfläche einen Kegel 1:12 aufweisen, auf der anderen Seite haben sie ein Gewinde.

Kleinere Spannhülsen können phosphatierte Oberflächen haben, alle anderen sind blank.

NKE Spannhülsen werden komplett mit Wellenmutter und Sicherungsblech geliefert.

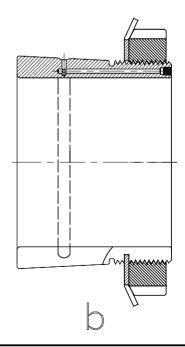
Neben der Standardausführung (Abb. a), stehen größere Spannhülsen mit dem Vorsetzzeichen **OH** auch mit den zur Anwendung des Druckölverfahrens erforderlichen Ölbohrungen und Ölverteilnuten zur Verfügung.

Adapter Sleeves

Standards, Boundary Dimensions

Adapter Sleeves

DIN 5415


General

Adapter sleeves (see sketch below) are slotted steel sleeves that have a tapered outer diameter, taper 1:12 on one side and a thread on the opposite side.

Small adapter sleeves may have phosphated surfaces, normally they are only oil preserved.

NKE adapter sleeves are supplied complete with lock nut and locking washer as standard.

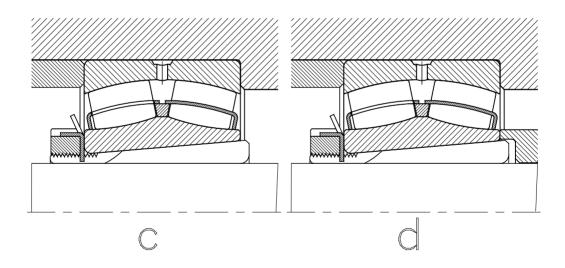
Beside the standard design (see fig. **a**), there are also larger adapter sleeves available with oil bores and oil distribution ducts (prefix **OH**), as required for applying the oil injection method.

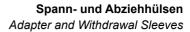
Spann- und Abziehhülsen *Adapter and Withdrawal Sleeves*

Spannhülsen ermöglichen eine einfache Positionierung von Lagern auf glatten Wellen in jeder beliebigen Position (siehe Abb. **c** unten).

Dabei darf allerdings die auf das Lager wirkende Axialkraft eine bestimmte Höhe nicht überschreiten, da diese nur durch die Reibung zwischen Spannhülse und Welle aufgenommen wird.

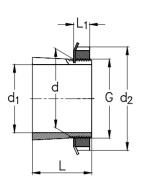
Beim Auftreten größerer Axialkräfte müssen die Lager zusätzliche axial durch Stützringe gesichert werden, siehe Abb. **d**.

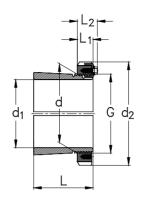

Bei einer Auslegung der Stützringe müssen allerdings die in den Produkttabellen empfohlenen Anschlußmaße beachtet werden.

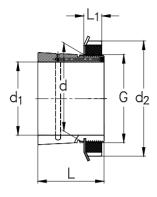

On smooth straight shafts, (e.g. on a drawn round stock), adapter sleeves allow a simple positioning of bearings in any position, (see fig. c).

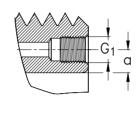
In applications where bearings with adapter sleeves are mounted on straight shafts without axial support, (see fig. \mathbf{c}), their ability to accept axial forces is limited by the friction between the adapter sleeve and the shaft.

In the case of higher axial forces, the bearing needs to be secured additionally by **supporting rings** (see fig. **d**).

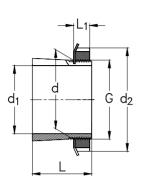

When designing such supporting rings, however, the abutment dimensions recommended by the product tables must be considered.

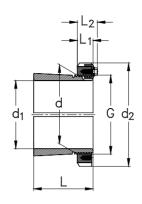




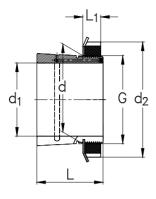


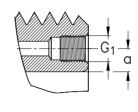
Ø Welle [mm]	Ha	uptabmessunç [mm]	gen	Bezeichnung Spannhülse komplett	Gewicht [kg]
Shaft Ø [mm]	Вог	undary dimensi [mm]	ons	Designation adapter sleeve, complete	Weight [kg]
d ₁	d	d_2	L		m
17	20	32	24	H204	0,04
		32	28	H304	0,04
		32	31	H2304	0,05
20	25	38	26	H205	0,06
		38	29	H305	0,07
		38	35	H2305	0,09
25	30	45	27	H206	0,09
		45	31	H306	0,1
		45	38	H2306	0,11
30	35	52	29	H207	0,12
		52	35	H307	0,14
		52	43	H2307	0,15
35	40	58	31	H208	0,16
		58	36	H308	0,18
		58	46	H2308	0,22
40	45	65	33	H209	0,21
		65	39	H309	0,23
		65	50	H2309	0,27
45	50	70	35	H210	0,24
		70	42	H310	0,27
		70	55	H2310	0,34
50	55	75	37	H211	0,28



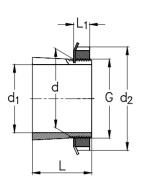


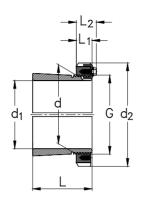
Ø Welle [mm]	Gewinde		Abmess [mi			zugehörige Nutmutter	zugehörige Mutternsicherung
Shaft Ø [mm]	Thread	Dimensions [mm]				Lock nut	Locking device
d ₁	G	L ₁	L_2	G₁	а		
17	M20X1	7				KM4	MB4
	M20X1	7				KM4	MB4
	M20X1	7				KM4	MB4
20	M25X1,5	8				KM5	MB5
	M25X1,5	8				KM5	MB5
	M25X1,5	8				KM5	MB5
25	M30X1,5	8				KM6	MB6
	M30X1,5	8				KM6	MB6
	M30X1,5	8				KM6	MB6
30	M35X1,5	9				KM7	MB7
	M35X1,5	9				KM7	MB7
	M35X1,5	9	-			KM7	MB7
35	M40X1,5	10				KM8	MB8
	M40X1,5	10				KM8	MB8
	M40X1,5	10				KM8	MB8
40	M45X1,5	11	-			KM9	MB9
	M45X1,5	11				KM9	MB9
	M45X1,5	11	-			KM9	MB9
45	M50X1,5	12	_			KM10	MB10
	M50X1,5	12	-			KM10	MB10
	M50X1,5	12				KM10	MB10
50	M55X2	12,5	_			KM11	MB11



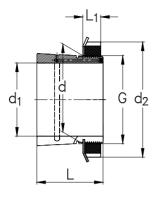


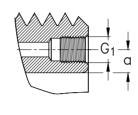
Ø Welle [mm]	На	uptabmessunç [mm]	gen	Bezeichnung Spannhülse komplett	Gewicht [kg]
Shaft Ø [mm]	Вог	undary dimensi [mm]	ons	Designation adapter sleeve, complete	Weight [kg]
d ₁	d	d_2	L		m
50		75	45	H311	0,32
		75	59	H2311	0,39
55	60	80	38	H212	0,31
		80	47	H312	0,35
		80	62	H2312	0,45
60	65	85	40	H213	0,36
	65	85	50	H313	0,42
	65	85	65	H2313	0,52
	70	92	52	H314	0,68
	70	92	68	H2314	0,88
65	75	98	43	H215	0,66
		98	55	H315	0,78
		98	73	H2315	1,1
70	80	105	46	H216	0,81
		105	59	H316	0,95
		105	78	H2316	1,2
75	85	110	50	H217	0,94
		110	63	H317	1,1
		110	82	H2317	1,35
80	90	120	52	H218	1,1
		120	65	H318	1,3
		120	86	H2318	1,6



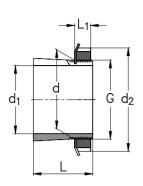


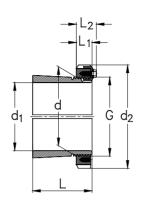
Ø Welle [mm]	Gewinde		Abmess [mi		zugehörige Nutmutter	zugehörige Mutternsicherung	
Shaft Ø [mm]	Thread		Dimen [mi		Lock nut	Locking device	
d ₁	G	L ₁	L_2	G ₁	а		
50	M55X2	12,5				KM11	MB11
	M55X2	12,5		-	-	KM11	MB11
55	M60X2	13				KM12	MB12
	M60X2	13			-	KM12	MB12
	M60X2	13				KM12	MB12
60	M65X2	14			-	KM13	MB13
	M65X2	14				KM13	MB13
	M65X2	14	-		-	KM13	MB13
	M70X2	14				KM14	MB14
	M70X2	14	-			KM14	MB14
65	M75X2	15	-		-	KM15	MB15
	M75X2	15			-	KM15	MB15
	M75X2	15				KM15	MB15
70	M80X2	17				KM16	MB16
	M80X2	17				KM16	MB16
	M80X2	17				KM16	MB16
75	M85X2	18				KM17	MB17
	M85X2	18				KM17	MB17
	M85X2	18				KM17	MB17
80	M90X2	18				KM18	MB18
	M90X2	18				KM18	MB18
	M90X2	18	-			KM18	MB18



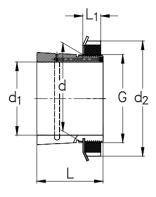


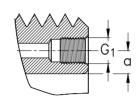
Ø Welle [mm]	Ha	uptabmessung [mm]	gen	Bezeichnung Spannhülse komplett	Gewicht [kg]
Shaft Ø [mm]	Вог	undary dimensi [mm]	ons	Designation adapter sleeve, complete	Weight [kg]
d ₁	d	d_2	L		m
85	95	125	55	H219	1,25
		125	68	H319	1,4
		125	90	H2319	1,8
90	100	130	58	H220	1,4
	100	130	71	H320	1,6
		130	97	H2320	2
		130	76	H3120	1,8
95	105	140	60	H221	1,6
		140	74	H321	1,85
100	110	145	63	H222	1,8
		145	77	H322	2,05
		145	105	H2322	2,75
		145	81	H3122	2,1
110	120	155	112	H2324	3
		145	72	H3024	1,8
		155	88	H3124	2,5
115	130	165	121	H2326	4,45
		155	80	H3026	2,8
		165	92	H3126	3,45
125	140	180	131	H2328	5,4
		165	82	H3028	3,05
		180	97	H3128	4,1



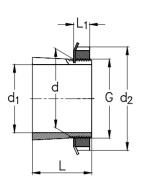


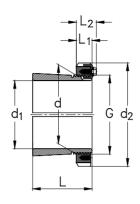
Ø Welle [mm]	Gewinde		Abmess [mr			zugehörige Nutmutter	zugehörige Mutternsicherung
Shaft Ø [mm]	Thread	Dimensions [mm]				Lock nut	Locking device
d ₁	G	L ₁	L_2	G₁	а		
85	M95X2	19				KM19	MB19
	M95X2	19				KM19	MB19
	M95X2	19				KM19	MB19
90	M100X2	20				KM20	MB20
	M100X2	20				KM20	MB20
	M100X2	20				KM20	MB20
	M100X2	20				KM20	MB20
95	M105X2	20				KM21	MB21
	M 105X2	20				KM21	MB21
100	M110X2	21				KM22	MB22
	M110X2	21				KM22	MB22
	M110X2	21				KM22	MB22
	M110X2	31				KM22	MB22
110	M120X2	22				KM24	MB24
	M120X2	22				KML24	MBL24
	M120X2	22				KM24	MB24
115	M130X2	23				KM26	MB26
	M130X2	23				KML26	MBL26
	M130X2	23				KM26	MB26
125	M140X2	24				KM28	MB28
	M140X2	24				KML28	MBL28
	M140X2	24				KM28	MB28



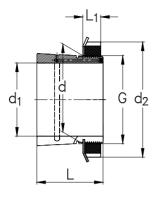


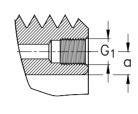
Ø Welle [mm]	Ha	uptabmessung [mm]	gen	Bezeichnung Spannhülse komplett	Gewicht [kg]
Shaft Ø [mm]	Вог	undary dimensi [mm]	ons	Designation adapter sleeve, complete	Weight [kg]
d ₁	d	d_2	L		m
135	150	195	139	H2330	6,4
		180	87	H3030	3,75
		195	111	H3130	5,25
140	160	210	147	H2332	8,8
		210	147	OH2332-H	8,8
		190	93	H3032	5,1
	160	190	93	OH3032-H	5,1
		210	119	H3132	7,25
		210	119	ОН3132-Н	7,25
150	170	220	154	H2334	9,9
		220	154	OH2334-H	9,9
		200	101	H3034	5,8
		200	101	ОН3034-Н	5,8
		220	122	H3134	8,1
		220	122	ОН3134-Н	8,1
160	180	230	161	H2336	11
		230	161	OH2336-H	11
		210	109	H3036	6,7
		210	109	OH3036-H	6,7
		230	131	H3136	9,15
		230	131	OH3136-H	9,15
170	190	240	169	H2338	12



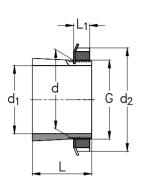


Ø Welle [mm]	Gewinde	Abmessungen [mm]				zugehörige Nutmutter	zugehörige Mutternsicherung
Shaft Ø [mm]	Thread		Dimensions [mm]				Locking device
d ₁	G	L ₁	L_2	G₁	а		
135	M150X2	26				KM30	MB30
	M150X2	26				KML30	MBL30
	M150X2	26				KM30	MB30
140	M160X3	28				KM32	MB32
	M160X3	28		M6	4,2	KM32	MB32
	M160X3	27,5				KML32	MBL32
	M160X3	27,5		M6	4,2	KML32	MBL32
	M160X3	28				KM32	MB32
	M160X3	28		M6	4,2	KM32	MB32
150	M170X3	29				KM34	MB34
	M170X3	29		M6	4,2	KM 34	MB34
	M170X3	28,5	-			KML34	MBL34
	M170X3	28,5		M6	4,2	KML34	MBL34
	M170X3	29	-			KM34	MB34
	M170X3	29		M6	4,2	KM34	MB34
160	M180X3	30	-			KM36	MB36
	M180X3	30		M6	4,2	KM36	MB36
	M180X3	29,5				KML36	MBL36
	M180X3	29,5		M6	4,2	KML36	MBL36
	M180X3	30	-			KM36	MB36
	M180X3	30		M6	4,2	KM36	MB36
170	M190X3	31	-			KM38	MB38



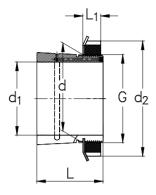


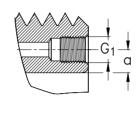
Ø Welle [mm]	Hai	uptabmessun [mm]	gen	Bezeichnung Spannhülse komplett	Gewicht [kg]
Shaft Ø [mm]	Вог	ındary dimensi [mm]	ions	Designation adapter sleeve, complete	Weight [kg]
d ₁	d	d_2	L		m
170		240	169	OH2338-H	12
		220	112	H3038	7,25
		220	112	OH3038-H	7,25
		240	141	H3138	10,5
		240	141	ОН3138-Н	10,5
180	200	250	176	H2340	13,5
		250	176	OH2340-H	13,5
		240	120	H3040	8,9
	200	240	120	ОН3040-Н	8,9
		250	150	H3140	12
		250	150	ОН3140-Н	12
200	220	280	186	H2344	17
		280	186	OH2344-H	17
		260	126	H3044	9,9
		260	126	OH3044-H	9,9
		280	161	H3144	15
		280	161	OH3144-H	15
220	240	300	199	H2348	19
		300	199	OH2348-H	19
		290	133	H3048	12
		290	133	OH3048-H	12
		300	172	H3148	16



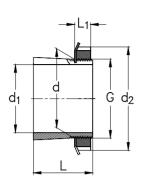


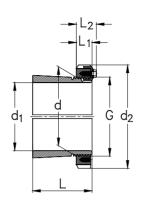
Ø Welle [mm]	Gewinde		Abmess [mi	•		zugehörige Nutmutter	zugehörige Mutternsicherung
Shaft Ø [mm]	Thread	Dimensions [mm]				Lock nut	Locking device
d ₁	G	L ₁	L_2	G ₁	а		
170	M190X3	31		M6	4,2	KM38	MB38
	M190X3	30,5				KML38	MBL38
	M190X3	30,5		M6	4,2	KML38	MBL38
	M190X3	31				KM38	MB38
	M190X3	31		M6	4,2	KM38	MB38
180	M200X3	32				KM40	MB40
	M200X3	32		M6	4,2	KM40	MB40
	M200X3	31,5				KML40	MBL40
	M200X3	31,5		M6	4,2	KML40	MBL40
	M200X3	32				KM40	MB40
	M200X3	32		M6	4,2	KM40	MB40
200	Tr220X4	35	-			H-M 44 T	MB44
	Tr220X4	35		M6	4,2	H-M 44 T	MB44
	Tr220X4	30	41			H-M 3044	MS3044
	Tr220X4	30	41	M6	4,2	H-M 3044	MS3044
	Tr220X4	35	-			H-M 44 T	MB44
	Tr220X4	35		M6	4,2	H-M 44 T	MB44
220	Tr240X4	37	-			H-M 48 T	MB48
	Tr240X4	37		M6	4,2	H-M 48 T	MB48
	Tr240X4	34	46	-		H-M 3048	MS3052-48
	Tr240X4	34	46	M6	4,2	H-M 3048	MS3052-48
	Tr240X4	37	-			H-M 48 T	MB48



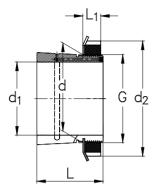


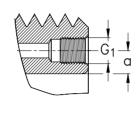
Ø Welle [mm]	На	uptabmessun [mm]	gen	Bezeichnung Spannhülse komplett	Gewicht [kg]
Shaft Ø [mm]	Во	undary dimensi [mm]	ions	Designation adapter sleeve, complete	Weight [kg]
d ₁	d	d_2	L		m
220		300	172	OH3148-H	16
240	260	330	211	H2352	23
		330	211	OH2352-H	23
		310	145	H3052	13,5
		310	145	OH3052-H	13,5
		330	190	H3152	21
		330	190	OH3152-H	21
260	280	350	224	H-2356	27
		350	224	OH-2356-H	27
		330	152	H-3056	16
		330	152	OH-3056-H	16
	280	350	195	H3156	23
		350	195	OH3156-H	23
280	300	360	168	H3060	20,5
		360	168	ОН3060-Н	20,5
		380	208	H3160	29
		380	208	ОН3160-Н	29
		380	240	H3260	32
		380	240	OH3260-H	32
300	320	380	171	H3064	22
		380	171	OH3064-H	22
		400	226	H3164	32



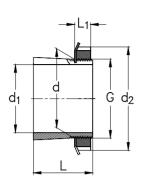


Ø Welle [mm]	Gewinde		Abmess [mi	•		zugehörige Nutmutter	zugehörige Mutternsicherung
Shaft Ø [mm]	Thread		Dimen [mi			Lock nut	Locking device
d ₁	G	L ₁	L_2	G₁	а		
220	Tr240X4	37		M6	4,2	H-M 48 T	MB48
240	Tr260X4	39				H-M 52 T	MB52
	Tr260X4	39		М6	4,2	H-M 52 T	MB52
	Tr260X4	34	46			H-M 3052	MS3052-48
	Tr260X4	34	46	M6	4,2	H-M 3052	MS3052-48
	Tr260X4	39				H-M 52 T	MB52
	Tr260X4	39		M6	4,2	H-M 52 T	MB52
260	Tr280X4	41				H-M 56 T	MB56
	Tr280X4	41		M6	4,2	H-M 56 T	MB56
	Tr280X4	38	50			H-M 3056	MS3056
	Tr280X4	38	50	M6	4,2	H-M 3056	MS3056
	Tr280X4	41				H-M 56 T	MB 56
	Tr280X4	41		M 6	4,2	H-M 56 T	MB 56
280	Tr300X4	42	54	-		H-M 3060	MS 3060
	Tr300X4	42	54	M 6	4,2	H-M 3060	MS 3060
	Tr300X4	40	53			H-M 3160	MS 3160
	Tr300X4	40	53	M 6	4,2	H-M 3460	MS 3160
	Tr300X4	40	53			H-M 3160	MS 3160
	Tr300X4	40	53	M 6	4,2	H-M 3160	MS 3160
300	Tr320X5	42	55	-		H-M 3064	MS 3068-64
	Tr320X5	42	55	M 6	4	H-M 3064	MS 3068-64
	Tr320X5	42	56			H-M 3164	MS 3164



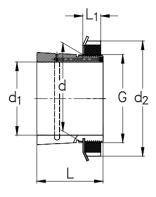


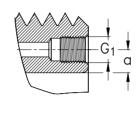
Ø Welle [mm]	Hau	uptabmessun [mm]	gen	Bezeichnung Spannhülse komplett	Gewicht [kg]
Shaft Ø [mm]	Вог	ındary dimensi [mm]	ions	Designation adapter sleeve, complete	Weight [kg]
d ₁	d	d_2	L		m
300		400	226	OH3164-H	32
		400	258	H3264	35
		400	258	OH3264-H	35
320	340	400	187	H3068	27
		400	187	ОН3068-Н	27
		440	254	H3168	50
		440	254	OH3168-H	50
		440	288	H3268	51,5
		440	288	OH3268	51,5
340	360	420	188	H3072	29
		420	188	OH3072-H	29
		460	259	H3172	56
		460	259	OH3172-H	56
	360	460	299	H3272	60,5
		460	299	OH3272-H	60,5
360	380	450	193	H3076	35,5
		450	193	ОН3076-Н	35,5
		490	264	H3176	61,5
		490	264	ОН3176-Н	61,5
		490	310	H3276	69,5
		490	310	OH3276-H	69,5
380	400	470	210	H3080	40



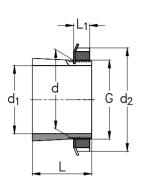


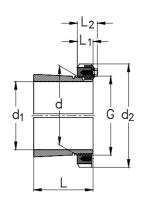
Ø Welle [mm]	Gewinde		Abmess [mi	•		zugehörige Nutmutter	zugehörige Mutternsicherung
Shaft Ø [mm]	Thread		Dimen [mi			Lock nut	Locking device
d ₁	G	L ₁	L_2	G₁	а		
300	Tr320X5	42	56	M 6	4	H-M 3164	MS 3164
	Tr320X5	42	56			H-M 3164	MS 3164
	Tr320X5	42	56	M 6	4	H-M 3164	MS 3164
320	Tr340X5	45	58			H-M 3068	MS 3068-64
	Tr340X5	45	58	M 6	4	H-M 3068	MS 3068-64
	Tr340X5	55	72			H-M 3168	MS 3172-68
	Tr340X5	55	72	M 6	4	H-M 3168	MS 3172-68
	Tr340X5	55	72			H-M 3168	MS 3172-68
	Tr340X5	55	72	M 6	4	H-M 3168	MS 3172-68
340	Tr360X5	45	58			H-M 3072	MS 3072
	Tr360X5	45	58	M 6	4	H-M 3072	MS 3072
	Tr360X5	58	75			H-M 3172	MS 3172-68
	Tr360X5	58	75	M6	4	H-M 3172	MS 3172-68
	Tr 360 x 5	58	75			H-M 3172	MS 3172-68
	Tr 360 x 5	58	75		10	H-M 3172	MS 3172-68
360	Tr 380 X 5	48	62			H-M 3076	MS 3080-76
	Tr 380 X 5	48	62	M 6	4	H-M 3076	MS 3080-76
	Tr 380 X 5	60	77			H-M 3176	MS 3176
	Tr 380 X 5	60	77	M 6	4	H-M 3176	MS 3176
	Tr 380 x 5	60	77			H-M 3176	MS 3176
	Tr 380 x 5	60	77		10,5	H-M 3176	MS 3176
380	Tr 400 X 5	52	66			H-M 3080	MS 3080-76



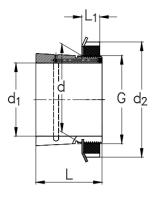


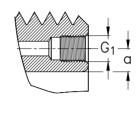
Ø Welle [mm]	Hai	uptabmessun [mm]	gen	Bezeichnung Spannhülse komplett	Gewicht [kg]
Shaft Ø [mm]	Вои	ındary dimensi [mm]	ions	Designation adapter sleeve, complete	Weight [kg]
d ₁	d	d_2	L		m
380		470	210	ОН3080-Н	40
		520	272	H3180	73
		520	272	OH3180-H	73
400	420	490	212	H3084	47
		490	212	OH3084-H	47
		540	304	H3184	80
		540	304	OH3184-H	80
410	440	520	228	H3088	65
		520	228	ОН3088-Н	65
		560	307	H3188	95
		560	307	OH3188-H	95
430	460	540	234	H3092	71
		540	234	ОН3092-Н	71
	460	580	326	H3192	119
		580	326	OH3192-H	119
450	480	560	237	H3096	75
		560	237	ОН3096-Н	75
		620	335	H3196	135
		620	335	OH3196-H	135
470	500	580	247	H30/500	82
		580	247	OH30/500-H	82
		630	356	H31/500	145





Ø Welle [mm]	Gewinde		Abmess [mr	_		zugehörige Nutmutter	zugehörige Mutternsicherung
Shaft Ø [mm]	Thread		Dimen [mr			Lock nut	Locking device
d ₁	G	L ₁	L_2	G ₁	а		
380	Tr 400 X 5	52	66	M 6	4	H-M 3080	MS 3080-76
	Tr 400 X 5	62	82			H-M 3180	MS 3184-80
	Tr 400 X 5	62	82	M 6	4	H-M 3180	MS 3184-80
400	Tr 420 X 5	52	66			H-M 3084	MS 3084
	Tr 420 X 5	52	66	M 6	4	H-M 3084	MS 3084
	Tr 420 X 5	70	90			H-M 3184	MS 3184-80
	Tr 420 X 5	70	90	M 6	4	H-M 3184	MS 3184-80
410	Tr 440 X 5	60	77			H-M 3088	MS 3092-88
	Tr 440 X 5	60	77	M 8	6,5	H-M 3088	MS 3092-88
	Tr 440 X 5	70	90			H-M 3188	MS 3192-88
	Tr 440 X 5	70	90	M 8	6,5	H-M 3188	MS 3192-88
430	Tr 460 X 5	60	77			H-M 3092	MS 3092-88
	Tr 460 X 5	60	77	M 8	6,5	H-M 3092	MS 3092-88
	Tr 460 X 5	75	95			H-M 3192	MS 3192-88
	Tr 460 X 5	75	95	M 8	6,5	H-M 3192	MS 3192-88
450	Tr 480 X 5	60	77			H-M 3096	MS 30/500-96
	Tr 480 X 5	60	77	M 8	6,5	H-M 3096	MS 30/500-96
	Tr 480 X 5	75	95			H-M 3196	MS 3196
	Tr 480 X 5	75	95	M 8	6,5	H-M 3196	MS 3196
470	Tr 500 X 5	68	85			H-M 30/500	MS 30/500-96
	Tr 500 X 5	68	85	M 8	6,5	H-M 30/500	MS 30/500-96
	Tr 500 X 5	80	100			H-M 31/500	MS 31/500





Ø Welle [mm]	На	uptabmessun [mm]	gen	Bezeichnung Spannhülse komplett	Gewicht [kg]
Shaft Ø [mm]	Во	undary dimens [mm]	ions	Designation adapter sleeve, complete	Weight [kg]
d ₁	d	d_2	L		m
470		630	356	OH31/500-H	145
500	530	630	265	H30/530	105
		630	265	OH30/530-H	105
530	560	650	282	H30/560	112
		650	282	OH30/560-H	112
560	600	700	289	H30/600	147
		700	289	OH30/600-H	147
600	630	730	301	H30/630	138
		730	301	OH30/630-H	138
630	670	780	324	H30/670	190
		780	324	OH30/670-H	190
670	710	830	342	H30/710	228
		830	342	OH30/710-H	228
710	750	870	356	H30/750	246
		870	356	OH30/750-H	246
750	800	920	366	H30/800	302
		920	366	OH30/800-H	302
800	850	980	380	H30/850	341
		980	380	OH30/850-H	341

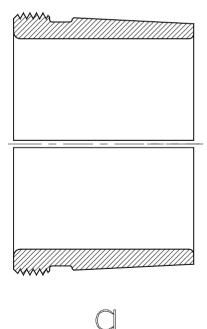
Ø Welle [mm]	Gewinde		Abmess [mr	•		zugehörige Nutmutter	zugehörige Mutternsicherung
Shaft Ø [mm]	Thread		Dimen [mr			Lock nut	Locking device
d ₁	G	L ₁	L_2	G₁	а		
470	Tr 500 X 5	80	100	M 8	6,5	H-M 31/500	MS 31/500
500	Tr 530 X 6	68	90			H-M 30/530	MS 30/600-530
	Tr 530 X 6	68	90	M 8	6	H-M 30/530	MS 30/600-530
530	Tr 560 X 6	75	97			H-M 30/560	MS 30/560
	Tr 560 X 6	75	97	M 8	6	H-M 30/560	MS 30/560
560	Tr 600 X 6	75	97			H-M 30/600	MS 30/600-530
	Tr 600 X 6	75	97		8	H-M 30/600	MS 30/600-530
600	Tr 630 X 6	75	97			H-M 30/630	MS 30/630
	Tr 630 X 6	75	97	M 8	6	H-M 30/630	MS 30/630
630	Tr 670 X 6	80	102			H-M 30/670	MS 30/670
	Tr 670 X 6	80	102		8	H-M 30/670	MS 30/670
670	Tr 710 X 7	90	112			H-M 30/710	MS 30/710
	Tr 710 X 7	90	112		8	H-M 30/710	MS 30/710
710	Tr 750 X 7	90	112			H-M 30/750	MS 30/800-750
	Tr 750 X 7	90	112		8	H-M 30/750	MS 30/800-750
750	Tr 840 X 7	90	112			H-M 30/800	MS 30/800-750
	Tr 800 X 7	90	112		10	H-M 30/800	MS 30/800-750
800	Tr 850 X 7	90	115	-	-	H-M 30/850	MS 30/900-850
	Tr 850 X 7	90	115		10	H-M 30/850	MS 30/900-850

Spann- und Abziehhülsen *Adapter and Withdrawal Sleeves*

Abziehhülsen

Normen, Hauptabmessungen

Abziehhülsen


DIN 5416

Allgemeines

Abziehhülsen (siehe Abbildung unten) sind geschlitzte Stahlhülsen, die auf der einen Seite eine kegelige Mantelfläche aufweisen und am größeren Durchmesser ein Gewinde haben.

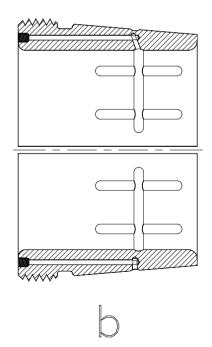
Der Kegel der Mantelfläche beträgt 1:12, lediglich bei den Abziehhülsen der Reihe AH 240 und AH 241 beträgt der Kegel 1:30.

NKE Abziehhülsen werden standardmäßig ohne Wellenmutter geliefert.

Withdrawal Sleeves

Standards, Boundary Dimensions

Withdrawal sleeves

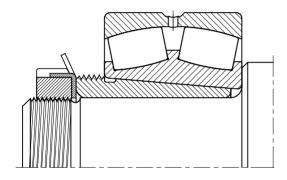

DIN 5416

General

Withdrawal sleeves (see sketch below) are slotted steel sleeves that have a tapered outer diameter on one side and a thread on the large diameter on the opposite side.

Standard withdrawal sleeves have tapered outers, taper 1:12 except for withdrawal sleeves of series AH 240 and AH 241 having tapers 1:30.

NKE withdrawal sleeves are supplied without lock nut as standard.



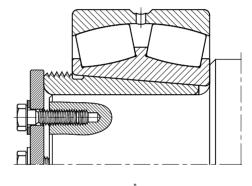
NKE Abziehhülsen werden standardmäßig in zwei Grundausführungen gefertigt.

Neben der Standardausführung (Abb. **a**), stehen größere Abziehhülsen ab einem Bohrungsdurchmesser von etwa 200 mm auch mit den zur Anwendung des Druckölverfahrens erforderlichen Ölbohrungen und Ölverteilnuten zur Verfügung, siehe Abb. **b**.

NKE Abziehhülsen mit Ölbohrungen werden als **AOH** . . bezeichnet.

 \mathbb{C}

Bei einer Verwendung von Abziehhülsen muss der Lagerinnenring gegen eine geeignete Anlagefläche abgestützt werden, beispielsweise gegen einen Wellenbund, wie in Abb. **a** dargestellt ist.

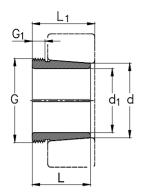

Sollte aus Festigkeitsgründen am Wellenabsatz ein Radius erforderlich sein, der größer ist als die Kantenverrundung des Lagers, muss ein Abstandsring zwischen Wellenschulter und Lagerplanfläche eingebaut werden.

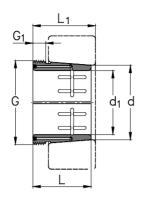
Die Abziehhülsen selbst müssen in jedem Fall gegen unbeabsichtigtes Lösen zusätzlich axial gesichert werden, beispielsweise durch Wellenmuttern (Abb. c) oder Haltescheiben (Abb. d).

NKE withdrawal sleeves are produced in two different designs as standard.

Beside the standard design (see fig. **a**), larger withdrawal sleeves from bore diameter 200 mm onwards are also available with oil bores and oil distribution ducts as required for applying the oil injection method as shown in fig. **b**.

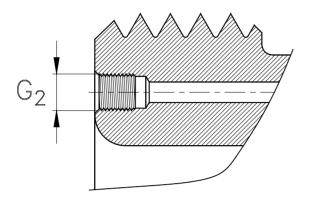
NKE withdrawal sleeves that are foreseen with facilities for an application of the oil injection method are designated "AOH . ."

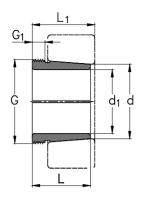


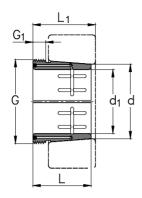

When withdrawal sleeves are used, the bearing inner ring must to be supported by an effective surface contact, such as a shaft shoulder (see fig. a).

Where larger radii bearing journals and shaft shoulders are necessary for strength reasons, (e.g. where such radii become larger than the bearing fillet), suitable distance rings must be applied.

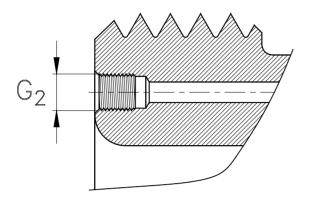
In each case the withdrawal sleeve must be secured against axial displacement loosening by means of lock nuts (see fig. c) or end plates (see fig. d).

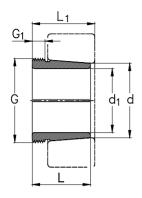


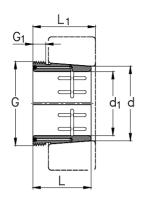

Shaft Ø [mm] Boundary dimensions [mm] Designation d₁ d G G₁ G₂ L L₁ C₂ L L₁ C₃ AH308	Weight [kg] m 0,09	appropriate lock nut
	0,09	
35 40 M45X1,5 6 29 32 AH308	,	
	0.42	KM9
M45X1,5 7 40 43 AH2308	0,13	KM9
40 45 M50X1,5 6 31 34 AH309	0,12	KM10
M50X1,5 7 44 47 AH2309	0,16	KM10
45 50 M55X2 7 35 38 AHX310	0,13	KM11
M55X2 9 50 53 AHX2310	0,19	KM11
50 55 M60X2 7 37 40 AHX311	0,16	KM12
M60X2 10 54 57 AHX2311	0,26	KM12
55 60 M65X2 8 40 43 AHX312	0,19	KM13
M65X2 11 58 61 AHX2312	0,3	KM13
60 65 M70X2 8 42 45 AH313-G	0,22	KM14
M75X2 12 61 64 AH2313	0,39	KM15
65 70 M75X2 8 43 47 AH314-G	0,24	KM15
M80X2 12 64 68 AHX2314	0,45	KM16
70 75 M80X2 8 45 49 AH315-G	0,29	KM16
M85X2 12 68 72 AHX2315	0,53	KM17
75 80 M90X2 8 48 52 AH316	0,37	KM18
M90X2 12 71 75 AHX2316	0,57	KM18
80 85 M9 X2 9 52 56 AHX317	0,43	KM19
M95X2 13 74 78 AHX2317	0,65	KM19
85 90 M100X2 9 53 57 AHX318	0,46	KM20
M100X2 10 63 67 AHX3218	0,57	KM20



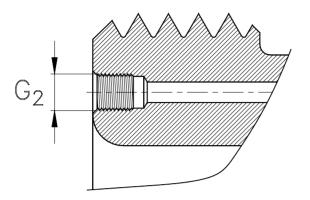
Ø Welle [mm] Shaft Ø		·	abmess [mm] lary dime			Bezeichnung Designation	Gewicht [kg] Weight	passende Nutmutter appropriate	
[mm]			[mm]					[kg]	lock nut
d₁	d	G	G₁	G ₂	L	L₁		m	
		M100X2	14		79	83	AHX2318	0,76	KM20
90	95	M105X2	10		57	61	AHX319	0,54	KM21
		M105X2	16		57	61	AHX2319	0,9	KM21
95	100	M110X2	10		59	63	AHX320	0,58	KM22
		M110X2	11		64	68	AHX3120	0,66	KM22
		M110X2	11		73	77	AHX3220	0,76	KM22
		M110X2	16		90	94	AHX2320	1	KM22
105	110	M120X2	11		68	72	AHX3122	0,76	KM24
		M125X2	11		82	86	AHX3222	1,05	KM25
		M125X2	16		98	102	AHX2322	1,35	KM25
		M115X2	13		82	91	AH24122	0,71	KM23
115	120	M130X2	13		60	64	AHX3024	0,73	KM26
		M130X2	12		75	79	AHX3124	0,94	KM26
		M135X2	13		90	94	AHX3224	1,3	KM27
		M135X2	17		105	109	AHX2324	1,65	KM27
		M125X2	13		73	82	AH24024	0,7	KM25
		M130X2	13		93	102	AH24124	1	KM26
125	130	M140X2	14		67	71	AHX3026	0,91	KM28
		M140X2	12		78	82	AHX3126	1,1	KM28
		M145X2	15		98	102	AHX3226	1,55	KM29
		M145X2	19		115	119	AHX2326	2	KM29
		M135X2	14		83	93	AH24026	0,88	KM27

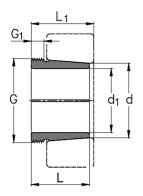


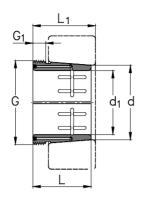

Ø Welle [mm]		Haupt	tabmess [mm]	ungen			Bezeichnung	Gewicht [kg]	passende Nutmutter
Shaft Ø [mm]		Bound	dary dime [mm]	ensions			Designation	Weight [kg]	appropriate lock nut
d₁	d	G	G ₁	G_2	L	L ₁		m	
		M140X2	14		94	104	AH24126	1,15	KM28
135	140	M150X2	14		68	73	AHX3028	1	KM30
		M150X2	14		83	88	AHX3128	1,3	KM30
		M155X3	15		104	109	AHX3228	1,85	KM31
		M155X3	20		125	130	AHX2328	2,35	KM31
		M145X2	14		83	93	AH24028	0,95	KM29
		M150X2	14		99	109	AH24128	1,3	KM30
145	150	M160X3	15	-	72	77	AHX3030	1,15	KM32
		M165X3	15		96	101	AHX3130	1,8	KM33
		M165X3	17		114	119	AHX3230	2,2	KM33
		M165X3	24		135	140	AHX2330	2,8	KM33
		M155X3	15		90	101	AH24030	1,05	KM31
		M160X3	15		115	126	AH24130	1,55	KM32
		M170X3	16		77	82	AH3032	2,05	KM34
150	160	M180X3	16		103	108	AH3132	3,2	KM36
		M180X3	20		124	130	AH3232	4	KM36
		M180X3	24		140	146	AH2332	4,65	KM36
		M170X3	15		95	106	AH24032	2,3	KM34
		M170X3	15		124	135	AH24132	3,05	KM34
160	170	M180X3	17		85	90	AH3034	2,4	KM36
		M190X3	16		104	109	AH3134	3,45	KM38
		M190X3	24		134	140	AH3234	4,8	KM38



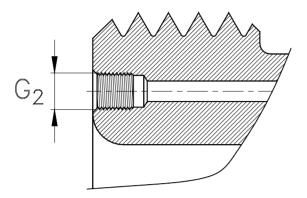
Ø Welle [mm] Shaft Ø		•	abmess [mm] lary dime	Ū			Bezeichnung Designation	Gewicht [kg] Weight	passende Nutmutter appropriate
[mm]			[mm]					[kg]	lock nut
d₁	d	G	G ₁	G_2	L	L1		m	
		M190X3	24		146	152	AH2334	5,25	KM38
		M180X3	16		106	117	AH24034	2,7	KM36
		M180X3	16		125	136	AH24134	3,25	KM36
170	180	M190X3	17		92	98	AH3036	2,8	KM38
		M200X3	17		105	110	AH2236	3,75	KM40
		M200X3	19		116	122	AH3136	4,25	KM40
		M200X3	24		140	146	AH3236	5,25	KM40
		M200X3	26		154	160	AH2336	6,05	KM40
		M190X3	16		116	127	AH24036	3,2	KM38
		M190X3	16		134	145	AH24136	3,75	KM38
180	190	Tr205X4	18		96	102	AH3038	3,4	HML 41-T
		Tr210X4	18		112	117	AH2238	4,25	HM 42-T
		Tr210X4	20		125	131	AH3138	4,9	HM42-T
		Tr210X4	25		145	152	AH3238	5,9	HM42-T
		Tr210X4	26		160	167	AH2338	6,7	HM42-T
		M200X3	18		118	131	AH24038	3,55	KM40
		M200X3	18		146	159	AH24138	4,45	KM40
190	200	Tr215X4	19		102	108	AH3040	3,85	HML 43-T
		Tr220X4	19		118	123	AH2240	4,7	HM44-T
		Tr220X4	21		134	140	AH3140	5,65	HM44-T
		Tr220X4	25		153	160	AH3240	6,6	HM44-T
		Tr220X4	30		170	177	AH2340	7,6	HM44-T




Ø Welle [mm]		Haupt	abmess [mm]	sungen			Bezeichnung	Gewicht [kg]	passende Nutmutter
Shaft Ø [mm]		Bound	lary dime [mm]	ensions			Designation	Weight [kg]	appropriate lock nut
d ₁	d	G	G₁	G_2	L	L₁		m	
		Tr210X4	18		127	140	AH24040	4	HM42-T
		Tr210X4	18		158	171	AH24140	5,05	HM42-T
200	220	Tr235X4	20	G 1/8	111	117	AOH3044	7,4	HML47-T
		Tr240X4	23	G 1/4	145	115	AOH3144	9,3	HM48-T
		Tr240X4	30	G 1/4	181	189	AOH2344	13,5	HM48-T
		Tr230X4	20	G 1/8	138	152	AOH24044	8,2	HM46-T
		Tr230X4	20	G 1/8	170	184	AOH24144	10	HM46-T
220	240	Tr260X4	21	G 1/4	116	123	AOH3048	7,95	HM3052
		Tr260X4	25	G 1/4	154	161	AOH3148	12	HM52-T
		Tr260X4	30	G 1/4	189	197	AOH2348	14	HM52-T
		Tr250X4	20	G 1/8	138	153	AOH24048	8,05	HM50-T
		Tr260X4	20	G 1/4	180	195	AOH24148	11,5	HM52-T
240	260	Tr280X4	23	G 1/4	128	135	AOH3052	9,6	HM3056
		Tr290X4	23	G 1/4	155	161	AOH2252	12,5	HM58-T
		Tr290X4	26	G 1/4	172	179	AOH3152	16	HM58-T
		Tr290X4	30	G 1/4	205	213	AOH2352	17,5	HM58-T
		Tr270X4	22	G 1/8	162	178	AOH24052	10,5	HM54-T
		Tr280X4	22	G 1/4	202	218	AOH24152	14	HM56-T
260	280	Tr300X4	24	G 1/4	131	139	AOH3056	11	HM3060
		Tr310X5	28	G 1/4	175	183	AOH3156	15,5	HM62-T
		Tr310X5	30	G 1/4	212	220	AOH2356	19,5	HM62-T
		Tr290X4	22	G 1/8	162	179	AOH24056	11,5	HM58-T



Ø Welle [mm]	Hauptabmessungen [mm]						Bezeichnung	Gewicht [kg]	passende Nutmutter
Shaft Ø [mm]		Bound	lary dim [mm]	ensions			Designation	Weight [kg]	appropriate lock nut
d₁	d	G	G₁	G ₂	L	L₁		m	
		Tr300X4	22	G 1/4	202	219	AOH24156	15	HM3160
280	300	Tr320X5	26	G 1/4	145	153	AOH3060	13	HM3064
		Tr330X5	30	G 1/4	192	200	AOH3160	19	HM66-T
		Tr330X5	34	G 1/4	228	236	AOH3260	23,5	HM66-T
		Tr310X5	24	G 1/8	184	202	AOH24060	14	HM62-T
		Tr320X5	24	G 1/4	224	242	AOH24160	18,5	HM3164
300	320	Tr345X5	27	G 1/4	149	157	AOH3064	14,5	HML69-T
		Tr350X5	31	G 1/4	209	217	AOH3164	22,5	HM70-T
		Tr350X5	36	G 1/4	246	254	AOH3264	27,5	HM70-T
		Tr330X5	24	G 1/8	184	202	AOH24064	15	HM66-T
		Tr340X5	24	G 1/4	242	260	AOH24164	20,5	HM3168
320	340	Tr365X5	28	G 1/4	162	171	AOH3068	17,5	HML73-T
		Tr370X5	33	G 1/4	225	234	AOH3168	26,5	HM74-T
		Tr370X5	38	G 1/4	264	273	AOH3268	32	HM74-T
		Tr360X5	26	G 1/4	206	225	AOH24068	18	HM3072
		Tr360X5	26	G 1/4	269	288	AOH24168	25,5	HM3172
340	360	Tr385X5	30	G 1/4	167	176	AOH3072	19	HML77-T
		Tr400X5	35	G 1/4	229	238	AOH3172	30	HM3180
		Tr400X5	40	G 1/4	274	283	AOH3272	33	HM3180
		Tr380X5	26	G 1/4	206	226	AOH24072	20	HM3076
		Tr380X5	26	G 1/4	269	289	AOH24172	26	HM3176
360	380	Tr410X5	31	G 1/4	170	180	AOH3076	23,5	HML82-T



Ø Welle [mm]		Haupt	abmess [mm]	sungen		Bezeichnung	Gewicht [kg]	passende Nutmutter	
Shaft Ø [mm]	Boundary dimensions [mm]						Designation	Weight [kg]	appropriate lock nut
d ₁	d	G	G₁	G ₂	L	L1		m	
		Tr420X5	36	G 1/4	232	242	AOH3176	38	HM3184
		Tr420X5	42	G 1/4	284	294	AOH3276	45,5	HM3184
		Tr400X5	28	G 1/4	208	228	AOH24076	23,5	HM3080
		Tr400X5	28	G 1/4	271	291	AOH24176	31	HM3180
380	400	Tr430X5	33	G 1/4	183	193	AOH3080	27	HML86-T
		Tr440X5	38	G 1/4	240	250	AOH3180	39,5	HM3188
		Tr440X5	44	G 1/4	302	312	AOH3280	51,5	HM 3188
		Tr420X5	28	G 1/4	228	248	AOH24080	27	HM 3084
		Tr420X5	28	G 1/4	278	298	AOH24180	35	HM 3184
400	420	Tr450X5	34	G 1/4	186	196	AOH3084	29	HML 90 T
		Tr460X5	40	G 1/4	266	276	AOH3184	46	HM 3192
		Tr440X5	30	G 1/4	230	252	AOH24084	29	HM 3088
		Tr440X5	30	G 1/4	310	332	AOH24184	39	HM 3188
420	440	Tr460X5	30	G 1/4	242	264	AOH24088	32	HML 92 T
		Tr460X5	30	G 1/4	310	332	AOH24188	45,5	HM 3192
440	460	Tr480X5	32	G 1/4	332	355	AOH24192	50	HM 3196
460	480	Tr500X5	32	G 1/4	340	363	AOH24196	51,5	HM 31/500
480	500	Tr530X6	35	G 1/4	360	383	AOH241/500	57	HM 31/530
500	530	Tr550X6	35	G 1/4	370	394	AOH241/530	86	HM 110 T
530	560	Tr580X6	38	G 1/4	393	417	AOH241/560	97	HM 116 T
560	600	Tr630X6	38	G 1/4	413	439	AOH241/600	120	HM 126 T
600	630	Tr650X6	40	G 1/4	440	466	AOH241/630	130	HM 130 T
600	630	Trobuxo	40	G 1/4	440	466	AUH241/630	130	HM 130 I

Nutmuttern

Normen, Hauptabmessungen

Nutmuttern DIN 981

Sicherungsbleche,

Sicherungsbügel DIN 5406

Allgemeines

Nutmuttern dienen hauptsächlich zur Befestigung von Wälzlagern, aber auch anderer Maschinenteile wie Zahnrädern, Scheiben etc. Darüber hinaus werden Nutmuttern auch häufig beim Ein- oder Ausbau von Lagern, wie etwa zum Lösen von Abziehhülsen, verwendet.

Nutmuttern, die der Fixierung von Wälzlagern dienen, sind gegen unbeabsichtigtes Lösen mit Sicherungsblechen bzw. bei den größeren Muttern mit Sicherungsbügeln zu sichern.

Gewinde

NKE Nutmuttern bis einschließlich Bohrungskennzahl 40 (Bohrungsdurchmesser 200 mm) werden standardmäßig mit metrischen ISO-Gewinden, gefertigt.

Größere Nutmuttern (ab Bohrungskennzahl 41) werden mit **metrischen ISO-Trapezgewinden** gefertigt.

Lock Nuts

Standards, Boundary Dimensions

Lock Nuts DIN 981

Locking washer,

Locking clips DIN 5406

General

Lock nuts are primarily intended to secure the location of bearings but also they secure other machine parts (e.g. gears, sleeves, bushings etc).

Additionally lock nuts are also frequently used as a device to mount or dismount bearings (e.g. to remove bearings mounted on withdrawal sleeves).

For securing lock nuts that are being used to fix a bearing and to protect them from becoming loose lock washers or for larger nuts locking clips must be used

Threads

NKE lock nuts up to a bore reference number 40 (bore diameter 200 mm) are produced with metric ISO-threads as standard

Larger lock nuts, (e.g. from a bore reference number 41 upwards), have **metric ISO- trapezoidal threads** as standard.

Ausführungen und Bezeichnungssystem der Standard-Nutmuttern

Die mit **metrischen ISO-Gewinden** versehenen Standard-Nutmuttern werden durch das Kurzzeichen **KM** bezeichnet.

Beispiel: **KM30** Standard-Nutmutter,

mit metrischem ISO-Gewinde M 150x2.

Außendurchmesser 195 mm.

Neben diesen Standard-Nutmuttern gibt es auch eine als **KML** bezeichnete leichte Reihe, die bei ansonsten identischen Abmessungen einen gegenüber den normalen KM-Muttern verringerten Querschnitt aufweist.

Beispiel: KML30

Nutmutter, leichte Reihe, mit metrischem ISO-Gewinde M 150x2. Außendurchmesser 180 mm.

Die größeren, mit metrischen ISO-Trapezgewinden versehenen Nutmuttern werden mit HM ... T bezeichnet

Beispiel: HM52-T

Standard-Nutmutter mit metrischem ISO-Trapezgewinde Tr 260x4. Außendurchmesser 330 mm.

Auch bei den größeren Nutmuttern existiert eine leichte Reihe mit verringerter Querschnittshöhe:

Beispiel: HML52-T

Nutmutter, leichte Reihe, mit metrischem ISO-Trapezgewinde Tr 260x4. Außendurchmesser 310 mm.

Design and Designation System of Standard Lock Nuts

The **standard lock nuts** with **metric ISO-threads** are identified by the symbol "**KM**".

Example: KM30

Standard lock nut,

with metric thread M 150x2.

Outer diameter 195 mm.

alalitic meditor the contemplated in the theory also

Additional to the standard nuts there also exists a narrow series of lock nuts, namely **KML**.

Lock nuts of the narrow series have reduced outer diameters, whilst all other dimensions remain as for the standard KM-lock nuts.

Example: KML30

Lock nut of narrow series, with metric thread M 150x2. Outer diameter 180 mm.

Larger lock nuts with **metric ISO-trapezoidal threads** are designated by the symbol **HM** .. **T**.

Example: HM52-T

Standard lock nut,

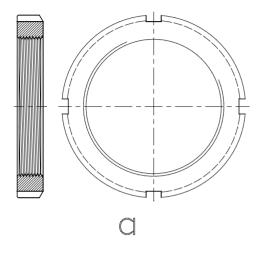
with metric trapezoidal thread Tr 260x4.

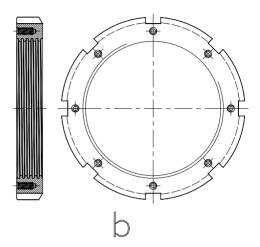
Outer diameter 330 mm.

There is also a narrow series of larger lock nuts available with reduced sectional height:

Example: HML52-T

Lock nut of narrow series, with metric trapezoidal thread Tr 260x4.


Outer diameter 310 mm.


Lock Nuts

Je nach Größe haben Nutmuttern entweder vier (siehe Abb. a), oder acht (Abb. b) gleichmäßig über den Umfang verteilte Nuten.

Depending on their size, lock nuts have either four (see Fig. a) or, in case of larger lock nuts. eight (see Fig. b) slots equally spaced around their circumference.

Diese Nuten dienen zum einen zur besseren Handhabung bei Ein- und Ausbau, aber auch als Angriffsflächen zum Ansetzen des Montagewerkzeuges wie etwa Hakenschlüssel.

Auch die Laschen der Sicherungsbleche bzw. bei größeren Muttern die Sicherungsbügel greifen in diese Nuten ein.

Größere Nutmuttern haben darüber hinaus zu-sätzliche Gewindebohrungen an einer Planseite (Abb. b), die zur Aufnahme der Befestigungsschrauben der Sicherungsbügel dienen.

Weitere Mutterausführungen:

Neben den bereits erwähnten Ausführungen stehen Nutmuttern auch in einer Anzahl unterschiedlicher Varianten zur Verfügung:

These slots provide better handling during mounting and dismounting, but their main function is the fixing point to apply the required mounting tools, e.g. hook spanners.

These slots must also accommodate the lip of the locking washer or for larger nuts the locking clips.

Larger lock nuts also have tapped holes in one face (Fig. b). Their function is too accomodate the screws engaged in securing the locking clips.

Other Nut Designs:

Additional to the standard lock nut designs previously mentioned, nuts are available in several more variants, such as:

Weitere Muttern:

- Nutmuttern aus rostfreiem Stahl
- Nutmuttern mit verzinkter oder phosphatierter Oberfläche
- Nutmuttern mit Linksgewinde
- Nutmuttern mit zölligem Gewinde
- KMT und KMTA-Wellenmuttern
- Hydraulikmuttern

Wir informieren Sie auf Anfrage gerne näher.

Sicherungsbleche und Sicherungsbügel

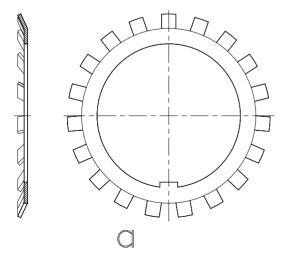
Sicherungsbleche der Ausführung **MB** bzw. **MBL** (Abb. a) kommen bei den Nutmutten der Reihen **KM** bzw. **KML** zum Einsatz.

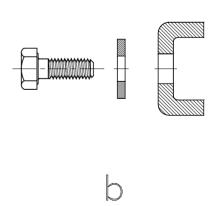
Die größeren Muttern der Reihen HM . . T bzw. HML . .T werden mit Sicherungsbügeln (MS, siehe Abb. b) gesichert.

NKE Sicherungsbügel werden komplett mit Sechskantschraube und Federring geliefert.

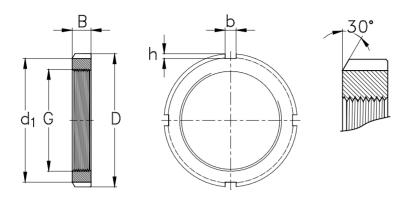
Other nut variants:

- Stainless steel lock nuts
- Lock nuts with zinc or phosphate coated surfaces
- Lock nuts with left hand threads
- Lock nuts with inch sized threads
- KMT and KMTA type lock nuts
- Hydraulic nuts

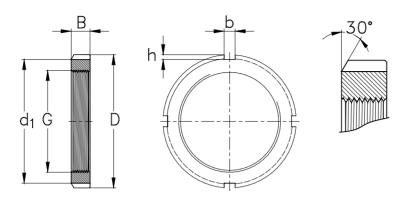

NKE will provide detailed information on request.


Locking Washers, Locking Clips

Locking washers of MB or **MBL** design (see Fig. a) are used with lock nuts for the series **KM** and **KML**, respectively.

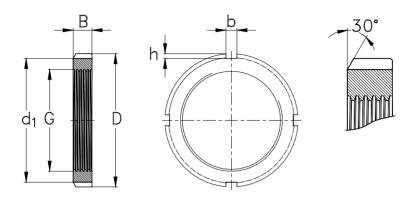

Larger lock nuts of series HM . . T and HML . .T are secured against loosening by applying locking clips (MS, see Fig. b).

Locking clips are supplied complete with hexagonal head screw and a spring washer.

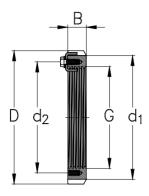


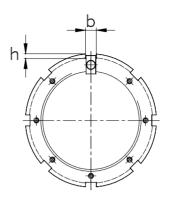
Gewinde		Haupt	Hauptabmessungen [mm]		Bezeichnung	Gewicht [kg]	Sicherungs- blech	
Thread		Bound	lary dimei [mm]	nsions		Designation	Weight [kg]	Locking washer
G	d₁	D	В	b	h		m	
M10X0,75	13,5	18	4	3	2	KM0	0,006	MB0
M12X1	17	22	4	3	2	KM1	0,008	MB1
M15X1	21	25	5	4	2	KM2	0,012	MB2
M17X1	24	28	5	4	2	КМЗ	0,012	MB3
M20X1	26	32	6	4	2	KM4	0,02	MB4
M25X1,5	32	38	7	5	2	KM5	0,028	MB5
M30X1,5	38	45	7	5	2	KM6	0,038	MB6
M35X1,5	44	52	8	5	2	KM7	0,058	MB7
M40X1,5	50	58	9	6	2,5	KM8	0,078	MB8
M45X1,5	56	65	10	6	2,5	КМ9	0,11	MB9
M50X1,5	61	70	11	6	2,5	KM10	0,14	MB10
M55X2	67	75	11	7	3	KM11	0,15	MB11
M60X2	73	80	11	7	3	KM12	0,16	MB12
M65X2	79	85	12	7	3	KM13	0,19	MB13
M70X2	85	92	12	8	3,5	KM14	0,22	MB14
M75X2	90	98	13	8	3,5	KM15	0,27	MB15
M80X2	95	105	15	8	3,5	KM16	0,36	MB16
M85X2	102	110	16	8	3,5	KM17	0,42	MB17
M90X2	108	120	16	10	4	KM18	0,51	MB18
M95X2	113	125	17	10	4	KM19	0,58	MB19
M100X2	120	130	18	10	4	KM20	0,68	MB20
M105X2	126	140	18	12	5	KM21	0,81	MB21

Gewinde		Haupt	Hauptabmessungen [mm]			Bezeichnung	Gewicht [kg]	Sicherungs- blech
Thread		Bound	lary dimei [mm]	nsions				Locking washer
G	d ₁	D	В	b	h		m	
M110X2	133	145	19	12	5	KM22	0,89	MB22
M115X2	137	150	19	12	5	KM23	0,91	MB23
M120X2	135	145	20	12	5	KML24	0,69	MBL24
	138	155	20	12	5	KM24	0,98	MB24
M125X2	148	160	21	12	5	KM25	1,1	MB25
M130X2	145	155	21	12	5	KML26	0,84	MBL26
	149	165	21	12	5	KM26	1,2	MB26
M135X2	160	175	22	14	6	KM27	1,4	MB27
M140X2	155	165	22	12	5	KML28	0,92	MBL28
	160	180	22	14	6	KM28	1,4	MB28
M145X2	171	190	24	14	6	KM29	1,85	MB29
M150X2	170	180	24	14	5	KML30	1,3	MBL30
	171	195	24	14	6	KM30	1,85	MB30
M155X3	182	200	25	16	7	KM31	2,05	MB31
M160X3	180	190	25	14	5	KML32	1,4	MBL32
	182	210	25	16	7	KM32	2,25	MB32
M165X3	193	210	26	16	7	KM33	2,3	MB33
M170X3	190	200	26	16	5	KML34	1,6	MBL34
	193	220	26	16	7	KM34	2,55	MB34
M180X3	200	210	27	16	5	KML36	1,8	MBL36
	203	230	27	18	8	KM36	2,7	MB36
M190X3	210	220	28	16	5	KML38	1,9	MBL38

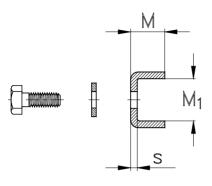


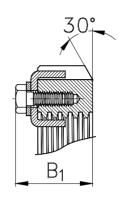
Gewinde		Haupt	abmessı [mm]	ungen		Bezeichnung	Gewicht [kg]	Sicherungs- blech
Thread		Bound	lary dimei [mm]	nsions		Designation	Weight [kg]	Locking washer
G	d ₁	D	В	b	h		m	
	214	240	28	18	8	KM38	3	MB38
M200X3	222	240	29	18	8	KML40	2,6	MBL40
	226	250	29	18	8	KM40	3,3	MB40



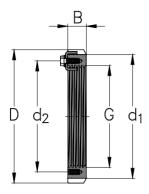

Gewinde		Haupt	tabmessu [mm]	ıngen		Bezeichnung	Gewicht [kg]	Sicherungs- blech
Thread		Bound	Boundary dimensions [mm]			Designation	Weight [kg]	Locking washer
G	d₁	D	В	b	h		m	
Tr205X4	232	250	30	18	8	HML41-T	3,2	
Tr210X4	238	270	30	20	10	HM42-T	5,1	
Tr215X4	242	260	30	20	9	HML43-T	3,3	
Tr220X4	250	280	32	20	10	HM44-T	4,75	MB44
Tr230X4	260	290	34	20	10	HM46-T	5,45	
Tr235X4	262	280	34	20	9	HML47-T	4,1	
Tr240X4	270	300	34	20	10	HM48-T	5,6	MB48
Tr250X4	290	320	36	20	10	НМ50-Т	7,45	
Tr260X4	290	310	34	20	10	HML52-T	5,8	
	300	330	36	24	12	HM52-T	7,55	MB52
Tr270X4	310	340	38	24	12	HM54-T	8,3	
Tr280X4	320	350	38	24	12	HM56-T	8,65	MB56
Tr290X4	330	370	40	24	12	HM58-T	10,5	
Tr300X4	340	380	40	24	12	НМ60-Т	12	
Tr310X5	350	390	42	24	12	HM62-T	13	
Tr320X5	356	380	42	24	12	HML64-T	10,5	
Tr330X5	380	420	52	28	15	НМ66-Т	20	
Tr345X5	384	410	45	28	13	HML69-T	13	
Tr350X5	410	450	55	28	15	HM70-T	25	
Tr360X5	420	460	58	28	15	HM72-T	27,5	
Tr365X5	404	430	48	28	13	HML73-T	14	
Tr370X5	430	470	58	28	15	HM74-T	28	

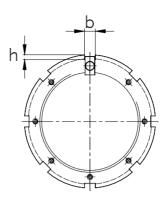
Gewinde		Haup	tabmessu [mm]	ngen		Bezeichnung	Gewicht [kg]	Sicherungs- blech
Thread		Boundary dimensions [mm]				Designation	Weight [kg]	Locking washer
G	d₁	D	В	b	h		m	
Tr385X5	422	450	48	28	14	HML77-T	15	
Tr400X5	470	520	62	32	18	НМ80-Т	40	
Tr410X5	452	480	52	32	14	HML82-T	19	
Tr420X5	490	540	70	32	18	HM84-T	47	
Tr430X5	472	500	52	32	14	HML86-T	20	
Tr440X5	510	560	70	36	20	НМ88-Т	48,5	
Tr450X5	490	520	60	32	15	HML90-T	24	
Tr460X5	510	540	60	32	15	HML92-T	28	
Tr480X5	530	560	60	36	15	HML96-T	29,5	
Tr490X5	550	580	60	36	15	HML98-T	34	
Tr500X5	550	580	68	36	15	HML100-T	35	
Tr510X6	570	600	68	36	15	HML102-T	41	
Tr520X6	570	600	68	36	15	HML104-T	37	
Tr550X6	640	700	85	40	23	HM110-T	79,5	
Tr580X6	670	730	85	45	25	HM116-T	83,5	
Tr630X6	730	800	95	50	28	HM126-T	115	
Tr650X6	750	820	100	50	28	HM130-T	124	



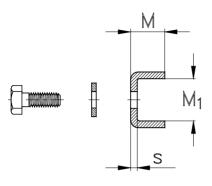


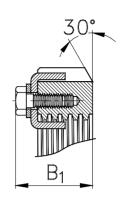
Gewinde		Н	auptabm [mi			Bezeichnung	Gewicht [kg]	
Thread		В	oundary d [mi			Designation	Weight [kg]	
G	d₁	d_2	D	В	b	h		m
Tr220X4	242	229	260	30	20	9	HM3044	2,75
Tr240X4	270	253	290	34	20	10	HM3048	4,5
Tr260X4	290	273	310	34	20	10	HM3052	4,8
Tr280X4	310	293	330	38	24	10	HM3056	5,75
Tr300X4	336	316	360	42	24	12	HM3060	8,35
	340	326	380	40	24	12	HM3160	11,5
Tr320X5	356	336	380	42	24	12	HM3064	9
	360	346	400	42	24	12	HM3164	13
Tr340X5	376	356	400	45	24	12	HM3068	11
	400	373	440	55	28	15	HM3168	24
Tr360X5	394	375	420	45	28	13	HM3072	11,5
	420	393	460	58	28	15	HM3172	26,5
Tr380X5	422	399	450	48	28	14	HM3076	15
	450	415	490	60	32	18	HM3176	32
Tr400X5	442	419	470	52	28	14	HM3080	17
	470	440	520	62	32	18	HM3180	38
Tr420X5	462	439	490	52	32	14	HM3084	18,5
	490	460	540	70	32	18	HM3184	45
Tr440X5	490	463	520	60	32	15	HM3088	26
	510	478	560	70	36	20	HM3188	46,5
Tr460X5	510	483	540	60	32	15	HM3092	27
	540	498	580	75	36	20	HM3192	50,5



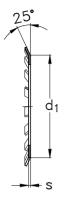


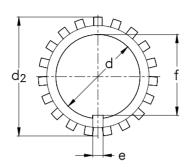
Sicherungsbügel		Abmess [mn			Sechskantschraube		
Locating clip		Dimens [mn			Hexagon-headed screw		
	M	M ₁	s	B ₁	DIN 933		
MS3044	12	13,5	4	41	M6x12		
MS3052-48	12	17,5	4	46	M8X16		
MS3052-48	12	17,5	4	46	M8X16		
MS3056	12	17,5	4	50	M8X16		
MS3060	12	20,5	4	54	M8X16		
MS3160	12	30,5	4	53	M10X20		
MS3068-64	15	21	5	55	M8X16		
MS3164	15	31	5	56	M10X20		
MS3068-64	15	21	5	58	M8X16		
MS3271-68	15	38	5	72	M12X25		
MS3072	15	20	5	58	M8X16		
MS3172-68	15	38	5	75	M12X25		
MS3080-76	15	24	5	62	M10X20		
MS3176	15	40	5	77	M12X25		
MS3080-76	15	24	5	66	M10X20		
MS3184-80	15	45	5	82	M16X30		
MS 3084	15	24	5	66	M10X20		
MS 3184-80	15	45	5	90	M16X30		
MS 3092-88	15	28	5	77	M12X25		
MS 3192-88	15	43	5	90	M16X30		
MS 3092-88	15	28	5	77	M12X25		
MS 3192-88	15	43	5	95	M16X30		





Gewinde		Н	auptabm [mı	essunger m]		Bezeichnung	Gewicht [kg]	
Thread		В	oundary d [mi	limensions m]		Designation	Weight [kg]	
G	\mathbf{d}_{1}	d_2	D	В	b	h		m
Tr480X5	530	503	560	60	36	15	HM3096	28
	560	528	620	75	36	20	HM3196	62
Tr500X5	550	523	580	68	36	15	HM30/500	33,5
	580	540	630	80	40	23	HM31/500	63,5
Tr530X6	590	558	630	68	40	20	HM30/530	42,5
	610	575	670	80	40	23	HM31/530	71,5
Tr560X6	610	583	650	75	40	20	HM30/560	44,5
	650	608	710	85	45	25	HM31/560	86,5
Tr600X6	660	628	700	75	40	20	HM30/600	52,5
	690	648	750	85	45	25	HM31/600	91,5
Tr630X6	690	658	730	75	45	20	HM30/630	55
	730	685	800	95	50	28	HM31/630	125
Tr670X6	740	703	780	80	45	20	HM30/670	68,5
	775	730	850	106	50	28	HM31/670	155
Tr710X7	780	742	830	90	50	25	HM30/710	91,5
Tr750X7	820	782	870	90	55	25	HM30/750	94
Tr800X7	870	832	920	90	55	25	HM30/800	99,5
Tr850X7	925	887	980	90	60	25	HM30/900-850	115





Sicherungsbügel Locating clip		Abmess [mi Dimen [mr	n] sions		Sechskantschraube Hexagon-headed screw		
	M	M ₁	s	B₁	DIN 933		
MS 30/500-96	15	28	5	77	M12X25		
MS 3196	15	53	5	95	M16X30		
MS 30/500-96	15	28	5	85	M12X25		
MS 31/500	15	45	5	100	M16X30		
MS 30/600-530	21	34	7	90	M16X30		
MS 31/530	21	51	7	105	M20X40		
MS 30/560	21	29	7	97	M16X30		
MS 31/600-560	21	54	7	110	M20X40		
MS 30/600-530	21	34	7	97	M16X30		
MS 31/600-560	21	54	7	110	M20X40		
MS30/630	21	34	7	97	M16X30		
MS31/630	21	61	7	120	M20X40		
MS30/670	21	39	7	102	M16X30		
MS31/670	21	66	7	131	M20X40		
MS30/710	21	39	7	112	M16X30		
MS30/800-750	21	39	7	112	M16X30		
MS30/800-750	21	39	7	112	M16X30		
MS30/900-850	21	44	7	115	M20X40		

			essungen m]			Bezeichnung	Gewicht [g]
			dimensions m]			Designation	Weight [g]
d	d ₁	d_2	s	е	f		m
10	13,5	21	1	3	8,5	MB0	1
12	17	25	1	3	10,5	MB1	2
15	21	28	1	4	13,5	MB2	3
17	24	32	1	4	15,5	MB3	3
20	26	36	1	4	18,5	MB4	4
25	32	42	1,25	5	23	MB5	6
30	38	49	1,25	5	27,5	MB6	8
35	44	57	1,25	6	32,5	MB7	11
40	50	62	1,25	6	37,5	MB8	13
45	56	69	1,25	6	42,5	МВ9	15
50	61	74	1,25	6	47,5	MB10	16
55	67	81	1,5	8	52,5	MB11	22
60	73	86	1,5	8	57,5	MB12	24
65	79	92	1,5	8	62,5	MB13	30
70	85	98	1,5	8	66,5	MB14	32
75	90	104	1,5	8	71,5	MB15	35
80	95	112	1,75	10	76,5	MB16	46
85	102	119	1,75	10	81,5	MB17	53
90	108	126	1,75	10	86,5	MB18	61
95	113	133	1,75	10	91,5	MB19	66
100	120	142	1,75	12	96,5	MB20	77
105	126	145	1,75	12	100,5	MB21	83

		Hauptabm [m Boundary o	Bezeichnung Designation	Gewicht [g] Weight [g]			
d	$\mathbf{d_1}$	d_2	s	е	f		m
110	133	154	1,75	12	105,5	MB22	91
115	137	159	2	12	110,5	MB23	107
120	138	164	2	14	115	MB24	108
125	148	170	2	14	120	MB25	115
130	149	175	2	14	125	MB26	115
135	160	185	2	14	130	MB27	140
140	160	192	2	16	135	MB28	135
145	172	202	2	16	140	MB29	165
150	171	205	2	16	145	MB30	180
155	182	212	2,5	16	147,5	MB31	200
160	182	217	2,5	18	154	MB32	215
165	193	222	2,5	18	157,5	MB33	240
170	193	232	2,5	18	164	MB34	240
180	203	242	2,5	20	174	MB36	260
190	214	252	2,5	20	184	MB38	260
200	226	262	2,5	20	194	MB40	280
220	250	292	3	24	213	MB44	350
240	270	312	3	24	233	MB48	450
260	300	342	3	28	253	MB52	650
280	320	362	3	28	273	MB56	1050

Kurzzeichen	Produktbeschreibung	Seite
112	Pendelkugellager mit verbreitertem Innenring	532
113	Pendelkugellager mit verbreitertem Innenring	532
12	Pendelkugellager mit zylindrischer Bohrung	508
12-K	Pendelkugellager mit kegeliger Bohrung	508
13	Pendelkugellager mit zylindrischer Bohrung	508
13-K	Pendelkugellager mit kegeliger Bohrung	508
160	Einreihige Rillenkugellager	386
22	Pendelkugellager	508
22-2RS	Abgedichtete Pendelkugellager mit zylindrischer Bohrung	508
22-K	Pendelkugellager mit kegeliger Bohrung	508
22-K-2RS	Abgedichtete Pendelkugellager mit kegeliger Bohrung	508
222	Pendelrollenlager mit zylindrischer Bohrung	718
222-K	Pendelrollenlager mit kegeliger Bohrung	718
223	Pendelrollenlager mit zylindrischer Bohrung	718
223-K	Pendelrollenlager mit kegeliger Bohrung	718
23	Pendelkugellager mit zylindrischer Bohrung	508
23-2RS	Abgedichtete Pendelkugellager mit zylindrischer Bohrung	508
23-K	Pendelkugellager mit kegeliger Bohrung	508
230	Pendelrollenlager mit zylindrischer Bohrung	718
230-K	Pendelrollenlager mit kegeliger Bohrung	718
231	Pendelrollenlager mit zylindrischer Bohrung	718
231-K	Pendelrollenlager mit kegeliger Bohrung	718
232	Pendelrollenlager mit zylindrischer Bohrung	718
232-K	Pendelrollenlager mit kegeliger Bohrung	718
239	Pendelrollenlager mit zylindrischer Bohrung	718
239-K	Pendelrollenlager mit kegeliger Bohrung	718
240	Pendelrollenlager mit zylindrischer Bohrung	718
240-K30	Pendelrollenlager mit kegeliger Bohrung	718
241	Pendelrollenlager mit zylindrischer Bohrung	718
241-K30	Pendelrollenlager mit kegeliger Bohrung	718
292	Axial-Pendelrollenlager	866
293	Axial-Pendelrollenlager	866
294	Axial-Pendelrollenlager	866
302	Einreihige metrische Kegelrollenlager	656
303	Einreihige metrische Kegelrollenlager	656

Kurzzeichen	Produktbeschreibung	Seite
3057-2RS	Laufrollen, zweireihig, mit zylindrischem Außenring und Dichtscheiben	882
3057-2Z	Laufrollen, zweireihig, mit zylindrischem Außenring und Deckscheiben	882
3058-2RS	Laufrollen, zweireihig, mit balligem Außenring und Dichtscheiben	882
3058-2Z	Laufrollen, zweireihig, mit balligem Außenring und Deckscheiben	882
3067-2RS	Laufrollen, zweireihig, mit zylindrischem Außenring und Dichtscheiben	882
3067-2Z	Laufrollen, zweireihig, mit zylindrischem Außenring und Deckscheiben	882
3068-2RS	Laufrollen, zweireihig, mit balligem Außenring und Dichtscheiben	882
3068-2Z	Laufrollen, zweireihig, mit balligem Außenring und Deckscheiben	882
313	Einreihige metrische Kegelrollenlager	656
313-DF	Einreihige metrische Kegelrollenlager, gepaart in X-Anordnung	692
32-B	Zweireihige Schrägkugellager	478
32-B-2RS	Zweireihige Schrägkugellager mit zwei Dichtscheiben	478
32-B-2Z	Zweireihige Schrägkugellager mit zwei Deckscheiben	478
320-X	Einreihige metrische Kegelrollenlager	656
322	Einreihige metrische Kegelrollenlager	656
322-DF	Einreihige metrische Kegelrollenlager, gepaart in X-Anordnung	692
323	Einreihige metrische Kegelrollenlager	656
33-B	Zweireihige Schrägkugellager	478
33-B-2RS	Zweireihige Schrägkugellager mit zwei Dichtscheiben	478
33-B-2Z	Zweireihige Schrägkugellager mit zwei Deckscheiben	478
330	Einreihige metrische Kegelrollenlager	656
331	Einreihige metrische Kegelrollenlager	656
332	Einreihige metrische Kegelrollenlager	656
511	Einseitig wirkende Axial-Rillenkugellager	808
512	Einseitig wirkende Axial-Rillenkugellager	808
513	Einseitig wirkende Axial-Rillenkugellager	808
514	Einseitig wirkende Axial-Rillenkugellager	808
522	Zweiseitig wirkende Axial-Rillenkugellager	820
523	Zweiseitig wirkende Axial-Rillenkugellager	820
524	Zweiseitig wirkende Axial-Rillenkugellager	820
532	Einseitig wirkende Axial-Rillenkugellager mit kugeliger Gehäusescheibe	826
533	Einseitig wirkende Axial-Rillenkugellager mit kugeliger Gehäusescheibe	826
534	Einseitig wirkende Axial-Rillenkugellager mit kugeliger Gehäusescheibe	826
542	Zweiseitig wirkende Axial-Rillenkugellager mit kugeligen Gehäusescheiben	834
543	Zweiseitig wirkende Axial-Rillenkugellager mit kugeligen Gehäusescheiben	834

Kurzzeichen	Produktbeschreibung	Seite
544	Zweiseitig wirkende Axial-Rillenkugellager mit kugeligen Gehäusescheiben	834
60	Einreihige Rillenkugellager	386
60-2RS	Einreihige Rillenkugellager mit zwei Dichtscheiben	386
60-2Z	Einreihige Rillenkugellager mit zwei Deckscheiben	386
60-N	Einreihige Rillenkugellager mit Ringnut	422
60-NR	Einreihige Rillenkugellager mit Ringnut und Sprengring	422
60-RS	Einreihige Rillenkugellager mit einer Dichtscheibe	386
60-Z	Einreihige Rillenkugellager mit einer Deckscheibe	386
607	Einreihige Rillenkugellager	386
607-2RS	Einreihige Rillenkugellager mit zwei Dichtscheiben	386
607-2Z	Einreihige Rillenkugellager mit zwei Deckscheiben	386
607-RS	Einreihige Rillenkugellager mit zwei Dichtscheiben	386
607-Z	Einreihige Rillenkugellager mit zwei Deckscheiben	386
608	Einreihige Rillenkugellager	386
608-2RS	Einreihige Rillenkugellager mit zwei Dichtscheiben	386
608-2Z	Einreihige Rillenkugellager mit zwei Deckscheiben	386
608-RS	Einreihige Rillenkugellager mit einer Dichtscheibe	386
608-Z	Einreihige Rillenkugellager mit einer Deckscheibe	386
609	Einreihige Rillenkugellager	386
609-2RS	Einreihige Rillenkugellager mit zwei Dichtscheiben	386
609-2Z	Einreihige Rillenkugellager mit zwei Deckscheiben	386
609-RS	Einreihige Rillenkugellager mit einer Dichtscheibe	386
609-Z	Einreihige Rillenkugellager mit einer Deckscheibe	386
618	Einreihige Rillenkugellager	386
618-2RS	Einreihige Rillenkugellager mit zwei Dichtscheiben	386
618-2Z	Einreihige Rillenkugellager mit einer Dichtscheibe	386
618-RS	Einreihige Rillenkugellager mit einer Dichtscheibe	386
618-Z	Einreihige Rillenkugellager mit einer Deckscheibe	386
618-2Z	Einreihige Rillenkugellager mit zwei Deckscheiben	386
619	Einreihige Rillenkugellager	386
619-2RS	Einreihige Rillenkugellager mit zwei Dichtscheiben	386
619-2Z	Einreihige Rillenkugellager mit zwei Deckscheiben	386
62	Einreihige Rillenkugellager	386
62-2RS	Einreihige Rillenkugellager mit zwei Dichtscheiben	386
62-2Z	Einreihige Rillenkugellager mit zwei Deckscheiben	386

Kurzzeichen	Produktbeschreibung	Seite
62-2Z-NR	Einreihige Rillenkugellager mit zwei Deckscheiben, Ringnut und Sprengring	422
62-N	Einreihige Rillenkugellager mit Ringnut	422
62-NR	Einreihige Rillenkugellager mit Ringnut und Sprengring	422
62-RS	Einreihige Rillenkugellager mit einer Dichtscheibe	386
62-Z	Einreihige Rillenkugellager mit einer Deckscheibe	386
62-Z-NR	Einreihige Rillenkugellager mit einer Deckscheibe, Ringnut und Sprengring	422
622-2RS	Einreihige Rillenkugellager mit zwei Dichtscheiben	386
623-2Z	Einreihige Rillenkugellager mit zwei Deckscheiben	386
623-Z	Einreihige Rillenkugellager mit einer Deckscheibe	386
623-2RS	Einreihige Rillenkugellager mit zwei Dichtscheiben	386
624	Einreihige Rillenkugellager	386
624-2Z	Einreihige Rillenkugellager mit zwei Deckscheiben	386
624-Z	Einreihige Rillenkugellager mit einer Deckscheibe	386
625	Einreihige Rillenkugellager	386
625-2Z	Einreihige Rillenkugellager mit zwei Deckscheiben	386
625-Z	Einreihige Rillenkugellager mit einer Deckscheibe	386
626	Einreihige Rillenkugellager	386
626-2RS	Einreihige Rillenkugellager mit zwei Dichtscheiben	386
626-2Z	Einreihige Rillenkugellager mit zwei Deckscheiben	386
626-RS	Einreihige Rillenkugellager mit einer Dichtscheibe	386
626-Z	Einreihige Rillenkugellager mit einer Deckscheibe	386
627	Einreihige Rillenkugellager	386
627-2RS	Einreihige Rillenkugellager mit zwei Dichtscheiben	386
627-2Z	Einreihige Rillenkugellager mit zwei Deckscheiben	386
627-RS	Einreihige Rillenkugellager mit einer Dichtscheibe	386
627-Z	Einreihige Rillenkugellager mit einer Deckscheibe	386
63	Einreihige Rillenkugellager	386
63-2RS	Einreihige Rillenkugellager mit zwei Dichtscheiben	386
63-2Z	Einreihige Rillenkugellager mit zwei Deckscheiben	386
63-2Z-NR	Einreihige Rillenkugellager mit zwei Deckscheiben, Ringnut und Sprengring	422
63-N	Einreihige Rillenkugellager mit Ringnut	422
63-NR	Einreihige Rillenkugellager mit Ringnut und Sprengring	422
63-RS	Einreihige Rillenkugellager mit einer Dichtscheibe	386
63-Z	Einreihige Rillenkugellager mit einer Deckscheibe	386
63-Z-NR	Einreihige Rillenkugellager mit einer Deckscheibe, Ringnut und Sprengring	422

Kurzzeichen	Produktbeschreibung	Seite
634	Einreihige Rillenkugellager	386
634-2Z	Einreihige Rillenkugellager mit zwei Deckscheiben	386
634-Z	Einreihige Rillenkugellager mit einer Deckscheibe	386
635	Einreihige Rillenkugellager	386
635-2Z	Einreihige Rillenkugellager mit zwei Deckscheiben	386
635-Z	Einreihige Rillenkugellager mit einer Deckscheibe	386
64	Einreihige Rillenkugellager	386
64-N	Einreihige Rillenkugellager mit Ringnut	422
64-NR	Einreihige Rillenkugellager mit Ringnut und Sprengring	422
70-C	Einreihige Schrägkugellager, Druckwinkel 15°	456
70-E	Einreihige Schrägkugellager, Druckwinkel 25°	456
719-C	Einreihige Schrägkugellager, Druckwinkel 15°	456
719-E	Einreihige Schrägkugellager, Druckwinkel 25°	456
72-BE	Einreihige Schrägkugellager, Druckwinkel 40°	456
72-BECB	Einreihige Schrägkugellager, Druckwinkel 40°, in Universalausführung	456
72-C	Einreihige Schrägkugellager, Druckwinkel 15°	456
72-E	Einreihige Schrägkugellager, Druckwinkel 25°	456
73-BE	Einreihige Schrägkugellager, Druckwinkel 40°	456
73-BECB	Einreihige Schrägkugellager, Druckwinkel 40°, in Universalausführung	456
811	Einseitig wirkende Axial-Zylinderrollenlager	850
812	Einseitig wirkende Axial-Zylinderrollenlager	850

Kurzzeichen	Produktbeschreibung	Seite
AH23	Abziehhülsen	990
AH240	Abziehhülsen	990
AH241	Abziehhülsen	990
AH3	Abziehhülsen	990
AH30	Abziehhülsen	990
AH31	Abziehhülsen	990
AH32	Abziehhülsen	990
AHX23	Abziehhülsen	990
AHX3	Abziehhülsen	990
AHX30	Abziehhülsen	990
AHX31	Abziehhülsen	990
AHX32	Abziehhülsen	990
AOH22	Abziehhülsen für Druckölmontage	990
AOH23	Abziehhülsen für Druckölmontage	990
AOH240	Abziehhülsen für Druckölmontage	990
AOH241	Abziehhülsen für Druckölmontage	990
AOH30	Abziehhülsen für Druckölmontage	990
AOH31	Abziehhülsen für Druckölmontage	990
AOH32	Abziehhülsen für Druckölmontage	990
ASE	Gehäuse	916
AYNPPB	Gehäuselager	908
CJ	Gehäuse	928
CJTO	Gehäuse	928
CFT	Gehäuse	928
GAYNPPB	Gehäuselager	908
GEKRRB	Gehäuselager	908
GLCTE	Gehäuselagereinheit	928
GRAENPPB	Gehäuselager	908
GS-811	Gehäusescheibe eines Axial-Zylinderrollenlagers	851
GS-812	Gehäusescheibe eines Axial-Zylinderrollenlagers	851
GYENPPB	Gehäuselager	908
HJ10	Winkelringe für Zylinderrollenlager	551
HJ2	Winkelringe für Zylinderrollenlager	551
HJ2-E	Winkelringe für Zylinderrollenlager	551
HJ22	Winkelringe für Zylinderrollenlager	551

Kurzzeichen	Produktbeschreibung	Seite
HJ22-E	Winkelringe für Zylinderrollenlager	551
HJ23	Winkelringe für Zylinderrollenlager	551
HJ23-E	Winkelringe für Zylinderrollenlager	551
HJ3	Winkelringe für Zylinderrollenlager	551
HJ3-E	Winkelringe für Zylinderrollenlager	551
HJ4	Winkelringe für Zylinderrollenlager	551
HM-T	Wellenmuttern mit metrischem Trapezgewinde	992
HM30	Wellenmuttern mit metrischem Trapezgewinde	992
HM31	Wellenmuttern mit metrischem Trapezgewinde	992
HML-T	Wellenmuttern, leichte Reihe, mit metrischem Trapezgewinde	992
K811	Rollenkranz eines Axial-Zylinderrollenlagers	851
K812	Rollenkranz eines Axial-Zylinderrollenlagers	851
K-	Kegelrollenlager in Zollabmessungen	680
K-EE	Kegelrollenlager in Zollabmessungen	680
K-H	Kegelrollenlager in Zollabmessungen	680
K-HH	Kegelrollenlager in Zollabmessungen	680
K-HM	Kegelrollenlager in Zollabmessungen	680
K-L	Kegelrollenlager in Zollabmessungen	680
K-LL	Kegelrollenlager in Zollabmessungen	680
K-LM	Kegelrollenlager in Zollabmessungen	680
K-M	Kegelrollenlager in Zollabmessungen	680
KM	Wellenmuttern mit metrischem ISO - Gewinde	992
KML	Wellenmuttern, leichte Reihe, mit metrischem ISO - Gewinde	992
LCTE	Gehäuse	928
MB	Sicherungsblech für Wellenmuttern	1014
ME	Gehäuse	946
MEO	Gehäuse	946
MSB	Gehäuse	962
MST	Gehäuse	962
N2-E	Einreihige Zylinderrollenlager	550
N3-E	Einreihige Zylinderrollenlager	550
NC18-V	Vollrollige Zylinderrollenlager, einreihig	608
NC29-V	Vollrollige Zylinderrollenlager, einreihig	608
NC30-V	Vollrollige Zylinderrollenlager, einreihig	608
NCF18-V	Vollrollige Zylinderrollenlager, einreihig	608

Kurzzeichen	Produktbeschreibung	Seite
NCF29-V	Vollrollige Zylinderrollenlager, einreihig	608
NCF30-V	Vollrollige Zylinderrollenlager, einreihig	608
NJ2	Einreihige Zylinderrollenlager	550
NJ2-E	Einreihige Zylinderrollenlager	550
NJ22-E	Einreihige Zylinderrollenlager	550
NJ23-E	Einreihige Zylinderrollenlager	550
NJ23-VH	Vollrollige Zylinderrollenlager, einreihig	608
NJ3-E	Einreihige Zylinderrollenlager	550
NJ4	Einreihige Zylinderrollenlager	550
NNC48-V	Vollrollige Zylinderrollenlager, zweireihig	628
NNC49-V	Vollrollige Zylinderrollenlager, zweireihig	628
NNCF48-V	Vollrollige Zylinderrollenlager, zweireihig	628
NNCF49-V	Vollrollige Zylinderrollenlager, zweireihig	628
NNCF50-V	Vollrollige Zylinderrollenlager, zweireihig	628
NNCL48-V	Vollrollige Zylinderrollenlager, zweireihig	628
NNCL49-V	Vollrollige Zylinderrollenlager, zweireihig	628
NNF50-2LS-V	Vollrollige Zylinderrollenlager, zweireihig ,abgedichtet	644
NU10	Einreihige Zylinderrollenlager	550
NU19	Einreihige Zylinderrollenlager	550
NU2-E	Einreihige Zylinderrollenlager	550
NU22	Einreihige Zylinderrollenlager	550
NU22-E	Einreihige Zylinderrollenlager	550
NU23	Einreihige Zylinderrollenlager	550
NU23-E	Einreihige Zylinderrollenlager	550
NU3	Einreihige Zylinderrollenlager	550
NU3-E	Einreihige Zylinderrollenlager	550
NU4	Einreihige Zylinderrollenlager	550
NUP2	Einreihige Zylinderrollenlager	550
NUP2-E	Einreihige Zylinderrollenlager	550
NUP22-E	Einreihige Zylinderrollenlager	550
NUP23-E	Einreihige Zylinderrollenlager	550
NUP3-E	Einreihige Zylinderrollenlager	550
NUP4	Einreihige Zylinderrollenlager	550
QJ2	Vierpunktlager	490
QJ3	Vierpunktlager	490

Kurzzeichen	Produktbeschreibung	Seite
RAENPPB	Gehäuselager	908
SHE	Gehäuse	916
T2D	Einreihige metrische Kegelrollenlager	656
T2F	Einreihige metrische Kegelrollenlager	656
T2G	Einreihige metrische Kegelrollenlager	656
T3C	Einreihige metrische Kegelrollenlager	656
T3E	Einreihige metrische Kegelrollenlager	656
T3F	Einreihige metrische Kegelrollenlager	656
T4C	Einreihige metrische Kegelrollenlager	656
T4F	Einreihige metrische Kegelrollenlager	656
T4G	Einreihige metrische Kegelrollenlager	656
T5F	Einreihige metrische Kegelrollenlager	656
T7F	Einreihige metrische Kegelrollenlager	656
TN	Ungeteilte Stehlagergehäuse für Pendelkugellager mit breitem Innenring	532
TUE	Gehäuse	952
U2	Unterlagscheiben für Axial-Rillenkugellager	826
U3	Unterlagscheiben für Axial-Rillenkugellager	826
U4	Unterlagscheiben für Axial-Rillenkugellager	826
WS811	Wellenscheibe eines Axial-Zylinderrollenlagers	851
WS812	Wellenscheibe eines Axial-Zylinderrollenlagers	851

Symbol	Product Description	Page
112	Self aligning ball bearing with extended inner rings	532
113	Self aligning ball bearing with extended inner rings	532
12	Self aligning ball bearing with cylindrical bore	508
12 -K	Self aligning ball bearing with tapered bore	508
13	Self aligning ball bearing with cylindrical bore	508
13 -K	Self aligning ball bearing with tapered bore	508
160	Single row deep groove ball bearings	386
22	Spherical roller bearings with cylindrical bore	508
22 -2RS	Sealed self aligning ball bearing with cylindrical bore	508
22 -K	Self aligning ball bearing with tapered bore	508
22 K-2RS	Sealed self aligning ball bearing with tapered bore	508
222	Spherical roller bearings with cylindrical bore	718
222 -K	Spherical roller bearings with tapered bore	718
223	Spherical roller bearings with cylindrical bore	718
223 -K	Spherical roller bearings with tapered bore	718
23	Self aligning ball bearing with cylindrical bore	508
23 -2RS	Sealed self aligning ball bearing with cylindrical bore	508
23 -K	Self aligning ball bearing with tapered bore	508
230	Spherical roller bearings with cylindrical bore	718
230 -K	Spherical roller bearings with tapered bore	718
231	Spherical roller bearings with cylindrical bore	718
231 -K	Spherical roller bearings with tapered bore	718
232	Spherical roller bearings with cylindrical bore	718
232 -K	Spherical roller bearings with tapered bore	718
239	Spherical roller bearings with cylindrical bore	718
239 -K	Spherical roller bearings with tapered bore	718
240	Spherical roller bearings with cylindrical bore	718
240 -K30	Spherical roller bearings with tapered bore	718
241	Spherical roller bearings with cylindrical bore	718
241 -K30	Spherical roller bearings with tapered bore	718
292	Spherical roller thrust bearings	866
293	Spherical roller thrust bearings	866
294	Spherical roller thrust bearings	866
302	Single row tapered roller bearings, metric series	656
303	Single row tapered roller bearings, metric series	656

Symbol	Product Description	Page
3057 -2RS	Cam rollers, double row, with cylindrical outer ring and seals	882
3057 -2Z	Cam rollers, double row, with cylindrical outer ring and shields	882
3058 -2RS	Cam rollers, double row, with sphered outer ring and seals	882
3058 -2Z	Cam rollers, double row, with sphered outer ring and shields	882
3067 -2RS	Cam rollers, double row, with cylindrical outer ring and seals	882
3067 -2Z	Cam rollers, double row, with cylindrical outer ring and shields	882
3068 -2RS	Cam rollers, double row, with sphered outer ring and seals	882
3068 -2Z	Cam rollers, double row, with sphered outer ring and shields	882
313	Single row tapered roller bearings, metric series	656
313 -DF	Single row tapered roller bearings, metric series, paired face-to-face	692
32 -B	Double row angular contact ball bearings	478
32 -B -2RS	Double row angular contact ball bearings with two seals	478
32 -B -2Z	Double row angular contact ball bearings with two shields	478
320 -X	Single row tapered roller bearings, metric series	650
322	Single row tapered roller bearings, metric series	650
322 -DF	Single row tapered roller bearings, metric series, paired face-to-face	692
323	Single row tapered roller bearings, metric series	650
33 -B	Double row angular contact ball bearings	478
33 -B -2RS	Double row angular contact ball bearings with two seals	478
33 -B -2Z	Double row angular contact ball bearings with two shields	478
330	Single row tapered roller bearings, metric series	656
331	Single row tapered roller bearings, metric series	656
332	Single row tapered roller bearings, metric series	656
511	Thrust ball bearings, single direction	808
512	Thrust ball bearings, single direction	808
513	Thrust ball bearings, single direction	808
514	Thrust ball bearings, single direction	808
522	Thrust ball bearings, double direction	820
523	Thrust ball bearings, double direction	820
524	Thrust ball bearings, double direction	820
532	Thrust ball bearings, single direction with sphered housing washer	826
533	Thrust ball bearings, single direction with sphered housing washer	826
534	Thrust ball bearings, single direction with sphered housing washer	826
542	Thrust ball bearings, double direction with sphered housing washers	834
543	Thrust ball bearings, double direction with sphered housing washers	834

Symbol	Product Description	Page
544	Thrust ball bearings, double direction with sphered housing washers	834
60	Single row deep groove ball bearings	386
60 -2RS	Single row deep groove ball bearings with two seals	386
60 -2Z	Single row deep groove ball bearings with two shields	386
60 -N	Single row deep groove ball bearings with groove	422
60 -NR	Single row deep groove ball bearings with groove and snap ring	422
60 -RS	Single row deep groove ball bearings with one seal	386
60 -Z	Single row deep groove ball bearings with one shield	386
607	Single row deep groove ball bearings	386
607 -2RS	Single row deep groove ball bearings with two seals	386
607 -2Z	Single row deep groove ball bearings with two shields	386
607 -RS	Single row deep groove ball bearings with one seal	386
607 -Z	Single row deep groove ball bearings with one shield	386
608	Single row deep groove ball bearings	386
608 -2RS	Single row deep groove ball bearings with two seals	386
608 -2Z	Single row deep groove ball bearings with two shields	386
608 -RS	Single row deep groove ball bearings with one seal	386
608 -Z	Single row deep groove ball bearings with one shield	386
609	Single row deep groove ball bearings	386
609 -2RS	Single row deep groove ball bearings with two seals	386
609 -2Z	Single row deep groove ball bearings with two shields	386
609 -RS	Single row deep groove ball bearings with one seal	386
609 -Z	Single row deep groove ball bearings with one shield	386
618	Single row deep groove ball bearings	386
618 -2RS	Single row deep groove ball bearings with one seal	386
618 -2Z	Single row deep groove ball bearings with two shields	386
618 -Z	Single row deep groove ball bearings with one shield	386
619	Single row deep groove ball bearings	386
619 -2RS	Single row deep groove ball bearings with two seals	386
619 -2Z	Single row deep groove ball bearings with two shields	386
62	Single row deep groove ball bearings	386
62 -2RS	Single row deep groove ball bearings with two seals	386
62 -2Z	Single row deep groove ball bearings with two shields	386
62 -2Z-NR	Single row deep groove ball bearings with two shields, groove and snap ring	422
62 -N	Single row deep groove ball bearings with groove	422

Symbol	Product Description	Page
62 -NR	Single row deep groove ball bearings with groove and snap ring	422
62 -RS	Single row deep groove ball bearings with one seal	422
62 -Z	Single row deep groove ball bearings with one shield	422
62 -Z-NR	Single row deep groove ball bearings with one shield, groove and snap ring	422
622 -2RS	Single row deep groove ball bearings with two seals	386
623 -2Z	Single row deep groove ball bearings with two shields	386
623 -Z	Single row deep groove ball bearings with one shield	386
623 -2RS	Single row deep groove ball bearings with two seals	386
624	Single row deep groove ball bearings	386
624 -2Z	Single row deep groove ball bearings with two shields	386
624 -Z	Single row deep groove ball bearings with one shield	386
625	Single row deep groove ball bearings	386
625 -2Z	Single row deep groove ball bearings with two shields	386
625 -Z	Single row deep groove ball bearings with one shield	386
626	Single row deep groove ball bearings	386
626 -2RS	Single row deep groove ball bearings with two seals	386
626 -2Z	Single row deep groove ball bearings with two shields	386
626 -RS	Single row deep groove ball bearings with one seal	386
626 -Z	Single row deep groove ball bearings with one shield	386
627	Single row deep groove ball bearings	386
627 -2RS	Single row deep groove ball bearings with two seals	386
627 -2Z	Single row deep groove ball bearings with two shields	386
627 -RS	Single row deep groove ball bearings with one seal	386
627 -Z	Single row deep groove ball bearings with one shield	386
63	Single row deep groove ball bearings	386
63 -2RS	Single row deep groove ball bearings with two seals	386
63 -2Z	Single row deep groove ball bearings with two shields	386
63 -2Z-NR	Single row deep groove ball bearings with two shields, groove and snap ring	422
63 -N	Single row deep groove ball bearings with groove	422
63 -NR	Single row deep groove ball bearings with groove and snap ring	422
63 -RS	Single row deep groove ball bearings with one seal	386
63 -Z	Single row deep groove ball bearings with one shield	386
63 -Z-NR	Single row deep groove ball bearings with one shield, groove and snap ring	422

Symbol	Product Description	Page
634	Single row deep groove ball bearings	386
634-2Z	Single row deep groove ball bearings with two shields	386
634 -Z	Single row deep groove ball bearings with one shield	386
635	Single row deep groove ball bearings	386
635 -2Z	Single row deep groove ball bearings with two shields	386
635 -Z	Single row deep groove ball bearings with one shield	386
64	Single row deep groove ball bearings	386
64 -N	Single row deep groove ball bearings with snap ring groove	422
64 -NR	Single row deep groove ball bearings with groove and snap ring	422
70 -C	Single row angular contact ball bearings, contact angle 15°	456
70 -E	Single row angular contact ball bearings, contact angle 25°	456
719 -C	Single row angular contact ball bearings, contact angle 15°	456
719 -E	Single row angular contact ball bearings, contact angle 25°	456
72 -BE	Single row angular contact ball bearings, contact angle 40°	456
72 -BECB	Single row angular contact ball bearings, contact angle 40°,	462
	for paired mounting (universal design)	
72 -C	Single row angular contact ball bearings, contact angle 15°	456
72 -E	Single row angular contact ball bearings, contact angle 25°	456
73 -BE	Single row angular contact ball bearings, contact angle 40°	456
73 -BECB	Single row angular contact ball bearings, contact angle 40°,	462
	for paired mounting (universal design)	
811	Cylindrical roller thrust bearings, single direction	850
812	Cylindrical roller thrust bearings, single direction	850

Symbol	Product Description	Page
AH23	Withdrawal sleeves	990
AH240	Withdrawal sleeves	990
AH241	Withdrawal sleeves	990
AH3	Withdrawal sleeves	990
AH30	Withdrawal sleeves	990
AH31	Withdrawal sleeves	990
AH32	Withdrawal sleeves	990
AHX23	Withdrawal sleeves	990
AHX3	Withdrawal sleeves	990
AHX30	Withdrawal sleeves	990
AHX31	Withdrawal sleeves	990
AHX32	Withdrawal sleeves	990
AOH22	Withdrawal sleeves for oil injection method	990
AOH23	Withdrawal sleeves for oil injection method	990
AOH240	Withdrawal sleeves for oil injection method	990
AOH241	Withdrawal sleeves for oil injection method	990
AOH30	Withdrawal sleeves for oil injection method	990
AOH31	Withdrawal sleeves for oil injection method	990
AOH32	Withdrawal sleeves for oil injection method	990
ASE	Housing	916
AYNPPB	Insert bearing	908
CJ	Housing	928
CJTO	Housing	928
CFT	Housing	928
GAYNPPB	Insert bearing	908
GEKRRB	Insert bearing	908
GLCTE	Housing	928
GRAENPPB	Insert bearing	908
GS-811	Housing washer	851
GS-812	Housing washer	851
GYENPPB	Insert bearing	908
HJ10	Thrust collars for cylindrical roller bearings	551
HJ2	Thrust collars for cylindrical roller bearings	551
HJ2 -E	Thrust collars for cylindrical roller bearings	551
HJ22	Thrust collars for cylindrical roller bearings	551

Symbol	Product Description	Page
HJ22 -E	Thrust collars for cylindrical roller bearings	551
HJ23	Thrust collars for cylindrical roller bearings	551
HJ23 -E	Thrust collars for cylindrical roller bearings	551
HJ3	Thrust collars for cylindrical roller bearings	551
HJ3 -E	Thrust collars for cylindrical roller bearings	551
HJ4	Thrust collars for cylindrical roller bearings	551
HM -T	Lock nuts with metric trapezoidal thread	992
HM30	Lock nuts with metric trapezoidal thread	992
HM31	Lock nuts with metric trapezoidal thread	992
HML -T	Lock nuts with metric trapezoidal thread	992
K-811	Cylindrical roller and cage thrust assembly	851
K-812	Cylindrical roller and cage thrust assembly	851
K-	Inch sized tapered roller bearing	680
K-EE	Inch sized tapered roller bearing	680
K-H	Inch sized tapered roller bearing	680
K-HH	Inch sized tapered roller bearing	680
K-HM	Inch sized tapered roller bearing	680
K-L	Inch sized tapered roller bearing	680
K-LL	Inch sized tapered roller bearing	680
K-LM	Inch sized tapered roller bearing	680
K-M	Inch sized tapered roller bearing	680
KM	Lock nuts with metric ISO-thread	992
KML	Lock nuts, narrow series, with metric ISO-thread	992
LCTE	Housing	928
MB	Locking washer for lock nuts	1014
ME	Housing	946
MEO	Housing	946
MSB	Housing	962
MST	Housing	962
N2 -E	Single row cylindrical roller bearings	550
N3 -E	Single row cylindrical roller bearings	550
NC18 -V	Full complement type cylindrical roller bearings, single row	608
NC29 -V	Full complement type cylindrical roller bearings, single row	608
NC30 -V	Full complement type cylindrical roller bearings, single row	608
NCF18 -V	Full complement type cylindrical roller bearings, single row	608

Symbol	Product Description	Page
NCF29 -V	Full complement type cylindrical roller bearings, single row	608
NCF30 -V	Full complement type cylindrical roller bearings, single row	608
NJ2	Single row cylindrical roller bearings	550
NJ2 -E	Single row cylindrical roller bearings	550
NJ22 -E	Single row cylindrical roller bearings	550
NJ23 -E	Single row cylindrical roller bearings	550
NJ23 -VH	Full complement type cylindrical roller bearings, single row	608
NJ3 -E	Single row cylindrical roller bearings	550
NJ4	Single row cylindrical roller bearings	550
NNC48 -V	Full complement type cylindrical roller bearings, double row	628
NNC49 -V	Full complement type cylindrical roller bearings, double row	628
NNCF48 -V	Full complement type cylindrical roller bearings, double row	628
NNCF49 -V	Full complement type cylindrical roller bearings, double row	628
NNCF50 -V	Full complement type cylindrical roller bearings, double row	628
NNCL48 -V	Full complement type cylindrical roller bearings, double row	628
NNCL49 -V	Full complement type cylindrical roller bearings, double row	628
NNF50 -2LS-V	Full complement type cylindrical roller bearings, double row	644
NU10	Single row cylindrical roller bearings	550
NU19	Single row cylindrical roller bearings	550
NU2 -E	Single row cylindrical roller bearings	550
NU22	Single row cylindrical roller bearings	550
NU22 -E	Single row cylindrical roller bearings	550
NU23	Single row cylindrical roller bearings	550
NU23 -E	Single row cylindrical roller bearings	550
NU3	Single row cylindrical roller bearings	550
NU3 -E	Single row cylindrical roller bearings	550
NU4	Single row cylindrical roller bearings	550
NUP2	Single row cylindrical roller bearings	550
NUP2 -E	Single row cylindrical roller bearings	550
NUP22 -E	Single row cylindrical roller bearings	550
NUP23 -E	Single row cylindrical roller bearings	550
NUP3 -E	Single row cylindrical roller bearings	550
NUP4	Single row cylindrical roller bearings	550
QJ2	Four point ball bearings	490
QJ3	Four point ball bearings	490

Symbol	Product Description	Page
RAENPPB	Insert bearing	908
SHE	Housing	916
T2D	Single row tapered roller bearings, metric series	656
T2F	Single row tapered roller bearings, metric series	656
T2G	Single row tapered roller bearings, metric series	656
T3C	Single row tapered roller bearings, metric series	656
T3E	Single row tapered roller bearings, metric series	656
T3F	Single row tapered roller bearings, metric series	656
T4C	Single row tapered roller bearings, metric series	656
T4F	Single row tapered roller bearings, metric series	656
T4G	Single row tapered roller bearings, metric series	656
T5F	Single row tapered roller bearings, metric series	656
T7F	Single row tapered roller bearings, metric series	656
TUE	Housing	952
U2	Seating washers for thrust ball bearings	826
U3	Seating washers for thrust ball bearings	826
U4	Seating washers for thrust ball bearings	851
WS811	Shaft washer of a cylindrical roller thrust bearing	550
WS812	Shaft washer of a cylindrical roller thrust bearing	550

NKE BEARINGS

NKE AUSTRIA GmbH

Im Stadtgut C4
A-4407 Steyr, Austria
Tel: +43 7252 86667
Fax: +43 7252 86667-59
office@nke.at
www.nke.at

